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Abstract 
Coalescence-jumping of condensation droplets is widely studied for anti-icing, condensation heat 

transfer, water harvesting and self-cleaning. Another phenomenon that is arousing interest for potential 

enhancements is the individual droplet self-ejection. However, whether it is possible from divergent 

structures without detachment from pinning sites remains unexplored. Here we investigate the self-

ejection of individual droplets from divergent, uniformly hydrophobic structures. We designed, fabricated 

and tested arrays of nanostructured truncated microcones arranged in a square pattern. The dynamics 

of the single condensation droplet is revealed with high speed microscopy: it self-ejects after cycles of 

growth and self-propulsion between four cones. Adopting the conical pore for simplicity, we modelled 

the slow iso-pressure growth phases and the surface energy release-driven rapid transients enabled 

once a dynamic configuration is reached. In addition to easier fabrication, microcones with uniform 

wettability have the potential to allow self-ejection of almost all the droplets with a precise size while 

maintaining mechanical resistance and thus promising great improvements in a plethora of applications. 

 

Introduction 
   Coalescence-induced condensation droplet jumping (also called coalescence-jumping) is a 

fascinating phenomenon observable on natural and artificial surfaces with a certain hydrophobicity and 

has been highly studied experimentally1–4 and theoretically5–9 in the last decade. On a sufficiently 

hydrophobic surface       under condensation conditions, water droplets nucleate, grow, coalesce and 

eventually jump, leaving free space where the cycle begins again10. During coalescence the excess 

surface energy is transformed into kinetic energy of translation and oscillation9, net of adhesive and 

viscous losses5. The detachment occurs on hydrophobic micro and/or nanostructured surfaces for their 

minimal adhesion but with less than 6% efficiency11. While for some surfaces of plants12,13 and insects14, 

coalescence-jumping contributes to self-cleaning from pathogens and inert particles, in the academic 

and industrial fields it is studied for several applications. For example, for dew harvesting from the 

atmosphere, coalescence jumping is an alternative15 to grooves-induced distant coalescence16,17 to 

enhance drainage. It also enhances heat transfer by condensation thanks to the continuous droplet 

shedding and re-nucleation of small droplets.18,19 For these reasons, in frosting conditions, it also 

provides a passive anti-frost effect.20,21 At negative temperatures, frost is often preceded by 

condensation.22 Once few supercooled droplets freeze spontaneously (by homogeneous or 

heterogeneous nucleation23–28), frost percolates governed by the ice-bridging mechanism: the nearby 

liquid droplets evaporate and desublimate on the frozen one forming an ice bridge growing towards 

them.20,22,26,29–31 The diameters and distances of the drops determine the success of the ice-bridging.22,31–

33 Coalescence-jumping slows down frost propagation because it inhibits successful ice-bridging.21,34,35  

In recent years, the range of droplet sizes and environmental conditions that allow for coalescence-



jumping has been expanded by new manufacturing ideas and techniques.1,36,37 To avoid surface flooding 

with consequent loss of superhydrophobicity38 and jumping ability39, micro and nanostructured surfaces 

have been studied capable of spontaneously directing single droplets grown between the structures 

towards the apexes of the same and promote coalescence-jumping.19,37,40,41 

   A new topic of increasing interest is the single droplet jumping (here self-ejection) which broadens the 

knowledge in wettability and could potentially improve the mentioned applications and others. Individual 

droplets that grow confined in hydrophobic microstructures self-eject at a certain critical volume. The 

trigger can be an abrupt change of shape given either by the detachment of the drop from the bottom 

of the structures and by an enlargement in the upper part (micro-mesh42 and rectangular grooves43), or 

the detachment from a strong pinning site (biphilic V-grooves43). Similarly, a rapid and stopped self-

propulsion of single micro droplets was observed for vertical pillars41, V-grooves3,44, irregular cavities40 

and on conical threads45, all microstructures having uniform wettability of the nanostructures. One 

interpretation40,41,43,44 identifies the motion trigger with the overcoming of the retentive forces by the 

pressure force due to the Laplace pressure difference established, before detachment, inside the drop. 

On the other hand, it had already been observed that in quasi-static conditions (condensation) the drop 

grows with uniform internal pressure, albeit variable over time.42 In support of this, Baratian et al.46 first 

identified the system of the lone external forces acting on a static drop confined in a groove and proved, 

for a contact angle hysteresis-free surface, that it is null when the internal pressure is uniform. With the 

aid of simulations, both in the case with47 and without48,49 hysteresis, it was shown that a droplet in a 

groove moves spontaneously towards the iso-pressure configuration, coincident with the equilibrium 

one. In other words, before any self-propulsion or self-ejection, the droplet is static (mechanical 

equilibrium) and must respect the iso-pressure condition. 

   How to reconcile these experimental and theoretical evidences? Moreover, except for cases of abrupt 

changes in shape (depinning) with the clear establishment of a net pressure gradient, what forces trigger 

condensation droplets motion on uniform surfaces and when?  

  We make our contribution by studying a sufficiently general case that can be modelled analytically: a 

condensation droplet in a pore with conicity β and uniformly hydrophobic with certain dynamic contact 

angles (𝜗𝑎 =157° and 𝜗𝑟 =145°, the advancing and receding angles of the tested microstructures walls, 

respectively). We first show that, regardless of the initial configuration, the droplet can accommodate 

the increasing volume by varying the contact angles and the position of the menisci while maintaining 

uniform internal pressure, which guarantees mechanical equilibrium, until it reaches a dynamic 

configuration. This configuration enables movement toward the opening, and as the surface energy 

(𝐸𝑠𝑢𝑟𝑓) of the drop decreases in that direction, a propulsive surface force (𝐹𝑠𝑢𝑟𝑓) sets the drop in motion. 

In other words, the energy of molecules no longer at the interface is converted into kinetic energy. 

Accounting for the opposing capillary (an external force exerted by the solid) and viscous forces, we 

numerically solve the rapid motion of micro droplets considering various dynamic angles and conicity of 

the pore: the drops accelerate and stop at a certain distance which depends on the three parameters. 

Then, the cycle repeats with the overall effect of a stick-and-slip movement towards the aperture. This 

analysis provides a first force-based explanation of the jerky motion of droplets growing in divergent 

structures and arrested self-propulsion in general. We infer that the release of surface energy is an 

irreducible driving force while the Laplace pressure gradients induced by abrupt shape changes 

eventually add to it in particular cases. 

   After that, the new aspect from a phenomenological point of view, as well as the main aim of the 

present study, is to investigate the not yet explored possibility of self-ejection of condensation droplets 

from diverging microstructures with uniform wettability. A certain tapering can be advantageous for 

various applications as it could reduce the percentage of droplets that grow on the apexes of the 

microstructures and therefore cannot exhibit self-ejection. Indeed, such droplets are limited to      

coalescence-jumping, a less efficient phenomenon which does not allow precise control of the jumping 

droplet size. 



 

Fig. 1. Fabrication steps and experiments. a) photolithography, b) tapered Reactive Ion Etching (t-RIE), c) Scanning electron      
microscope (SEM) image of Surface 15x20 after t-RIE, d) e-beam evaporation of Al, e) HWT and f) SEM image of NanoAl. SEM 

images of truncated microcones all tilted 60° respect to a plane ⊥ to the electron beam: g) Surface 10x13, h) 15x20, i) 30x40, 

and j) 60x80. K) Scheme of the experimental setup. l) Image analysis of a droplet self-ejecting from the nanostructured 

microcones of Surface 15x20 captured at 66 000 fps and m) the relative evolution of position and velocity of the centre of mass 

(g) assumed to be the centre of a fitted ellipse. n) Self-ejection event on the Surface_60x80 captured at 11000 fps (see 

Supplementary video 6). o) Scatter plot of the experimental self-ejection velocity (𝑣𝑒𝑗) and transient times (𝑡𝑒𝑗) measured for 

the four surfaces. Scale bars are 10 μm apart from the one of f) that is 100 nm. 



Furthermore, the absence of strong pinning sites (e.g., biphilic grooves) would greatly benefit the 

manufacturing. Considering a finite-length conical micropore, we model the droplet that reaches the 

edge of the aperture, after cycles of slow growth and self-propulsions. After another growth phase, the 

droplet reaches one of a range of dynamic configurations, it accelerates thanks to 𝐹𝑠𝑢𝑟𝑓 and rapidly self-

ejects with a velocity dependent on the droplet size, higher for smaller droplets. 

   We designed a type of microstructure that allows the observation of growth and self-propulsion of 

condensation droplets to verify the self-ejection predictions: arrays of solid, truncated microcones 

arranged in a square pattern. The choice lies in 4 factors: i) the drop between four conical pillars has 

axial symmetry and is similar to the modelled one, ii) the drop can be observed from the side, against 

the light, to capture the entire dynamics, iii) we avoid depressurisation effects of the air under the drop 

during movement (not modelled) which could be of some importance in the case of the pore and, iv) 

microcones have a small fraction of the top surface area and therefore we expect almost all the drops 

to nucleate between the cones and self-eject at a precise volume. We fabricated four kinds of truncated 

microcones having a tapering as similar as possible but different sizes by tapered reactive ion etching 

(t-RIE) of silicon, then covered by nanostructured aluminium (obtained by hot water treatment, HWT) 

and made hydrophobic (silanization). By testing the surfaces in condensation conditions, we captured 

the growth, stopped self-propulsion and self-ejection transients of single droplets with a high frame rate 

camera coupled with a microscope. The radius range of the droplets self-ejected from the four arrays is 

9÷53 µm, with a correspondent self-ejection velocity (𝑣𝑒𝑗,𝑒𝑥𝑝) and transient time of 0.25÷0.65 m/s and 

46÷620 µs, respectively, this being the first report of single drop movements with such spatial and temporal 

resolution. The pore model predictions are in good qualitative and quantitative agreement with the 

experiments. A critical examination of the differences is reported. For faster estimates of the self-ejection 

velocity and its dependence on the various parameters involved, we also develop an energetic model 

for a droplet between four solid truncated microcones. 

   Our study on divergent structures with uniform wettability describes with a novel approach the 

mechanisms underlying stopped self-propulsion and self-ejection, driven by the release of surface 

energy once a dynamic configuration is achieved by slow growth. Any Laplace pressure gradient 

established in the droplet after an abrupt shape change is only added to this basic mechanism but is not 

strictly necessary. Then, we demonstrate experimentally for the first time the self-ejection of single 

droplet from arrays of truncated microcones without pinning sites, a great advantage for large scale 

fabrication. Moreover, we deduce that ideal microcones would allow the self-ejection of all the droplets 

with a precise, designed size. This new way of designing and structuring expands the capabilities of 

superhydrophobic surfaces: in addition to coalescence jumping, it allows single drop self-ejection with 

precise size control and high energy conversion efficiency during jumping, promising important 

improvements in the various energy applications mentioned. 

Results 

Surfaces fabrication and characterization 

Table 1. Design (Dmask, p) parameters and final geometry (𝛽, 𝑑ℎ and 𝑙) of the fabricated and tested surfaces. 

Surface name Dmask [μm] Pitch 𝑝 [μm] Tapering �̅� [°] Head diameter 𝑑ℎ [μm] Height [μm] 

10x13 10 13 5.8 ± 0.7 5 23.3 

15x20 15 20 5.7 ± 1 7 34.9 

30x40 30 40 5.8 ± 0.6 12.5 64.3 

60x80 60 80 5.5 ± 0.2 31.5 103.7 

 

   To study the growth, self-propulsion and self-ejection in divergent structures with uniform wettability 

we fabricated four arrays of truncated microcones arranged in a square pattern by photolithography on 

silicon with a mask layout composed by circles of diameter Dmask and pitch 𝑝 (Table 1) which are identified 

with Surface_ Dmask x𝑝. The mask pattern was transferred to silicon using room-temperature t-RIE (see 



Fig. 1.a-c and Methods and Supplementary information for fabrication details). The combined effect of 

anisotropic and isotropic etching results in pillars with a tapering (𝛽), head diameter (𝑑ℎ), height (𝑙) and 

smoothness depending on the t-RIE process parameters, the area fraction free from the hard mask (𝜑) 

and the etching time (𝑡𝑒). With the aim of fabricating four surfaces with the same 𝛽, 𝜑 and aspect ratio 

𝑙/𝐷 but different size, we explored the effects of 𝜑 and 𝑡𝑒 on 𝛽 and the etch rate by processing various 

Si wafers with a lithography mask consisting of 1 cm2 light-exposed areas patterned with combinations 

of 𝐷𝑚𝑎𝑠𝑘  and 𝑝. By analysing the parameters trends we selected four structures (Table 1 and Figure 

1.g-j) realisable with similar geometry and the highest possible surface smoothness. We fabricated them 

on larger areas (2 cm x 10 cm) and cleaved in 2 cm x 2 cm samples. By evaporating pure Aluminium 

on the cleaved samples, followed by HWT, we obtained cones uniformly covered by Aluminium 

hydroxide nano flakes (NanoAl) (Figure 1.d-f). NanoAl was then rendered highly hydrophobic by 

conformal fluorosilane deposition (see Methods). We characterized the wettability of NanoAl by 

replicating the HWT and silanization procedures on flat silicon samples covered with evaporated Al. With 

the macro-droplet method 𝜗𝑎=166±1°and 𝜗𝑟=123±7° while the contact angles obtained with the micro-

droplet method (the ones used in the modelling) are 𝜗𝑎=157±1 and 𝜗𝑟=145±6° (see Methods). We 

placed the surfaces on a cold plate inside a chamber with controlled humidity and observed the 

dynamics of condensation droplets with a high frame rate camera coupled with a microscope (see 

Figure 1.k and Methods). 

