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SUMMARY

In multiscale phenomena, complex structure-function relationships
emerge across different scales, making predictive modeling chal-
lenging. The recent scientific literature is exploring the possibility
of leveraging machine learning, with a predominant focus on neural
networks, excelling in data fitting, but often lacking insight into
essential physical information. We propose the adoption of a sym-
bolic data modeling technique, the ‘‘Evolutionary Polynomial
Regression,’’ which integrates regression capabilities with the ge-
netic programming paradigm, enabling the derivation of explicit
analytical formulas, finally delivering a deeper comprehension of
the analyzed physical phenomenon. To demonstrate the key advan-
tages of our multiscale numerical approach, we consider the spider
silk case. Based on a recent multiscale experimental dataset, we
deduce the dependence of the macroscopic behavior from lower-
scale parameters, also offering insights for improving a recent theo-
retical model by some of the authors. Our approach may represent a
proof of concept for modeling in fields governed by multiscale, hier-
archical differential equations.

INTRODUCTION

Multiscale models play a crucial role in different fields of theoretical and applied

science, especially due to the increasing possibility of experimental analyses and

technologies working down to themicro and nano scales such as atomic force micro-

scopy, optical tweezers, magnetic tweezers, etc.1 As a matter of fact, in different

fields, a huge experimental literature delivering big data libraries on hierarchical sys-

tems, starting from the nano andmicro scales up to themacro scale, is now available.

These experimental observations represent a potential fundamental new tool for a

theoretical advancing in several fields. Such an advance requires the deduction of

new numerical/theoretical tools delivering correct physical interpretation of impact

in engineering,2 medicine,3 physiology,4 biology,5 and physics.6

Within this context, there is a growing debate concerning the need for effective

methodologies capable of facilitating the interaction between theoretical insights

and empirical data. In this perspective, machine learning approaches, in a broad

sense, appear to be the most promising tools. However, it is important to point

out that machine learning per se does not inherently possess the capability to auto-

matically incorporate scientific knowledge, which is crucial for avoiding unphysical

results. Indeed, in the digital age, the possibility of new instruments, such as unprec-

edented power of calculation and machine learning techniques, has opened up

exciting possibilities for analyzing the vast amount of experimental data now acces-

sible. However, such analysis can lead to a corresponding increase in the theoretical

understanding and modeling of the resulting physical system only if adequate
Cell Reports Physical Science 5, 101790, February 21, 2024 ª 2024 The Authors.
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numerical instruments of data modeling are available. On the other hand, as in every

transition, the digital transition brings significant risks and drawbacks if not deeply

analyzed in its possible effects. Thus, machine learning can lead to scientific knowl-

edge growth or obscuration, rationalization or lack of clearness, access to deeper

theoretical models, or reliance on purely data mining approaches.

Among data-driven techniques, many of which have been developed in recent years,

the artificial neural network (ANN) is themost adopted tomodel complex, non-linear

processes including multiscale hierarchical phenomena.7 Loosely speaking, an ANN

uses models consisting of multiple processing elements (neurons) connected by

links of variable weights (parameters) to deduce typically ‘‘black box’’ representa-

tions of the analyzed systems. Learning in ANNs involves adjusting the parameters

(weights) of interconnections in a highly parametrized system. In a few words, the

main widely recognized disadvantages of ANN model construction are the curse

of dimensionality, overfitting issues, and parameter estimation.8,9 The well-known

curse of dimensionality refers to the exponential increase in the need of parameters

when the model input space grows. This means that the number of connections

exponentially rises, and in a such widened space, the training set of input becomes

more sparse, or the amount of data needed to preserve a constant level of accuracy

increases exponentially. On the other hand, in such a way, an ANN acquires greater

flexibility in mapping events with a complex structure. However, this leads often to

overfitting problems, which is that an ANN tends to fit training data too precisely due

to the large number of parameters, resulting in the propensity to generate poor pre-

dictions for events not close to the training dataset. A further disadvantage of using

ANNs is the difficulty of incorporating knowledge derived from known physical laws

into the learning process due to the inherent complexity of its framework. Despite

these drawbacks, several significant results in this field have been reported. We

may recall that good predictive performances were obtained by neural network

methods in linking the elastic properties of composite materials to their meso-scale

structure, in particular, the three-dimensional microstructure to its effective (homog-

enized) properties.10 Recently, Linka et al.11 adopted an ANN to choose, among an a

priori-specified class of specific constitutive models depending on the right Cauchy-

Green deformation tensor invariants, the model that best reproduces stress-strain

behaviors under different classes of deformation. While the approach is interesting,

it is highly oriented by the specific knowledge of the problem and restricted to the

special case when the class of constitutive laws is already known, i.e., the stress

dependence on the deformation invariants. With the aim of reducing the computa-

tional burden associated with the numerical solution of describing active force in the

cardiac muscle tissue, ANNs were employed to build a reduced order model starting

from high-fidelity mathematical models.12 The implications are thus fundamental

and let us obtain relevant information for problems that have long been theoretically

unresolved, such as the recalled long-lasting problem of predicting the protein

structures from amino acid sequences.13 On the other hand, the main drawback in

the perspective of extending the knowledge for the theoretical modeling of such

phenomena is that an ANN leads to ‘‘black box’’ approaches. There is then a strong

limitation on the ‘‘operational’’ advantages due to the lack of interpretability of the

artificial intelligence results. Some very recent works address this issue,14,15 but this

is still an open problem16,17 due to the intrinsic nature of the approach, as summa-

rized above.

In this work, we trace a rational way in the direction of deducing different tools for the

modeling of multiscale phenomena based on machine learning techniques, with the

potential to significantly advance scientific knowledge. Our approach is distinctive in
2 Cell Reports Physical Science 5, 101790, February 21, 2024
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that it relies on the establishment of fundamental analytical approximation relations,

crucial to achieve a fully effective and fruitful synergy between data and theoretical

modeling. Thus, we recognize that the multiscale character typically corresponds to

a hierarchical organization, involving a natural selection of dependent and indepen-

dent variables. We adopt a genetic algorithm-based approach, which deduces

analytical relations through a Pareto front-type optimization, i.e., the evolutionary

polynomial regression (EPR) method. A comprehensive description of the history,

concepts, and motivation is provided in a following dedicated section.

To analyze the efficiency of the proposed approach in treating complex multiscale

hierarchical phenomena, we here consider the field of constitutive modeling of com-

plex material behaviors. Specifically, we focus on the paradigmatic example of spi-

der silk, one of the most studied and complex natural materials due to its extreme

mechanical properties, particularly its strength and toughness. We base our analysis

on the availability on recent experimental observations on a large number of silks

from different spider species from all over the world, where several material proper-

ties at different involved scales have been cataloged for the first time in a compre-

hensive database.18 In this respect, it is worth noting that previous data modeling

results are founded only on