 

Single droplet growth between truncated microcones, self-propulsion and self-ejection 

  The condensation droplets nucleate on random sites that can be either the lateral and bottom walls or 

truncated cones heads. Apart from the last case, the droplet grows and touches the inner walls of the 

four cones and, after a certain time, settles in the axial symmetric position. In this phase, the droplet 

moves toward the aperture by alternating a slow growth (via condensation) and fast self-propulsions 

when a dynamic configuration is reached (Suppl. Video 1-2). After a time which depends on the unit cell 

size (in our cases in the order of minutes), the droplet arrives at the top edges, slowly grows to another 

dynamic configuration (Suppl. Video 2) and rapidly self-ejects (Figure 1.l and n and Suppl. Video 3-6). 

Depending on its volume (radius of an equivalent sphere in the range 9÷53 𝜇m), the droplet accelerates 

to ∼0.25÷0.65 m/s (self-ejection velocity) in ∼40÷700 µs, respectively, and detaches from the structures 

(Figure 1.l-o). Four self-ejection events are reported for each surface. Fig. 1.I shows how we acquired 

the evolution of the centre of mass position and velocity during self-ejection transients (see Methods). 

By analysing the Supplementary Videos 1-6 (side-view), 7 (top-view) and 8-9 (side-view not 

perpendicular to the cleavage line, see Figure S1), the drop resembles a spheroid that touches the four 

walls of the cones and partially touches the truncated heads. The contact areas are therefore pseudo-

elliptical non-flat surfaces which evolve during motion, a very tricky case to deal with analytically. The 

modelling of the drop in a hydrophobic conical pore, on the other hand, makes the problem analytically 

treatable and, however far it may be quantitatively from the real case, preserves the qualitative aspects, 

as we shall explain. 

 

The system of the external forces 

  With the aim of describing the quasi-static growth and simulating the rapid motions of the droplet 

considered as a particle, we first analyse the forces involved. Let us consider the droplet suspended in 

the conical pore during growth (Figure 2.a) and verify that the Laplace pressure and contact line forces 

acting on the “top meniscus system” (Figure 2.b) are equal and opposite.  The droplet is micrometric 

(radius < 100 μm) and gravitational effects can be safely neglected. Being the Laplace pressure ∆𝑃𝑡 ≡

𝑃𝑖𝑛𝑡 − 𝑃𝑒𝑥𝑡 = −[2𝜎𝑙𝑣𝑐𝑜𝑠 (𝜗𝑡 + 𝛽) ]/𝑟𝑡, the upward force 𝐹𝐿𝑎𝑝𝑙𝑎𝑐𝑒
↑  is ∆𝑃𝑡 ∙ 𝐴, where 𝐴 = 𝜋𝑟𝑡

2 is the 

spherical cap area projected on a plane ⊥ to 𝑧 with contact radius 𝑟𝑡, 𝜎𝑙𝑣 is the liquid-vapour surface 

tension, 𝛽 is the half-aperture, and 𝜗𝑡 the apparent contact angle on the wall. Thus, 𝐹𝐿𝑎𝑝𝑙𝑎𝑐𝑒,𝑡
↑ =



−2𝜋 𝜎𝑙𝑣 𝑟𝑡 𝑐𝑜𝑠 (𝜗𝑡 + 𝛽) , a force exerted by the droplet bulk on the meniscus system along the positive 

z axis. The force generated by the reaction of the solid to the surface tension acting on the circular 

contact line50, projected along positive z, is 𝐹𝜎,𝑡
↑ = −2𝜋 𝜎𝑙𝑣 𝑟𝑡 𝑐𝑜𝑠(𝜋 − 𝜗𝑡 − 𝛽), equal in modulus to 

𝐹𝐿𝑎𝑝𝑙𝑎𝑐𝑒,𝑡
↑  but opposite. The proof for the bottom meniscus is analogous. This result confirms the force 

balance of the  

 

Figure 2. a) Scheme of a droplet suspended in a hydrophobic conical pore showing half of the forces acting on the droplet 

system in the xz plane: surface tension on the contact lines and pressures on the contact area and caps . b) Forces acting on 

the meniscus system, highlighted with the blue dotted line.  

 

generic meniscus and is, in fact, true by definition. Therefore, differently from other studies43, we do not 

put both of these terms into the system of external forces acting on the “droplet” system because they 

would cancel out. 

   Before proving that a droplet suspended in a conical pore with hysteresis satisfies the mechanical 

equilibrium when the internal pressure is uniform, we report other studies that identified the iso-pressure 

as an equilibrium condition for similar geometries. Molecular dynamics simulations51 of a droplet growing 

in a zero-hysteresis wedge identified the truncated sphere (constant curvature) as an equilibrium 

configuration, thus with uniform internal pressure. Baratian et al.46 first described analytically that, on 

such a droplet, the system of external forces acts with null resultant. A drop placed away from this 

configuration experiences an internal pressure gradient (with a quasi-linear profile) and correspondingly 

a net force that brings it to the equilibrium configuration (iso-pressure), as described analytically48 and 

with Lattice-Boltzmann simulations49. On the other hand, as highlighted in experiments and 

modelling47,52–54, the role of hysteresis is essential for a more refined description of equilibrium and motion 

of droplets in wedges. 

   Now, regarding the “droplet system” suspended in a conical pore with hysteresis, the contact angles 

𝜗𝑡 and 𝜗𝑏 vary in the range [𝜗𝑟, 𝜗𝑎], and by imposing the curvature radii 𝑅𝑡 (Eq. 1) and 𝑅𝑏 (Eq. 2) to be 

equal, we obtain Eq. 3, the relationship to be satisfied by the five parameters 𝐻𝑡, 𝐻𝑏, 𝜗𝑡, 𝜗𝑏 and 𝛽 in 

order to have a uniform internal pressure. In Eq.3 we define the shape ratio 𝜆 ≡ 𝐻𝑡/𝐻𝑏 between the 

heights of the contact lines. The external forces are: the reaction that the solid opposes to the surface 

tension acting on the contact lines of both menisci, 𝐹𝑡,𝜎
↑  and 𝐹𝑏,𝜎

↑ (Eqs. 4-5), the reaction of the solid to 

the droplet internal pressure acting on the contact area, 𝐹𝑝
↑ = (𝑃𝑒𝑥𝑡 + ∆𝑃𝐿𝑎𝑝𝑙𝑎𝑐𝑒)𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑐𝑜𝑛𝑒𝑠𝑖𝑛 𝛽 , 

and the atmospheric pressure force on caps (𝐹𝑐𝑎𝑝), all projected along the positive verse of the z 

symmetry axis. However, note that the constant atmospheric pressure 𝑃𝑒𝑥𝑡 acting on both caps and 



contact area (a close surface) generates a null net force based on the Gauss’s theorem. Thus, we do 

not consider 𝐹𝑐𝑎𝑝𝑠 and directly use Eq. 6 for 𝐹𝑝
↑ where ∆𝑃𝐿𝑎𝑝𝑙𝑎𝑐𝑒 =

2 𝜎𝑙𝑣

𝑅𝑡
, uniform in the droplet. 

 𝑅𝑡 = −
𝐻𝑡 tan 𝛽

cos (𝜗𝑡 + 𝛽)
 (1) 

 𝑅𝑏 = −
𝐻𝑏 tan𝛽

cos (𝜗𝑏 − 𝛽)
 (2) 

 𝜆 ≡
𝐻𝑡
𝐻𝑏

=
cos (𝜗𝑡 + 𝛽)

cos (𝜗𝑏 − 𝛽)
 (3) 

 𝐹𝑡,𝜎
↑ = −2𝜋 𝜎𝑙𝑣  𝐻𝑡 tan 𝛽  cos(𝜋 − 𝜗𝑡 − 𝛽) (4) 

 𝐹𝑏,𝜎
↑ = 2𝜋 𝜎𝑙𝑣  𝐻𝑏 tan𝛽  cos(𝜋 − 𝜗𝑏 + 𝛽) (5) 

 𝐹𝑝
↑ =

𝜋(𝑟𝑡 + 𝑟𝑏)(𝐻𝑡 − 𝐻𝑏)

cos𝛽
∙
2 𝜎𝑙𝑣
𝑅𝑡

 sin 𝛽 (6) 

 

The resultant capillary force acting on the droplet, 𝐹𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦
↑ = 𝐹𝑡,𝜎

↑ + 𝐹𝑏,𝜎
↑ + 𝐹𝑝

↑, is identically null for 

every 𝐻𝑡, 𝐻𝑏, 𝜗𝑡, 𝜗𝑏 and 𝛽 that satisfy Eq. 3 (see S1, Supplementary Information). In other words, given 

a droplet of a certain volume in the pore, the configurations such that the internal pressure is uniform 

are also equilibrium configurations for the external force system. During the slow growth by 

condensation, that is a quasi-static process, and before dynamic conditions, it is reasonable to assume 

that the incoming volume redistributes in the possible equilibrium configurations (Eq.3) by varying the 

contact line heights and contact angles. Of course, the surface energy required to enlarge the interfaces 

comes from the condensation volume entering the system. 

 

Growth phases in a conical pore 

  The droplet nucleates somewhere on the walls, it swells and increases the contact area until it 

equilibrates axis symmetrically in the pore (or similarly between the 4 cones as shown in Video S7). 

Describing analytically what takes place during the process of symmetric settling is not an easy task and 

the present scope. However, after this settling we can say that 𝜆 ∈ [𝜆𝑚𝑖𝑛,𝑔𝑟𝑜𝑤𝑡ℎ, 𝜆𝑚𝑎𝑥] with the extremal 

shape ratios defined in the Eqs.7-8 and marked with a black and a red dot, respectively, in Figure 3.A. 

In Figure 3.A, we represent the relation between 𝜗𝑏 and 𝜗𝑡 (from Eq. 3) for the various 𝜆 allowed. As the 

volume increases, assuming that the drop passes through iso-pressure configurations, 𝜗𝑏 , 𝜗𝑡 , 𝐻𝑏 and 𝐻𝑡 

evolve following precise paths. We identified two subsequent growth phases: phase 1 which consists of 

two sub-cases both of which lead to 𝜗𝑡 = 𝜗𝑎, and phase 2 that ends with 𝜗𝑡 = 𝜗𝑎 and 𝜗𝑏 = 𝜗𝑟, a dynamic 

configuration with the shape ratio 𝜆𝑚𝑎𝑥. 

𝜆𝑚𝑖𝑛,𝑔𝑟𝑜𝑤𝑡ℎ =
𝑐𝑜𝑠 (𝜗𝑟 + 𝛽)

𝑐𝑜𝑠 (𝜗𝑎 − 𝛽)
 (7) 

𝜆𝑚𝑎𝑥 =
𝑐𝑜𝑠 (𝜗𝑎 + 𝛽)

𝑐𝑜𝑠 (𝜗𝑟 − 𝛽)
 (8) 

 

Growth phase 1 

   In phase 1, for any particular couple of 𝜗𝑏 , 𝜗𝑡 ∈ (𝜗𝑟, 𝜗𝑎), as the volume increases, the contact angles 

can only increase constrained to a black curve as reported in figure 3a. Depending on the initial 𝜆 either 

𝜗𝑏 or 𝜗𝑡 reaches 𝜗𝑎 first. For the particular 𝜆∗ =
𝑐𝑜𝑠 (𝜗𝑎+𝛽)

𝑐𝑜𝑠 (𝜗𝑎−𝛽)
, they reach 𝜗𝑎 contemporarily (violet dot) at 

the end of phase 1. 

Sub-case 1: 𝜆 ∈ [𝜆∗, 𝜆𝑚𝑎𝑥). 𝜗𝑡 reaches 𝜗𝑎 first (green dots in Figure 3.a) and the droplets enter directly 

into phase 2. 



Sub-case 2: 𝜆 ∈ [𝜆𝑚𝑖𝑛,𝑔𝑟𝑜𝑤𝑡ℎ, 𝜆
∗). The steps are: 𝜗𝑏 reaches 𝜗𝑎 first (blue dots in Figure 3.a), the bottom 

meniscus advances towards the tip of the pore, 𝐻𝑏 decreases and thus 𝜆 increases towards  
𝜆∗. In parallel, 𝜗𝑡 increases towards 𝜗𝑎. When 𝜗𝑡 = 𝜗𝑎 both menisci are in the advancement condition  

 

Figure 3. a) Diagram of the growth phases 1 (with the two sub-cases) and 2 in terms of 𝜗𝑏 and 𝜗𝑡 for various initial shape ratios 

𝜆 ∈ [𝜆𝑚𝑖𝑛,𝑔𝑟𝑜𝑤𝑡ℎ, 𝜆𝑚𝑎𝑥] where these two extremal values are depicted as a black and a red dot, respectively, for 𝛽 = 6°. Any 

point on a black line, in the contact angles range [𝜗𝑟 , 𝜗𝑎] = [147°, 157°], represents a possible initial configuration (shadowed 

regions are not allowed). As the volume increases during phase 1, the system can either reach a blue, violet or green dot 

following its black line. Then, during phase 2, 𝜆 increases to 𝜆𝑚𝑎𝑥, the dynamic configuration (red dot), regardless of the initial 

configuration, and the droplet self-propels. The red dotted line represents 𝜗𝑏 = 𝜗𝑡.  In b) and c) illustrations are reported where      
caps depicted with dotted lines indicate configurations before the ones with solid lines, and colours are referred to the ones of 

arrows and dots in a) . 

 

but, in the subsequent growth      only 𝐻𝑡 can increase, otherwise 𝑅𝑏 could not be equalled by 𝑅𝑡. Again, 

the system enters      phase 2. For the limit initial shape ratio 𝜆𝑚𝑖𝑛,𝑔𝑟𝑜𝑤𝑡ℎ, the only difference is the 

absence of the first step. 

 



Growth phase 2 

 Starting from 𝜆∗ or any other green dot, 𝐻𝑡 increases maintaining 𝜗𝑡 = 𝜗𝑎 while 𝐻𝑏 is fixed and 𝜗𝑏 

decreases to 𝜗𝑟; in other words, 𝜆 increases towards 𝜆𝑚𝑎𝑥. At the end, regardless of the initial 𝜆, all 

droplets reach 𝜆𝑚𝑎𝑥. G     rowth phase 2 is clearly observed in Supplementary Videos 1-2, where, before 

self-propulsion, only the top meniscus moves. The shape ratio 𝜆𝑚𝑎𝑥 corresponds to the dynamic 

configuration of self-propulsion. Once reached, both menisci can move and the release of 𝐸𝑠𝑢𝑟𝑓 begins. 

The theoretical 𝜆𝑚𝑎𝑥=1.31±0.13 gives an estimate of the experimental one (𝜆𝑚𝑎𝑥,𝑒𝑥𝑝= 1.19±0.02), 

calculated by analysing the droplet shape before self-propulsion with the use of the pore model 

assumptions (S2, Supplementary information). 

 

Self-propulsion transient in a conical pore 

   We here show that self-propulsion causes a small displacement, a fraction of the droplet size, without 

detachment, as observed in our experiments but also in the ones of droplets in wedges3,44. In this section 

we develop the theoretical framework for the resolution of the droplet motion which is then taken up in 

the self-ejection section in which we directly compare the theoretical and experimental motion. 

   During the growth by condensation in a confined space, the droplet surface energy, 𝐸𝑠𝑢𝑟𝑓, is stored in 

the geometrical configuration dependent on the contact angle hysteresis and compatible with the iso-

pressure condition. Once 𝜆𝑚𝑎𝑥 is attained, the motion is enabled and the system evolves towards 

configurations with lower 𝐸𝑠𝑢𝑟𝑓. We consider the volume to be constant in these transients (both self-

propulsion and self-ejection) as the motion occurs in tens to hundreds of 𝜇𝑠 and the condensation 

volume is negligible. Also, we assume the liquid to be incompressible. The droplet volume in such a pore 

is 𝑉 = 𝑉𝑐𝑎𝑝,𝑡 + 𝑉𝑐𝑎𝑝,𝑏 + 𝑉𝑡𝑐, Eq.9, expressed as the sum of the top and bottom spherical caps, and of 

the truncated cone volumes, respectively (Eqs. S 3.1-3). The self-propulsion volume 𝑉∗ of a particular 

simulated droplet can be calculated with Eq. 9 by choosing  𝜗𝑏 = 𝜗𝑟, 𝜗𝑡 = 𝜗𝑎 and an initial 𝐻𝑏, called 

𝐻𝑏,0, depending on the condensation nucleus location in the pore and an initial 𝐻𝑡, called 𝐻𝑡,0, which is 

𝜆𝑚𝑎𝑥𝐻𝑏,0. During sliding towards the aperture, 𝐻𝑏 and 𝐻𝑡 vary but the contact angles and the volume 

𝑉∗ remain constant. Thus, by imposing 𝑉∗ = 𝑉 (Eq. 10), with 𝑉 of the general Eq. 9, 𝐻𝑡 depends on 𝐻𝑏 

during all the movement (Eq. S3.4). For each examined droplet, every quantity expressed below is only 

a function of 𝐻𝑏 and its time derivatives. 𝐸𝑠𝑢𝑟𝑓 is expressed in Eq. 11 (explicit form in S3.4) where 𝜗𝑒𝑞 =

cos−1[(𝑐𝑜𝑠 𝜗𝑎  + 𝑐𝑜𝑠 𝜗𝑟 ) 2⁄ ]  is an estimate of the equilibrium contact angle. Under these hypothesis, 

𝐸𝑠𝑢𝑟𝑓 is the potential of a driving surface force 𝐹𝑠𝑢𝑟𝑓 (Eq. 12)55–58, positive as 𝐻𝑏 increases for the surface 

considered here. 

 

𝐸𝑠𝑢𝑟𝑓 = 𝜎𝑙𝑣(𝐴𝑐𝑎𝑝,𝑡 + 𝐴𝑐𝑎𝑝,𝑏 − 𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑐𝑜𝑛𝑒𝑐𝑜𝑠 𝜗𝑒𝑞 ) 

 

(11) 

𝐹𝑠𝑢𝑟𝑓
↑  = −

𝑑𝐸𝑠𝑢𝑟𝑓

𝑑𝐻𝑏
 

(12) 

At the same time, the external force system, 𝐹𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦
↑ (𝐻𝑏), acts on the droplet. 𝐹𝑏,𝜎

↑  is the same of Eq. 

5 while for 𝐹𝑡,𝜎
↑  we substitute 𝐻𝑡 of Eq. 4 with Eq. S 3.5. As the droplet moves away from the iso-pressure 

configuration, the two curvatures evolve differently and thus there is an internal pressure gradient. We 

modify Eq. 6 to Eq. 13 by assuming a linear pressure profile 𝑃(𝑧) = 𝑝𝑏 + (∆𝑝𝑡 − ∆𝑝𝑏)(𝑧 − 𝐻𝑏)/(𝐻𝑡 −

𝐻𝑏), (Eq. 14), in similarity to what was found elsewhere for wedges49. The infinitesimal area of the 

truncated cone is 𝑑𝐴 = 2𝜋 𝑡𝑎𝑛 (𝛽) 𝑧 𝑑𝑧/𝑐𝑜𝑠 𝛽  with 𝑧 ∈ [𝐻𝑏 , 𝐻𝑡]. ∆𝑝𝑡 = 2𝜎𝑙𝑣/𝑅𝑡, ∆𝑝𝑏 = 2𝜎𝑙𝑣/𝑅𝑏 and 

𝑝𝑏 = ∆𝑝𝑏 + 𝑝𝑒𝑥𝑡 are the top and bottom Laplace pressure differences and the bottom pressure, 

respectively. Again, the force contribution of 𝑝𝑒𝑥𝑡 on the truncated cone area balances with those on 

the two caps      so, for calculation purposes, we place it equal to zero in Eq. 13 and do not consider 

𝐹𝑐𝑎𝑝𝑠. With substitutions and by solving the integral in 𝑧, also 𝐹𝑝
↑ is a function of 𝐻𝑏 alone. 



 

 
𝐹𝑝
↑ = ∫ 𝑃(𝑧) 𝑠𝑖𝑛𝛽 𝑑𝐴

𝐴

= ∫ [∆𝑝𝑏 +
(∆𝑝𝑡 − ∆𝑝𝑏)(𝑧 − 𝐻𝑏)

(𝑧 − 𝐻𝑏)
] 2𝜋(𝛽) 𝑧 𝑑𝑧

𝐻𝑡

𝐻𝑏

 
(13

) 

 

𝐹𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦
↑  is negative as the droplet moves towards the aperture (opposing force) while the net force 

𝐹𝑛𝑒𝑡
↑ = 𝐹𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦

↑ + 𝐹𝑠𝑢𝑟𝑓
↑  (Eq. 15) is positive until 𝐻𝑏 = 𝐻𝑏

∗ (Figure 4.a): the droplet accelerates, 

decelerates and stops. The motion is therefore driven by a position-dependent force 𝐹𝑛𝑒𝑡
↑ (𝐻𝑏) acting on 

the droplet centre of mass 𝐻𝑔, which is also a function of the lone 𝐻𝑏(𝑡) (see S3, Supplementary 

Information). In addition, the walls oppose a viscous force 𝐹𝑣𝑖𝑠𝑐 = 𝜏 ∙ 𝐴 to the droplet as it slides, with 𝜏 

and 𝐴 being the shear stress and contact area, respectively. By assuming a Poiseuille flow in a tube of 

radius 𝑟 and for small 𝛽, the fluid velocity profile can be approximated as 𝑣(𝑥) = 𝐻�̇�[1 − (
𝑥

𝑟
)
2
], 𝜏 =

𝜇
(𝑑𝑣

𝑑𝑥)
∣𝑥=𝑟, 𝐴 ≈ 2𝜋𝑟(𝐻𝑡 −𝐻𝑏), and the viscous force59 as 

 

 𝐹𝑣𝑖𝑠𝑐 = 4𝜋𝜇𝐻�̇�(𝐻𝑡 − 𝐻𝑏) (16) 

 

where 𝐻�̇�is the velocity of the centre of mass and 𝜇 is the dynamic viscosity. Considering the drop as a 

particle accelerating under the effect of the described forces , we obtain Eq. 17, where 𝜌 is the water 

density and 𝐻�̈� the acceleration of the droplet centre of mass. By substituting the expressions of 𝐻�̇� and 

𝐻�̈� as functions of 𝐻𝑏, 𝐻�̇� and 𝐻�̈� into Eq. 17 and solving numerically in MATLAB, we obtained 𝐻𝑏(𝑡) 

and 𝐻�̇�(𝑡) (details in S3, Supplementary information). The developed code detects particular events 

such as reaching a prescribed 𝐻𝑏
# or 𝐻�̇� = 0 and stops the resolution. Then, by substituting the 𝐻𝑏 and  

𝐻�̇� numerical values in 𝐻𝑔 and 𝐻�̇�, we plotted the motion of the centre of mass (example in Figure 4.b). 

 

 𝐻�̈�𝜌𝑉
∗ = 𝐹𝑛𝑒𝑡

↑ − 𝐹𝑣𝑖𝑠𝑐  (17) 

The droplet does not stop at 𝐹𝑛𝑒𝑡
↑ = 0 (identified by 𝐻𝑏

∗ in Figure 4.a-b) but at a certain final 𝐻𝑏,𝑓𝑖𝑛. For 

self-propulsion, the resolution must be interrupted when the drop stops (𝐻�̇� = 0) because before any 

eventual acceleration in the opposite direction, the contact angles should be reconfigured (bottom in 

advancing and top in receding conditions) and the capillary force system rewritten. In the stop position, 

𝐹𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦
↑ < 0 because 𝐹𝑡,𝜎

↑  is negative and greater in modulus than the positive 𝐹𝑏,𝜎
↑ + 𝐹𝑝

↑ and thus the 

internal pressure is not uniform. In particular, the meniscus top has a larger pressure. Before the 

eventual motion towards the negative direction the contact lines are fixed and the contact angles 

rearrange to cancel the internal pressure difference. If 𝜆𝑓𝑖𝑛 = 𝐻𝑡,𝑓𝑖𝑛/𝐻𝑏,𝑓𝑖𝑛 does not allow an iso-

pressure configuration, given the particular fixed volume 𝑉∗, the droplet reaches the apt dynamic 

configuration for travelling in the opposite direction, it accelerates, stops and so on. For the 

parameters 𝜗𝑎, 𝜗𝑟 and 𝛽 of interest in this study we found that the droplets can re-equilibrate in the stop 

position (identified by 𝐻𝑏,𝑓𝑖𝑛) and calculated which final 𝜗𝑡,𝑓𝑖𝑛 and 𝜗𝑏,𝑓𝑖𝑛 are attained by the menisci 

starting from 𝜗𝑎 and 𝜗𝑟, respectively (S3.4, Supporting Information). Figure S1 shows 𝐻𝑏,𝑓𝑖𝑛/𝐻𝑏,0, 𝜗𝑡,𝑓𝑖𝑛 

and 𝜗𝑏,𝑓𝑖𝑛 for various equivalent radii 𝑅𝑒𝑞 (the radius of a spherical droplet with the same volume 𝑉∗), 

for both the viscous and non-viscous cases and fixed surface parameters; it is interesting to note that 

all three quantities are independent of droplet size for the non-viscous case while varying marginally in 

the viscous one. With multiple simulations we built a 3D map of 𝐻𝑏,𝑓𝑖𝑛/𝐻𝑏,0 for various 𝜗𝑎, 𝜗𝑟 and 𝛽, 

considering the non-viscous case (Figure 4.c): as a guideline, we deduce that 𝐻𝑏,𝑓𝑖𝑛/𝐻𝑏,0 increases with 

𝜗𝑎 and with the contact angle hysteresis, while it decreases with 𝛽. In addition to those shown in 

Supplementary video S1-2, we captured and analysed four other self-propulsion events. All the videos 



were captured orthogonally  with respect to the cleavage line (see Figure 4.d and Figure S1) from which 

the actual point of contact of the meniscus bottom with the walls cannot be seen; the ideal view would 

be at 45° but it does not allow good illumination of the meniscus bottom as the light is blocked by the 

cones behind it; we therefore measured ℎ𝑏,0 and ℎ𝑏,𝑓𝑖𝑛 (Figure 4.d) and calculated the experimental 

𝐻𝑏,𝑓𝑖𝑛/𝐻𝑏,0=1.05±0.02 (analogously to S2, Supplementary information), overestimated by ~8% by the 

viscous model that predicts 𝐻𝑏,𝑓𝑖𝑛/𝐻𝑏,0~1.14 for the droplet captured. Transient time of self-propulsion 

is not the main scope of the present article; however, we captured at 2000 fps the self-propulsion of a 

droplet with 𝑅𝑒𝑞 similar to the simulated one (Figure 4.a) and it takes place between two frames, thus in 

less than 500 μs. 

 

 

Figure 4. a) 𝐹𝑛𝑒𝑡
↑ , 𝐹𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦

↑ , 𝐹𝑠𝑢𝑟𝑓
↑  as a function of 𝐻𝑏 for a droplet with equivalent radius 𝑅𝑒𝑞 = 24.7 𝜇𝑚, 𝜗𝑎 = 157°, 𝜗𝑟 = 145° 

and 𝛽 = 6. 𝐻𝑏
∗ (green dotted line) corresponds to 𝐹𝑛𝑒𝑡

↑ = 0. 𝐻𝑏,0 is the initial condition while its final value, 𝐻𝑏,𝑓𝑖𝑛, comes from 

the resolution of Eq.17 stopped at 𝐻�̇� = 0. b) Time evolution of the droplet considering viscous dissipations: position of 𝐻𝑏, 𝐻𝑔 

and 𝐻𝑡 respect to the cone apex and the velocity of the centre of mass, 𝐻�̇�. c) 3D map of 𝐻𝑏,𝑓𝑖𝑛/𝐻𝑏,0 vs 𝜗𝑎,𝜗𝑟 and 𝛽 for the 

non-viscous case. d) Example of droplet self-propulsion recorded at 1000 fps by testing a Surface_30x40 and illustration of the 

measurement of ℎ𝑏. 

 

Self-ejection from a conical pore 

   The central theme of the present article is the droplet spontaneous self-ejection from arrays of micro 

truncated cones covered by uniformly hydrophobic nanostructures. Once nucleated and settled 

between four truncated cones, the droplet alternates between growth phases and self-propulsions until 

the top meniscus reaches the top edges (𝐻𝑡,𝑚𝑎𝑥) with a particular shape ratio (𝜆𝑒𝑗), not unique but 

history-dependent. In the framework of the conical pore approximation, the subsequent increase in 

volume by condensation or acceleration does not imply the advancement of the top meniscus (fixed at 

𝐻𝑡,𝑚𝑎𝑥) but the increase of 𝜗𝑡 (towards 𝜗𝑎 measured with respect to the plane orthogonal to 𝑧). As the 

volume increases by condensation, the two menisci evolve to overcome the striction imposed by the 



edge until bottom reaches 𝜗𝑟 (the self-ejection dynamic configuration) and the droplet self-ejects by 

releasing 𝐸𝑠𝑢𝑟𝑓. We employ again the conical pore approximation to describe the pre-self-ejection 

growth and the self-ejection transient. The differences between the real case and the model will be 

examined in the energetic model paragraph. 

 

Pre-self-ejection growth 

   Again, we consider the growth as a quasi-static process with uniform pressure at each instant. 𝜆𝑒𝑗 can 

be between two extreme values to be identified among three possible cases. Case 1: The drop is exactly 

at the end of growth phase 2 which would result in self-propulsion if the droplet is not at the edge; 

therefore, when 𝐻𝑡 = 𝐻𝑡,𝑚𝑎𝑥 , 𝜆𝑒𝑗,1 = 𝜆𝑚𝑎𝑥 (Figure 5.a). Case 2: the droplet has just finished a self-

propulsion and stops exactly with 𝐻𝑡,𝑓𝑖𝑛 = 𝐻𝑡,𝑚𝑎𝑥; 𝜆𝑒𝑗,2 = 𝜆𝑓𝑖𝑛, 𝜗𝑏 = 𝜗𝑏,𝑓𝑖𝑛 and 𝜗𝑡 = 𝜗𝑡,𝑓𝑖𝑛. Case 3: the 

droplet nucleated near the edge (𝐻𝑡 is already equal to 𝐻𝑡,𝑚𝑎𝑥) and only goes through growth phase 1 

(sub-case 2) (Figure 5.b). The contact angles evolution of each case is described in detail here: 

● Case 1. As the volume increases, 𝜗𝑏 first increases and then returns to 𝜗𝑟 once the striction is 

overcome (Figure 5.c, obtained from Eq. 3 with 𝐻𝑡 = 𝐻𝑡,𝑚𝑎𝑥 and 𝐻𝑏 = 𝐻𝑡,𝑚𝑎𝑥/𝜆𝑚𝑎𝑥). When 𝜗𝑏 =

𝜗𝑟 again, 𝜗𝑡 = �̂�𝑡,1 > 𝜗𝑎 (contact angle in reference to the pore walls), the droplet has a certain 

volume 𝑉𝑒𝑗,1 (calculated with Eq. 9 and the appropriate parameters) and the self-ejection 

transient begins. 

● Case 2. Same development as in Case 1 but with different initial contact angles and 𝜆𝑒𝑗. Once 

the striction is overcome and 𝜗𝑏 decreases to 𝜗𝑟 the droplet is enabled to move but �̂�𝑡,2 ≠ �̂�𝑡,1 

and 𝑉𝑒𝑗,2 ≠ 𝑉𝑒𝑗,1. Therefore, as we shall show, the transient and ejection velocity is different from 

Case 1 even if the surface parameters are the same. 

● Case 3. The droplet goes through growth phase 1 (sub-case 2 without the limit 𝜗𝑎 for 𝜗𝑡) with 

an advancing bottom meniscus until 𝜗𝑡 = 𝜋 − 𝛽 which corresponds to the minimum 𝑅𝑡 imposed 

by the striction and to 𝜆𝑒𝑗,3 = 𝜆𝑚𝑖𝑛 = −1/𝑐𝑜𝑠 (𝜗𝑎 − 𝛽). Then, as the volume increases, 𝜆𝑒𝑗,3 is 

maintained, 𝜗𝑏 decreases to 𝜗𝑟 and 𝜗𝑡 increases to �̂�𝑡,3 ≠ �̂�𝑡,2 ≠ �̂�𝑡,1. Also 𝑉𝑒𝑗,3 ≠ 𝑉𝑒𝑗,2 ≠ 𝑉𝑒𝑗,1. 

For 𝛽, 𝜗𝑎 and 𝜗𝑟 of our surfaces (Figure 5.c), 𝜆𝑚𝑖𝑛 ≤ 𝜆𝑓𝑖𝑛. 

 

Figure 5. Schemes of the pre-self-ejection growth in      Case 1 (a) and Case 3 (b). The caps depicted with dotted lines 

indicate earlier configurations than those with solid lines and colours are referred to c) where the contact angles evolution 

of the three cases is plotted for the case 𝛽=6°, 𝜗𝑎=157° and 𝜗𝑎=145°. 

 



The pre-self-ejection growth analysis and Figure 5.c reveal that, for any fixed 𝛽, 𝜗𝑎 , 𝜗𝑟 and 𝐻𝑡,𝑚𝑎𝑥, the 

ejection shape ratio (𝜆𝑒𝑗), the ejection volume (𝑉𝑒𝑗) and the top contact angle at the beginning of motion 

(�̂�𝑡) depend on the initial bottom meniscus height, 𝐻𝑏,0, which determines the number of self-propulsions 

(zero, one, two or more) the droplet will make to reach the edge. Since 𝐻𝑏,0 is a random variable 

depending on the nucleation site, we will study the two extreme cases being 𝜆𝑚𝑖𝑛 ≤ 𝜆𝑒𝑗 ≤ 𝜆𝑚𝑎𝑥.  

 

 

Figure 6. Evolution of forces (a-b), 𝐻𝑏(𝑡), 𝐻𝑔(𝑡) and their velocities (c) for a droplet with 𝑅𝑒𝑞 = 14.7 𝜇𝑚 and 𝜆𝑚𝑎𝑥. Comparison 

of the experimental data with d) the theoretical ranges of the final self-ejection velocity of the centre of mass and e) transient 

time for different equivalent radii for both the viscous and non-viscous cases and fixed surface parameters 𝛽=5.7°, 𝜗𝑎=157° 

and 𝜗𝑎=145°. f) Theoretical efficiency 𝜂
𝑡ℎ

 as the equivalent radii vary for both the viscous and non-viscous cases. 



Self-ejection transient 

   Once the drop has reached one of the possible dynamic configurations (a certain 𝜆𝑒𝑗 to which certain 

�̂�𝑡 and 𝑉𝑒𝑗 correspond) and accelerates under the effect of 𝐹𝑛𝑒𝑡
↑ − 𝐹𝑣𝑖𝑠𝑐, the displacement at constant 

volume occurs with an increase of 𝐻𝑏 at constant 𝜗𝑏 = 𝜗𝑟 and with an increase of 𝜗𝑡 at constant 𝐻𝑡 =

𝐻𝑡,𝑚𝑎𝑥. As done for self-propulsion, 𝑉𝑒𝑗 = 𝑉 (Eq. 18), with 𝑉 of the general Eq. 9 and 𝑉𝑒𝑗 a numerical 

value; being 𝜗𝑏 and 𝐻𝑡 constants, 𝜗𝑡 depends on 𝐻𝑏 during the motion (see S4, Supporting Information). 

It follows that all the other quantities in Eqns. 15-16 are also functions of 𝐻𝑏(𝑡) alone. For the 

experimental 𝛽, 𝜗𝑎 and 𝜗𝑟 and for various 𝐻𝑡,𝑚𝑎𝑥, we solved numerically Eq. 17 (in the variables 𝐻𝑏(𝑡) 

and its time derivatives) for the two extreme shape ratios 𝜆𝑚𝑖𝑛 and 𝜆𝑚𝑎𝑥 and stopped the resolution 

when the condition 𝐻𝑏 = 𝐻𝑡,𝑚𝑎𝑥 is verified  (the instant in which the droplet has a null contact area and 

detaches). Figures 6.a-b show the evolution of the forces terms and Figures 6.c depicts 𝐻𝑏 , 𝐻𝑔 and their 

velocities for an example droplet with 𝜆𝑚𝑎𝑥. Figures 6.d-e compare the experimental final self-ejection 

velocity (𝑣𝑒𝑗,𝑒𝑥𝑝) of the centre of mass and transient times with the theoretical ranges (𝑣𝑒𝑗,𝑡ℎ) for various 

equivalent radii, both for the viscous and not viscous cases. In Figures 6.f, the theoretical efficiency 𝜂𝑡ℎ 

(Eq. 19) is reported:  

 
𝜂𝑡ℎ =

𝜌𝑉𝑒𝑗𝑣𝑒𝑗,𝑡ℎ
2

2 ∆𝐸𝑠𝑢𝑟𝑓
 

(19) 

 

where ∆𝐸𝑠𝑢𝑟𝑓 = 𝐸𝑠𝑢𝑟𝑓,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 − 𝐸𝑠𝑢𝑟𝑓,𝑓𝑖𝑛𝑎𝑙 (Eq. 20) is the surface energy difference between the initial 

and final state of self-ejection from a conical pore, representing the maximum kinetic energy that the 

droplet would gain if there were no viscous and capillary dissipations.  

 

 

Figure 7. Comparison between experimental (Videos S3-6) and modelled (viscous case) self-ejection transients of A) Surface 

10x13, captured at 80 000 fps,  B)  Surface 15x20, captured at 66 000 fps, C) Surface 30x40, captured at 25 000 fps and D) 

Surface 60x80, captured at 11 000 fps. 



The model predicts 𝑣𝑒𝑗 very well both qualitatively and quantitatively. The underestimation of the 

transient time, larger for larger droplets, will be discussed in the next section. The percentage of energy 

dissipated by capillary forces (~45÷60 %) is greater than viscous ones (~15÷25 %). In the viscous case 

𝜂𝑡ℎ is in the range of 20÷55 %, much higher than that of coalescence-induced jumping (<6%). Figure 7 

compares the experimental and simulated transients. Apart from an initial delay, the experimental and 

theoretical velocity curves share a similar slope, thus a similar driving force. As explained in more detail 

in the next paragraph, the delay may be due to the different way in which the striction is overcome in the 

solid microcones case: not during the pre-ejection-growth but during the self-ejection itself. 

 

Self-ejection from microcones 

  The modelling of the growth phases, self-propulsion and self-ejection considering the conical pore 

resulted in a great simplification of the solid and especially of the droplet geometry, allowed an analytical 

treatment and offers a first mechanistic explanation of all the steps. The only parameters used are 

experimental (𝛽, 𝜗𝑎 and 𝜗𝑟 of the surface) and thus the correspondence between theoretical and 

experimental 𝑣𝑒𝑗 and self-propulsion distance indicate that the forces described approximate well the 

real ones. In this paragraph, we describe the drop between the four truncated cones at the beginning 

of the ejection transient based on video analysis, highlight the differences compared to the pore model      

and, by approximating the droplet with a spheroid, we estimate 𝑣𝑒𝑗 with an energetic model. 

   Figure 8.A specifies the angles from which Videos S1-S6 (view perpendicular to the cleavage line of 

the samples), Video S7 (view from above) and Videos S8-9 (view at 45° to the cleavage line) were 

captured. Video S1-2 show that after cycles of growth and stopped self-propulsion the droplet reaches 

the edges of the truncated cones, 𝜗𝑡 slightly increases during the subsequent growth by condensation 

(without reaching 90° respect to the horizontal, which corresponds to 𝜗𝑡 = 𝜋 − 𝛽) and the contact radius 

seems to slightly enlarge laterally, on the heads of the truncated cones. In fact, Videos S8-9 show that, 

an instant before the beginning of self-ejection, the upper contact line is beyond the head edge without 

having reached 𝜗𝑎 with respect to the heads-plane but an average angle of ~74° which corresponds to 

𝜗𝑡 = 𝜗𝑎 with respect to the walls. This detail hints that in complex geometries, the drop system can 

assume shapes that minimise interfacial energy rather than locally respecting the dynamic angles      

which, indeed, are measured under very particular conditions of symmetry. This lateral growth that 

incorporates the microcones implies a decrease in internal pressure (the contact radius of the top 

meniscus enlarges) and 𝜗𝑏, to follow, decreases to 𝜗𝑟. Then the droplet accelerates and 𝜗𝑡 increases 

with fixed contact radius, as assumed with the conical pore model.  

   In our opinion, the differences in transient time (Figures 6.e and 7) depend on when the striction is 

overcome: during and before the acceleration in the real and in the modelled case, respectively. In other 

words, during the transient, in the modelled case the opposing force 𝐹𝑡,𝜎
↑  is a decreasing function while 

in the real case it has a maximum when 𝜗𝑡 = 𝜋 − 𝛽. However, once the striction is overcome, the similar 

acceleration indicates a well-estimated force. This similarity can be explained as: i) although the droplet 

contacts the outside of four solid cones instead of the inside of a cone, the ratio between the negative 

(𝐹𝑡,𝜎
↑  ) and positive terms (𝐹𝑏,𝜎

↑ , 𝐹𝑝
↑) per unit length of the contact line should be roughly the same and 

thus also the opposing 𝐹𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦. ii) the experimental 𝜆𝑒𝑗∼1.25 (calculated with the procedure explained 

in Supplementary information S1) is in the modelled range and thus also the stored surface energy is 

well-estimated. 

   Videos from various angles show a droplet resembling a spheroid intersecting the four cones. For 

simplicity's sake, let us consider the drop before self-ejection as a spheroid generated by the rotation of 

an ellipse of semi-axes 𝑎 and 𝑐 and with its centre at coordinates (𝑥, �̂�) = (√2𝑝 2⁄ , ℎ), as illustrated in 

Figure 8.b-c. Given the low eccentricity of the ellipse, 𝑒 = √1 − 𝑎2 𝑐2⁄ , we approximate the curvatures 

of the top and bottom menisci as being those of spherical caps, 𝑅𝑡 = −(√2𝑝 − 𝑑𝑡) [2 cos (𝜗𝑎 + 𝛽)]⁄  

and 𝑅𝑏 = −(√2𝑝 − 𝑑𝑡 − 2 ∙ ∆𝐻 tan𝛽) [2 cos (𝜗𝑟 − 𝛽)]⁄ , respectively, where the contact angles are the 



dynamic ones because we are considering the instant before the transient. Under the assumption of 

uniform internal pressure, 𝑅𝑡 = 𝑅𝑏 and thus: 

 ∆𝐻 =
√2𝑝 − 𝑑𝑡
2 tan𝛽

[1 −
cos (𝜗𝑟 − 𝛽)

cos (𝜗𝑎 + 𝛽)
] (20) 

 

The spherical caps heights are ℎ𝑡 = 𝑅𝑡[1 − cos (𝜗𝑎 + 𝛽 − 𝜋 2⁄ )] and ℎ𝑏 = 𝑅𝑏[1 − cos (𝜗𝑟 − 𝛽 − 𝜋 2⁄ )], 

thus 2𝑐 = ∆𝐻 + ℎ𝑡 + ℎ𝑏. By imposing the passage of the generic ellipse, (𝑥 − √2𝑝 2⁄ )2 𝑎2⁄ +

(�̂� − ℎ)2 𝑐2⁄ = 1, through points A(𝑑𝑡/2, 𝑑𝑡/(2 𝑡𝑎𝑛𝛽) )and B(𝑑𝑡/2 + ∆𝐻 tan𝛽 , 𝑑𝑡/(2 𝑡𝑎𝑛𝛽) + ∆𝐻 ), we  

 

Table 2. Experimental data and modelling results for the droplets on the four surfaces. 

Surface 𝑎𝑒𝑥𝑝 [μm] 𝑎 [μm] 𝑐𝑒𝑥𝑝 [μm] 𝑐 [μm] 
𝑅𝑒𝑞,𝑒𝑥𝑝 [μm] 

𝑅𝑒𝑞,𝑡ℎ [μm] 𝑣𝑒𝑗,𝑒𝑥𝑝 [m/s] 
𝑣𝑒𝑗,𝑡ℎ 

[m/s] 
η 

10x13 8 8.04 10.6 ± 0.3 10.57 9.1 ± 0.4 8.81 0.65 ± 0.13 0.81 0.69 ± 0.29 

15x20 13 12.78 15.9 ± 0.1 16.83 14.0 ± 0.5 14.01 0.44 ± 0.06 0.65 0.46 ± 0.13 

30x40 27.5 26.47 33.0 ± 0.6 34.85 28.8 ± 1.7 29.01 0.31 ± 0.06 0.45 0.46 ± 0.19 

60x80 48.5 49.03 59.3 ± 0.9 64.57 52.7 ± 1.2 53.74 0.25 ± 0.02 0.33 0.52 ± 0.09 

 

Figure 8. A) Diagram of the surface with the 3 views used in the experiments: from above (view of Figure 8.A itself), 

perpendicular to the silicon cleavage line and at 45° to that line. The planes of focus pass through the centre of the droplet. B) 

Frame of Video S8, 45° view, highlighting the elliptical section of the drop. C) Dimensioned diagram of the drop from the 45° 

view used for the spheroid model developed in Section 4. D) Comparison of 𝑣𝑒𝑗,𝑒𝑥𝑝 and  𝑣𝑒𝑗,𝑡ℎ for various self-ejection radii 

(𝑅𝑒𝑞,). E) Self-ejection efficiency with propagated error bars. 

 



find ℎ and 𝑎. The surface area and the volume of a spheroid are 𝐴𝑠𝑝ℎ𝑒𝑟𝑜𝑖𝑑 = 2𝜋𝑎2(1 +
𝑐

𝑎∙𝑒
𝑒 ) and 

𝑉𝑠𝑝ℎ𝑒𝑟𝑜𝑖𝑑 = 4𝜋𝑎2𝑐/3. The radius of a sphere of the same volume is 𝑅𝑒𝑞,𝑡ℎ = [3𝑉𝑠𝑝ℎ𝑒𝑟𝑜𝑖𝑑/(4𝜋)]
1/3

. If the 

difference in surface energy between the initial and final states (Eq. 21) was      fully converted into 

kinetic energy, the droplet would have the self-ejection velocity expressed in Eq. 22. With the 

experimental ejection velocity (𝑣𝑒𝑗,𝑒𝑥𝑝) and volume 𝑉𝑒𝑥𝑝, we express the efficiency of self-ejection from 

truncated cones as 𝜂 (Eq. 23). We report the experimental data and model results for the four surfaces 

(Table 2), compare 𝑣𝑒𝑗,𝑒𝑥𝑝 with 𝑣𝑒𝑗,𝑡ℎ (Figure 8.d) and plot 𝜂 (Figure 8.e) for the various self-ejection 

radii. An indication of the goodness of the model in estimating the droplet geometry is the average 

relative error of 𝑅𝑒𝑞,𝑡ℎ compared to 𝑅𝑒𝑞,𝑒𝑥𝑝 of 0.1 %. Figure 8.d shows that the model follows the 

experimental trend well and, as we expect, it overestimates the final ejection velocity. In fact, the total 

conversion of ∆𝐸𝑠𝑢𝑟𝑓 to kinetic energy neglects dissipations due to adhesion, capillary and viscous 

dissipations which, as seen in the above section, introduce a loss (1 − 𝜂𝑡ℎ) of 50 to 80 %. In Figure 8.e 

𝜂 roughly confirms experimentally the efficiency values (around 50 %) predicted by the modelled 

transient in the conical pore. The case of      Surface 10x30 is an exception and shows a higher efficiency 

(69 ± 29 %). 

 ∆𝐸𝑠𝑢𝑟𝑓,𝑐𝑜𝑛𝑒𝑠 = 𝜎𝑙𝑣(𝐴𝑠𝑝ℎ𝑒𝑟𝑜𝑖𝑑 − 4𝜋 𝑅𝑒𝑞,𝑡ℎ
2) (21) 

 𝑣𝑒𝑗,𝑡ℎ = √
2∆𝐸𝑠𝑢𝑟𝑓,𝑐𝑜𝑛𝑒𝑠

𝜌 𝑉𝑠𝑝ℎ𝑒𝑟𝑜𝑖𝑑
 (22) 

 𝜂 =
𝜌 𝑉𝑒𝑥𝑝 𝑣𝑒𝑗,𝑒𝑥𝑝

2

2 ∆𝐸𝑠𝑢𝑟𝑓
 (23) 

Discussion 
   To model the mechanism of growth and eventual self-motions of individual condensation droplets in 

divergent structures with uniform wettability, we have chosen the conical pore as a case study. This 

choice allows general insights and is easier to model analytically than the wedges reported elsewhere 

or the solid cones of our experimental study, due to its axial symmetry and simple geometry of the 

contact areas. We described the external forces acting on the system “droplet suspended in a conical 

pore with hysteresis” and verified that the resultant is null at uniform internal pressure, that is, if Eq. 3 

stands. In the case of a droplet with a certain initial shape ratio, we considered that it evolves through 

iso-pressure configurations as it is free to accommodate the increasing volume by varying the contact 

angles and contact line heights. Therefore, as long as both menisci are not in a dynamic configuration, 

the drop can be described by Eq. 3 alone and we identified two growth phases. Once the dynamic 

configuration is reached, the droplet is free to move and release interfacial energy; the propulsive 

surface force and the opposing ones (capillary and viscous) determine its motion. By solving its 

dynamics, we predicted that it rapidly self-propels, then stops at a distance dependent on the surface 

parameters, it adjusts the contact angles to cancel internal pressure gradients and continues to slowly 

grow. After a certain number of growth and self-propulsion cycles, it reaches the edge of the opening.  

It grows to one of the possible dynamic configurations and self-ejects. In this study, we investigated the 

effect of the droplet size on self-ejection velocity by fixing certain taper and contact angles. To test the 

theory but also to avoid air depressurization problems that the pore may introduce during the fast 

movements, we designed uniformly hydrophobic, nanostructured truncated microcones arranged in a 

square pattern. A droplet in between four of them is analogous to the modelled one in terms of the forces 

at play. After the development of a t-RIE recipe for Si etching and the investigation on the effect of the 

lithographic mask geometry on the structures, we fabricated four arrays of truncated microcones with 

the same tapering but different size. Then, the nanostructuration of deposited Al and silanization 

rendered the microstructures highly and uniformly hydrophobic (free of strong pinning sites, at least not 



appreciable in the experiments). The observations of the condensation droplets with high spatial and 

temporal resolution confirmed the growth-propulsion cycles and reveal for the first time the self-ejection 

of single droplets on this type of surfaces and its dynamics. The self-ejection radius is precisely controlled 

by the structure geometry differently from coalescence-jumping where it is a random variable. The 

models are in good agreement with the observed self-ejection transients and final ejection velocity, 

decreasing with droplet radius. A slight underestimation of the transient time is argued on the basis of 

the conical pore and solid cones differences and of the analysed videos. In addition, we also propose 

an energetic model of the droplet between the four truncated cones for a rapid estimate of the final self-

ejection velocity. The self-ejection efficiency estimated with our models is around 50%. 

   In future theoretical and experimental studies we aim to investigate self-ejection as dynamic contact 

angles and cone geometry vary. By preliminary evaluations with our model, we expect lower limit values 

of the receding angle and upper limit values of the tapering beyond which the self-ejection does not 

occur. The present research describes with a novel approach, and proves experimentally, the self-

ejection in its essentiality, without the need for pinning sites and therefore also with the benefit of a 

facilitated fabrication. However, due to similar conditions, it will be possible to adapt our model to the 

case of self-propulsion and/or ejection caused by an abrupt change of a contact angle (for example, the 

detachment from an inserted pinning site/bottom of structures) reported elsewhere.  

   Moreover, we deduce that ideal cone arrays (with a sharp tip) would nullify the percentage of droplets 

that nucleate on the heads and can only leave the surface by coalescence jumping. In this way, all the 

droplets would leave the surface by self-ejecting at a precise, designed size without the variability typical 

of coalescence jumping. To obtain this result on a surface structured with rectangular microgrooves 

would mean to reduce the wall thickness towards zero with the consequent instability and poor 

mechanical resistance. Microcones with a small heads area fraction, instead, would maintain 

mechanical resistance, higher for larger 𝛽. Future studies will explore the optimal 𝛽 that allow self-

ejection and provide the highest mechanical resistance. 

   In conclusion, the uniformly hydrophobic divergent structures reported  enable self-ejection of droplets 

with precise size and higher efficiency compared to coalescence-jumping, permit an easier fabrication 

compared to biphilic structures and add a piece to the knowledge on the self-motion mechanisms.       

This new class of surfaces will bring further enhancements in the applications where coalescence 

jumping has already introduced improvements. 

Materials and Methods 

Microstructures fabrication 

We employed 6-inch silicon wafers (100) as the substrate to fabricate microcones by photolithography 

and tapered reactive ion etching (t-RIE) (Figure 9.a-b). After a standard RCA cleaning, the hard mask 

was made by growing 200 nm of thermal silicon oxide (Centrotherm E1200HT furnace) followed by the 

deposition of 200 nm of Aluminium by magnetron sputtering (Eclipse MRC). Then we deposited 1.2 μm 

of positive photoresist by spin coating (Track SVG). We employed two photolithographic masks 

(Photronics):  

   1) Mask1 consists of areas of 1 cm x1 cm with arrays of circles arranged either in a square or 

hexagonal pattern, each with a different circle diameter (𝐷𝑚𝑎𝑠𝑘) and pitch (𝑝) (green areas in Table S1). 

It was designed to investigate the effect of the non-masked area fraction, of 𝐷𝑚𝑎𝑠𝑘, of the pattern type 

and of the etching time on the t-RIE in terms of microstructures tapering, etch rate and surface 

characteristics such as the roughness of the walls and the presence of grass on the bottom. The patterns 

are transferred on the photopolymer-coated wafers by one-step uv-light exposure (mask aligner 

MA150CC). 

   2) After the studies with Mask1, we designed Mask2 with circles arranged in a square pattern with 

optimal 𝐷𝑚𝑎𝑠𝑘 and  𝑝 (Table 1). The square pattern allows condensation droplets to be observed against 

high-intensity backlighting, a crucial aspect for acquisitions at high frame rates (see paragraph 



Condensation experiments). Mask2 is for use with a stepper photolithographic machine (Nikon 

2205i11D) and its pattern was reproduced on large areas, as depicted in Figure S7 , by step-and-repeat 

exposure. Working over large areas facilitates manipulation in the subsequent phases and in particular 

the cleavage with a breaking line passing over the pattern and parallel to the rows of cones. 

   After developing (Track SVG), hard bake of the photo-polymer was carried out. The pattern-transfer 

onto the hard mask was performed by dry etching of Aluminium (KFT Metal PlasmaPro100 Cobra300) 

and silicon oxide (Tegal 903e). Then the t-RIE step was performed (Alcatel dry etcher). The scallops 

typical of the Deep Reactive Ion Etching (DRIE) 60,61 may be strong pinning sites for droplets and frustrate 

the self-ejection. Therefore, we opted for continuous etching62,63 using 𝑆𝐹6-𝐶4𝐹8  plasma64, a process 

without scallops and in which the ratio of gas flows, chamber pressure, bias and source power and 

temperature influence the tapering and uniformity of the sidewalls. We developed a t-RIE recipe with the 

purpose of creating truncated microcones with tapering angle (𝛽, see Figure S3.a) in the range 5÷10° 

and as similar as possible among the four arrays different in size to be tested in condensation conditions. 

Also, the etch rate has to be preferably higher than 500 nm/min and the lateral and bottom walls as 

smooth as possible. The recipe parameters are: source power 2800 W, bias power 20 W, gas fluxes 

ratio 𝑆𝐹6/𝐶4𝐹8=0.65, total gas flux 500 sccm, chamber pressure 0.04 mbar and wafer temperature 20 

°C. The evidences of the campaign of experiments carried out with Mask1 are: 𝛽 is the result of vertical 

etching and horizontal etching under the mask and is constant from the bottom base up to about three 

fourth of the microstructure, then it goes to zero on top; 𝛽 and the etch rate have a peaked trend with 

the etching time, for each particular mask geometry; 𝛽 has either a decreasing or a peaked trend with 

the not-masked area fraction 𝜑; for 𝜑>0.7, irregularities of the lateral and bottom walls of the 

microstructures (microribs) appear; the mean etch rate is 680 ± 80 nm/min. In S5.1 (Supplementary 

information) we report the measurement method of 𝛽 and images and plots in support of the mentioned 

trends.  

   Then we fabricated the four patterns (Mask2) to test in condensation conditions, designed with 𝐷𝑚𝑎𝑠𝑘x 
𝑝 optimal to minimize walls irregularities and with similar 𝛽 (Figure 1.c-f and Table 1). This 𝛽 is a medium 

one relative to the upper part of the microstructures involved in self-ejection (see S5.1, Supplementary 

information where it is called �̅�). It is on average the same for the four surfaces. We removed the etching 

passivation layer by immersion in isopropanol with ultrasonic pulses and then the hard mask by dipping 

the wafers in an Al etch solution and then in a Piranha solution. We cleaned them in a deionized water 

rinse until the bath reached 16 MΩ-cm. The truncated microcones have a variating undercut at the 

apex. We removed it with isotropic etching (Tegal 900) which lowered the pillars by about 2 μm and 

made      the top part straight (see S5.1, Supplementary information). 

Nanostructuring, silanization and wettability 

   As a second hierarchical level we have selected the aluminium to be nanostructured (NanoAl) with 

HWT as it is compatible with clean room processes, the structuring is simple, cheap, scalable and could 

also be used for microstructures produced directly on aluminium through other industrial processes. 

The hot water treatment of many metals and their alloys leads to the formation of nanostructures. A thin 

superficial layer of metal oxide forms in hot water, the oxide cations are released in solution, migrate and 

deposit forming nanostructures with peculiar shapes for each metal65,66. In the case of Al, thin nano-

blades of hydrated aluminium oxide (pseudo-boehmite) are formed which, once made hydrophobic, 

have shown superhydrophobic and anti-freezing properties67–73. Both water temperature and treatment 

time have an effect on contact angles70,74,75. We deposited 150 nm of pure Al on the wafers by e-beam 

evaporation (ULVAC HIGH VACUUM COATER EBX-16C) (Figure 9.c). The wafers were cleaved as 

shown in Figure S7 in order to have samples with a row of cones on the sharp edge. HWT was performed 

by immersion in deionized water (18 MΩ-cm) at 90 °C for 7 min (Figure 9.D), immediately followed by 

immersion in deionized water at room temperature  to block the structuring and then dried with a 𝑁2 

flow. The SEM image of the nanostructures in Figure 1.b was done with a Tescan SEM tool. We cleaned 

the surfaces by dipping in acetone, isopropanol and deionized water, dried with a 𝑁2 flow and activated 



the surfaces with oxygen plasma (to increase the amount of silanols and maximize the uniformity and 

density of the self-assembled monolayer76). Chemical vapour deposition (CVD)77–80 of 1H,1H,2H,2H-

Perfluorodecyltriethoxysilane (Sigma-Aldrich) was performed by placing the samples and 200 μl of 

fluorosilane in a sealed (class IP-67) aluminium box (internal volume of 3.7 litres) heated at 150 °C for 3 

h followed by an annealing for 1.5 h with the box opened (for covalently unbound silane removal).  

   To characterize the dynamic contact angles of water on the walls of the microcones we measured 

them on the non-microstructured areas of the samples, only covered by NanoAl (Figure S). We 

characterized them with two procedures (Figure S9): 

   1) Macro-droplets: we employed a syringe pump (Pump 11 Elite, Harvard apparatus) to inject and 

aspirate a droplet of deionized water at a volume rate of 3 μl/min (to avoid dynamic effects81) through a 

syringe with diameter 230 μm (gauge 32), positioned close and perpendicular to the surface. We 

captured the two steps with a digital microscope (Dinolite AM7915MZTL) and measured the dynamic 

contact angles with DropSnake82, an ImageJ plug-in. The values were acquired when the droplet has a 

diameter at least five times the syringe diameter: 𝜗𝑎=166 ±1° and 𝜗𝑟=123 ±7°. 

   2) Micro-droplets: we captured the micro droplets (tens of μm) during condensation and evaporation 

with the experimental setup described in the next paragraph (Phantom camera + microscopy objective) 

and analysed with DropSnake. 𝜗𝑎=157 ±1° and 𝜗𝑟=145 ±6. We used the micro-droplets contact angles 

for the analytical models as they are characteristic of the droplets affected by growth, self-propulsion 

and self-ejection and account for the capillarity alone. The macro-droplets angles are instead influenced 

by the gravitational force. 

   The equilibrium contact angle of NanoAl can be estimated using the experimental dynamic angles83 

with 𝜗𝑒𝑞,𝑁𝑎𝑛𝑜𝐴𝑙 = cos−1[(cos 𝜗𝑎 + cos𝜗𝑟) 2⁄ ]  ≈150°. A theoretical estimate can be obtained by applying 

the Cassie-Baxter equation84, cos 𝜗𝐶𝐵 = 𝑓(cos 𝜗𝑒𝑞,𝑓𝑙𝑎𝑡 + 1) − 1 . With the micro-droplets procedure on 

a flat Si surface, covered by e-beam evaporated Al and silanized, we measured 𝜗𝑎,𝑓𝑙𝑎𝑡=111.4 ± 0.2° 

and 𝜗𝑟,𝑓𝑙𝑎𝑡 =89.8 ± 1.5°; thus, 𝜗𝑒𝑞,𝑓𝑙𝑎𝑡 ≈100°. With ImageJ's Particle Analysis plug-in we roughly 

quantified the area fraction of the solid-liquid interface (𝑓 ∼0.17) (Figure S10), thus 𝜗𝐶𝐵  ≈149°. The 

good agreement with 𝜗𝑒𝑞,𝑁𝑎𝑛𝑜𝐴𝑙 suggests that droplets are in a fakir state on NanoAl. 

Condensation experiments 

   We performed the condensation experiments in a custom-made setup (see Figure 1.k for the setup 

scheme) according to the following procedure: we introduced the desired humid air in a chamber (800 

cm3) by mixing a dry and a wet air flux. The wet air flux is obtained by passing dry air in a bubbler filled 

with deionized water (18 MΩ-cm). Each flux is set with a flow meter (FR2000, Key instruments) and the 

total flux is 800 sccm. The relative humidity (𝑅𝐻) and temperature of the mixed air (𝑇𝑎) are measured 

with an Arduino BME280 sensor (accuracies ±3% and ±1 °C) placed at the chamber inlet. The cold 

plate inside the chamber is cooled by a thermostatic bath and two Peltier stages to 𝑇𝑝= 1°C (measured 

with a thin film PT100 thermocouple, RS pro, class B accuracy) for the duration of the experiments. The 

sample and the PT100 are in thermal contact with the cold plate through a thermal pad (T-flex 600 

Series Thermal Gap Filler, Laird Technologies, thickness of 1 mm, thermal conductivity of 3 W/mK). 

Given the low thermal inertia of the silicon samples (thick 600 μm) and the PT100, we assume surface 

temperature 𝑇𝑠𝑢𝑟𝑓 = 𝑇𝑝. The water vapour pressure (𝑃𝑣𝑎𝑝) of the fluxed air is 11.8 hPa thus the 

saturation ratio on the sample surface is 𝑠 = 𝑃𝑣𝑎𝑝 𝑃𝑣𝑎𝑝,𝑠𝑎𝑡(𝑇𝑠𝑢𝑟𝑓)⁄ =1.8, where 𝑃𝑣𝑎𝑝,𝑠𝑎𝑡(𝑇𝑠𝑢𝑟𝑓) is the 

saturation vapour pressure at 𝑇𝑠𝑢𝑟𝑓.  We placed the sample on the plate, introduced dry air and cooled 

to 𝑇𝑠𝑢𝑟𝑓=1 °C. Then, humid air is introduced and condensation starts. The chamber is equipped with an 

upper and a lateral quartz window. To observe condensation (and evaporation, for the micro-droplet 

contact angle measurements) we employed a high frame rate camera (Phantom V640, Vision Research) 

coupled to a microscopy objective (50X Mitutoyo Plan Apo infinity corrected, long working distance=13 

mm, resolving power=500 nm, depth of focus=900 nm) through a tube lens (InfiniTube Ultima). We 

illuminated the surfaces with a LED light (MULTILED QT, GSVITEC) placed outside the environmental 



chamber and on the back of the samples with respect to the video camera. The growth and self-

propulsion videos were captured at 24÷2000 fps while self-ejection transients at 9000 ÷ 80000 fps. The 

transients frames were analysed in ImageJ to measure the position (𝑧𝑔) evolution of the centre of mass 

(g) considered as the centre of a fitted ellipse (Figure 1.l). The velocity at the instant 𝑖, 𝑣𝑔(𝑖), is calculated 

as [𝑧𝑔(𝑖) − 𝑧𝑔(𝑖 − 1)]/∆𝑡, with ∆𝑡 the time length of a frame. A 3-axis micro positioning stage was used 

to move the camera and to focus. 
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Supplementary information 
 

S1. Equilibrium of a droplet suspended in a conical pore with uniform internal pressure 

   We here proof that, if the internal pressure is uniform (Eq.3, here rewritten as Eq. S1.1), then the 

external forces have a null resultant.  

 𝐻𝑡 = 𝐻𝑏  
𝑐𝑜𝑠 (𝜗𝑡 + 𝛽)

𝑐𝑜𝑠 (𝜗𝑏 − 𝛽)
 S 1.1 

 

Considering Figure 2.a, by substituting the external forces (Eqs. 3-6) in 𝐹𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦
↑ = 𝐹𝑡,𝜎

↑ + 𝐹𝑏,𝜎
↑ + 𝐹𝑝

↑, 

after some manipulations, we obtain: 

 

 𝐹𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦
↑ = 2𝜋𝜎𝑙𝑣 𝐻𝑏 tan(𝛽) ∙ [ 

𝑐𝑜𝑠2(𝜗𝑡 + 𝛽)

cos(𝜗𝑏 − 𝛽)
− cos(𝜗𝑏 − 𝛽) −

𝑐𝑜𝑠2(𝜗𝑡 + 𝛽) − 𝑐𝑜𝑠2(𝜗𝑏 − 𝛽)

cos(𝜗𝑏 − 𝛽)
] = 0 S 1.2 

which is identically zero for each combination of parameters. 

 

S2. Calculations of the shape ratio 𝝀𝒎𝒂𝒙 

The analysis of the shape ratio before self-propulsion was made on six self-propulsion events captured 

from the orthogonal       view. As explained in detail in S5, the tapering of our solid microcones is constant 

for about three fourth from the bottom and then they gradually becomes straight near the top. To 

calculate the theoretical 𝜆𝑚𝑎𝑥 with Eq.3, since the droplets captured are about at a middle height, we 

employ the constant tapering of the two thirds of the cone. Given the slightly different 𝛽 of the four type 

of cones, we used an average 𝛽=7.8±1.3 and, accounting also for the standard deviation of the dynamic 

contact angles, we obtained 𝜆𝑚𝑎𝑥=1.31±0.13, where the standard deviation is the propagated error. 

The measurement of the experimental 𝜆𝑚𝑎𝑥,𝑒𝑥𝑝 is done by assuming that the droplet between the four 

cones is similar to the one in the pore, as illustrated in Figure S1. However, it is not direct: we captured 

the droplets from the orthogonal view which allows to well-analyse the droplet shape with the light on 

the back but not the real points of contact. Those are only visible from the 45° view which is, however, 

problematic for illumination because light is blocked by the cones behind. Moreover, compared to the 

pore model, we do not directly measure 𝐻𝑏 and 𝐻𝑡 but ℎ𝑏, ℎ𝑡 and 𝑥⊥. Eqs. S2.1-2 show how to calculate 

𝐻𝑏 and 𝐻𝑡, in reference of Figure S1. 𝜆𝑚𝑎𝑥,𝑒𝑥𝑝=1.19±0.02. 

 𝐻𝑏 =
 ℎ𝑏 +

2𝑥⊥ + 𝑝(√2 − 1)
2 tan 𝛽

1 +
tan 𝛽 [1 − sin(𝜗𝑟 − 𝛽)]

cos(𝜗𝑟 − 𝛽)

 S 2.1 

 𝐻𝑡 =
 ℎ𝑡 +

2𝑥⊥ + 𝑝(√2 − 1)
2 tan𝛽

1 −
tan𝛽 [1 − sin(𝜗𝑎 + 𝛽)]

cos(𝜗𝑎 + 𝛽)

 S 2.2 

 



 

Figure S1. Scheme of the views. Videos are captured from the orthogonal      view while the 45° view is the one to consider to 

apply the conical pore model. 

 

S3. Expressions and relations between variables in self-propulsion and self-ejection 

S 3.1 Volumes and surface energy 

The volume of the top and bottom spherical caps and of the truncated cone are: 

𝑉𝑐𝑎𝑝,𝑡 =
𝜋

3
(
−𝐻𝑡 tan𝛽

cos(𝜗𝑡 + 𝛽)
)
3

(2 + sin (𝜗𝑡 + 𝛽))(1 − sin (𝜗𝑡 + 𝛽))2 (S 3.1) 

𝑉𝑐𝑎𝑝,𝑏 =
𝜋

3
(
−𝐻𝑏 tan𝛽

cos(𝜗𝑏 − 𝛽)
)
3

(2 + sin (𝜗𝑏 − 𝛽))(1 − sin (𝜗𝑏 − 𝛽))2 (S 3.2) 

𝑉𝑡𝑐 =
𝜋

3
 𝑡𝑎𝑛2𝛽 (𝐻𝑡

3 − 𝐻𝑏
3) (S 3.3) 

 

The surface energy of the droplet is: 

 
𝐸𝑠𝑢𝑟𝑓 = 𝜎𝑙𝑣(𝐴𝑐𝑎𝑝,𝑡 + 𝐴𝑐𝑎𝑝,𝑏 − 𝐴𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑐𝑜𝑛𝑒 cos 𝜗𝑒𝑞) = 

= 𝜎𝑙𝑣{2𝜋𝑅𝑡
2[1 − sin(𝜗𝑡 + 𝛽)] + 2𝜋𝑅𝑏

2[1 − sin(𝜗𝑟 − 𝛽)] − 𝜋(𝐻𝑡
2 − 𝐻𝑏

2) cos 𝜗𝑎𝑝𝑝 tan 𝛽 / cos 𝛽}  
(S 3.4) 

 

Depending on which motion is simulated, 𝜗𝑡 and 𝐻𝑡 are fixed or variable as described in the manuscript. 

 

S 3.2 Self-propulsion 

The general expression of the volume 𝑉 of a droplet composed by two spherical caps and a truncated 

cone is Eq.9. In the case of self-propulsion, the droplet reaches 𝜆𝑚𝑎𝑥 so by substituting 𝜗𝑏 = 𝜗𝑟,

𝜗𝑡 = 𝜗𝑎, 𝐻𝑏 = 𝐻𝑏,0 (arbitrary value) and 𝐻𝑡 = 𝜆𝑚𝑎𝑥𝐻𝑏,0 in Eq. 9 we calculate 𝑉∗, the volume during self-

propulsion of a droplet with an initial 𝐻𝑏,0. The volume is reasonably constant because during transients 

(tens to hundreds of μs) the condensation volume is negligible and we assume water to be 

uncompressible. Therefore, rearranging 𝑉 = 𝑉∗ (Eq. 10), we obtain 𝐻𝑡 as a function of 𝐻𝑏: 

 

 𝐻𝑡 =

√
  
  
  
  
 
𝑉∗ +

𝜋
3
𝐻𝑏

3 {𝑡𝑎𝑛2𝛽 + (
tan𝛽

cos(𝜗𝑟 − 𝛽)
)
3

[2 + sin(𝜗𝑟 − 𝛽)][1 − sin(𝜗𝑟 − 𝛽)]2}

𝜋
3
{𝑡𝑎𝑛2𝛽−(

tan𝛽
cos(𝜗𝑎 + 𝛽)

)
3

[2 + sin(𝜗𝑎 + 𝛽)][1 − sin(𝜗𝑎 + 𝛽)]
2}

3

 (S 3.5) 

 



In general, the centre of mass of a spherical cap with respect to the centre of the sphere and the one of 

a truncated cone with respect to the larger base are expressed in Eq. S 3.6 and Eq. S 3.7, respectively. 

 

 𝑧𝑐𝑎𝑝 =
3

4

(2 𝑅 − ℎ𝑐𝑎𝑝)
2

3 𝑅 − ℎ𝑐𝑎𝑝
 (S 3.6) 

 𝑧𝑡𝑟 =
ℎ𝑡𝑟
4

(𝑟𝑡
2 + 2𝑟𝑡𝑟𝑏 + 3𝑟𝑏

2)

𝑟𝑡
2 + 𝑟𝑡𝑟𝑏 + 𝑟𝑏

2
 (S 3.7) 

 

ℎ𝑐𝑎𝑝 and ℎ𝑡𝑟 are the height of the cap and of the truncated cone, respectively. The position of the centres 

of mass with respect to the apex of the cone are: 

 𝑍𝑐𝑎𝑝,𝑡 = 𝐻𝑡 − (𝑅𝑡 − ℎ𝑐𝑎𝑝,𝑡𝑜𝑝) + 𝑧𝑐𝑎𝑝,𝑡𝑜𝑝 (S 3.8) 

 𝑍𝑐𝑎𝑝,𝑏 = 𝐻𝑏 + (𝑅𝑏 − ℎ𝑐𝑎𝑝,𝑏𝑜𝑡𝑡𝑜𝑚) − 𝑧𝑐𝑎𝑝,𝑏𝑜𝑡𝑡𝑜𝑚 (S 3.9) 

 𝑍𝑡𝑐 = 𝐻𝑡 − 𝑧𝑡𝑟  (S 3.10) 

By substituting Eq. 10, Eqs. S 3.1-3, Eqs. S 3.5-10, 𝜗𝑏 = 𝜗𝑟 and 𝜗𝑡 = 𝜗𝑎 in Eq. S 3.11 one obtains 

the position of the centre of mass of the droplet with respect to the apex of the cone, 𝐻𝑔, as a function 

of 𝐻𝑏 alone. 

 𝐻𝑔 =
𝑍𝑐𝑎𝑝,𝑡𝑉𝑐𝑎𝑝,𝑡 + 𝑍𝑐𝑎𝑝,𝑏𝑉𝑐𝑎𝑝,𝑏 + 𝑍𝑡𝑐𝑉𝑡𝑐

𝑉∗
 (S 3.11) 

 

S 3.3. Position, velocity and acceleration of the centre of mass 

To speed up the resolution of Eq. 17, we approximated 𝐻𝑔 (Eq. S 3.11) with a sixth-order Taylor series 

expansion around 𝐻𝑏,0 in the variable 𝐻𝑏(𝑡), called 𝐻𝑔,𝑇. The expressions of the centre of mass velocity 

and acceleration are obtained by derivation of 𝐻𝑔,𝑇 with respect to time. 

 

S 3.4. Final configuration of self-propulsion 

   As described in the self-propulsion Section in the article, the droplet stops at a certain 𝐻𝑏,𝑓𝑖𝑛 to which       

a certain 𝐻𝑡,𝑓𝑖𝑛 corresponds, calculated with Eq. S3.5. The contact angles are still 𝜗𝑏 = 𝜗𝑟 and 𝜗𝑡 = 𝜗𝑎 

but there is no uniform internal pressure. The contact angles rearrange to diminish the pressure 

difference; 𝜗𝑡 decreases and 𝜗𝑏 increases. Given the shape ratio 𝐻𝑡,𝑓𝑖𝑛/𝐻𝑏,𝑓𝑖𝑛 (Figure S2) and the 

volume 𝑉∗, we search for a combination of 𝜗𝑡 and 𝜗𝑏 that verify Eq.3. We find the solution by solving 

numerically the system of equations:  
𝐻𝑡,𝑓𝑖𝑛

𝐻𝑏,𝑓𝑖𝑛
=

𝑐𝑜𝑠 (𝜗𝑡+𝛽)

𝑐𝑜𝑠 (𝜗𝑏−𝛽)
 (Eq. 3) and Eq. 10. Real solutions mean      there 

is an equilibrium configuration which corresponds to what we found for the surface parameters analysed. 

Imaginary solutions mean the contact angles change to 𝜗𝑏 = 𝜗𝑎 and 𝜗𝑡 = 𝜗𝑏 without finding an iso-

pressure configuration; thus, 𝐹𝑐𝑎𝑝𝑖𝑙𝑙𝑎𝑟𝑦
↑  is still negative and the droplet should accelerate in the negative 

direction, driven by 𝐹𝑛𝑒𝑡
↑ − 𝐹𝑣𝑖𝑠𝑐. For the surface parameters of the present study we found that an 

equilibrium configuration can be attained. 



 

Figure S2. 𝐻𝑏,𝑓𝑖𝑛/𝐻𝑏,0, 𝜗𝑡,𝑓𝑖𝑛 and 𝜗𝑏,𝑓𝑖𝑛 vs 𝑅𝑒𝑞 for both the viscous and non-viscous cases and for fixed surface parameters. 

 

S 4. Self-ejection 

In the case of self-ejection, by substituting 𝐻𝑡 = 𝐻𝑡,𝑚𝑎𝑥, 𝐻𝑏,0 = 𝐻𝑡,𝑚𝑎𝑥/𝜆𝑒𝑗, 𝜗𝑏 = 𝜗𝑟 and 𝜗𝑡 = �̂�𝑡 in Eq. 

9 we calculate 𝑉𝑒𝑗. During the ejection, the variables that change are 𝜗𝑡 and 𝐻𝑏. Again, 𝑉 = 𝑉𝑒𝑗 (Eq. 

10) gives a relation between 𝜗𝑡 and 𝐻𝑏. We employed the MATLAB Symbolic Toolbox to express 𝜗𝑡 as 

a function of 𝐻𝑏. The procedure to express 𝐻𝑔 as a function of 𝐻𝑏and for the resolution of Eq.17 is then 

analogous to the one reported in the section S3. 

 

S 5. Fabrication 

S 5.1. Lithography and t-RIE 

We tested the developed t-RIE recipe on various wafers (all the splits of Table S1, both for square and 

hexagonal patterns) at different etch times and observed the microcones with a Tescan SEM tool      by 

tilting the wafer (tilt angle 𝛼). The acquired images allow to judge the pillar status (uniformity of the 

tapering, over-attack with mask removal, smoothness of the walls and bottom of the structures) and 

measure the tapering. In some cases, the tapering is not constant over the entire height of the 

microcones: up to about three fourth from the bottom the tapering is constant (and it is the one shown 

in Figure S3.a, measured and plotted in Figure S5) while for the remaining top part the pillar gradually 

becomes straight or with a slight undercut. The methodology for the tapering angle calculation is shown 

in Figure S3.a. With the diameter of the base (𝐷), of the head (𝑑ℎ) and the projected height of the cone 

(𝑐, the height observed with the SEM), the real tapering is expressed in Eq. S 5.1. We interestingly 

observed that 𝛽 varies with the not-masked area fraction (called free area fraction 𝜑), indicated in Eq. 

S 5.2-3 for square and hexagonal patterns, respectively. 

Table S1. Green areas indicate the splits of Mask1, both for square and hexagonal patterns. 
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Figure S3. A) Illustration of image analysis for the tapering calculation. B-J) SEM images of the square pattern diameter x 

pitch=15x20 for increasing etching times correspondent to the grey dots in Figure 4.4. 

 𝛽 = tan−1 (
𝐷 −𝑑ℎ
2

𝑐
sin 𝛼

) (S 5.1) 

 𝜑𝑠 = 1 −
𝜋

4
(
𝐷𝑚𝑎𝑠𝑘
𝑝

)
2

 (S 5.2) 

 𝜑ℎ = 1 −
𝜋

4 sin 60°
(
𝐷𝑚𝑎𝑠𝑘
𝑝

)
2

 (S 5.3) 

 



 

Figure S4. A-H) SEM images of various patterns etched for 80 min correspondent to some points of the data in Figure 4.6 

(green dots) . 

 

Also, 𝛽 varies both with the etching time for each specific mask geometry (SEM images in Figure S3.b-

j and data in Figure S5.A) and with 𝜑 for a certain etching time (SEM images in Figure S4.b-h and data 

in Figure S5.c-d). With the same mask geometry there is a peaked trend with time: for small etching 

times 𝛽~1÷4°, for intermediate times it has a peak with 𝛽~4÷8° and for large times (when in some cases  

the under etching detaches the mask) it decreases towards 𝛽~4°. For etching time of 26, 45 or 55 min, 

𝛽 decreases as 𝜑 increases while for etching times of 65 or 80 min the 𝛽 trend is peaked. Not only the 

tapering but also the etch rate varies with the etching time (Figure S5.b): the trend is similar to the one 

of 𝛽 but the intermediate range is more flat with a mean etch rate of 680 ± 80 nm/min. 



 

 

Figure S5. A) Tapering 𝛽 vs etching time for five surfaces and B) etch rate vs time for four surfaces. C-D) tapering 𝛽 vs free 

area fraction after 26, 45, 55, 65, 80 and 140 min of etching (solid lines are polynomial fits) and E) etch rate vs free area fraction 

for the splits of Mask_1. 

 

   The characterization of the recipe provides several information for the design of microcones with 

different size (to study self-ejection for droplet with different size) but equal tapering: free area fraction 

greater than 0.7 leads to the formation of lateral and bottom ribs, undesirable for uniformity, as well as 

having a small 𝛽 (<4°); in the intermediate times (45÷80 min), the etch rate is independent of the free 

area fraction 

 (Figure S5.e); for intermediate time and for small 𝜑 tapering is on average ∼7° and microcones exhibit 

the highest uniformity. Thus, for Mask2 we chose 𝜑∼0.55. 

   The next step is the removal of the hard mask and the polymer (passivation layer deriving from the 

polymerization of C4F8, visible in Figure S3.j and S4.h). We tried two methods: 

1. HF vapours (PRIMAXX® uEtch®) to etch silicon oxide under Al disks, Al disks removal with a jet 

of deionized water and oxygen plasma to remove the polymer. Removal of the mask was 



successful but polymer etching was not effective. Indeed, the polymer remains, as clearly visible 

in Figure S6.a after an isotropic etching (Tegal 900) of about 2 μm depth.  

2. We therefore opted for immersion in isopropanol with ultrasonic pulses followed by cleaning with 

a jet of deionized water; for some patterns the ultrasounds break the disks (Figure S6.b). Then, 

a dip in Al etch solution and in a Piranha solution was performed to remove the hard mask (Figure 

S6.c). Finally, to remove the slight overhang on top, an isotropic etching (Tegal 900) was 

employed to lower the pillars of about 2 μm (Figure S6.d). 

  The microcones of Mask2 are shown in Figure 1.c-f and their parameters are in Table S2. The tapering 

is the same for smaller cones (splits similar to Mask1) while it is higher for larger ones. However, the 

taper 𝛽 is that of the medium-low part of the cones, as towards the apex they are straight. Since self-

ejection involves the tapering of the medium-high part (where the drop is positioned before the jump) 

we measured a medium tapering angle 𝛽 (Table S2) for that zone as shown in Figure S8 from lateral 

images captured with the camera. 𝛽 is on average similar for the four surfaces tested in condensation 

experiments. 

 

Figure S6. a) Detail of the residual polymer of Method 1. Method_2: b) pillar after the ultrasounds in isopropanol. The 

overhanging part of the disks is broken. c) Microcones after wet etch of the mask and d) after the isotropic etching. 

 

Table S2. Parameters of the Mask2 and of the microcones tested in condensation conditions. 

Surface name 𝐷𝑚𝑎𝑠𝑘 [μm] 
Pitch 𝑝 

[μm] 
𝛽 [°] 𝛽 [°] Head diameter 𝑑ℎ [μm] Height [μm] 

10x13 10 13 6.6 5.8 ± 0.7 5 23.3 

15x20 15 20 6.6 5.7 ± 1 7 34.9 

30x40 30 40 10 5.8 ± 0.6 12.5 64.3 

60x80 60 80 8.8 5.5 ± 0.2 31.5 103.7 

 

 



 

Figure S7. Lithography of the Mask_2 with the stepper technique. The pattern of circles is exposed on the blue areas one red 

rectangle at a time. The dotted lines are an example of cleavage of the wafer, the green area indicating a cleaved sample (~2 

cm x 2cm ).  

 

Figure S8. Measurement of 𝛽 from side-view frames. 𝛽 is an average tapering of the self-ejection zone. 

 

S5.2 Contact angles and NanoAl 

 

 

Figure S9. A) and B) are frames captured during advancement and recession of the contact line from which we measure 𝜗𝑎 

and 𝜗𝑟, respectively, with the macro-droplets method. C) and D) come from the micro-droplet method.  

 



 

Figure S10. SEM images of NanoAl: A) NanoAl_5min HWT on a piece of flat silicon covered by Al. B) Image analysis of A). C) 

An example of microcone covered by NanoAl. 
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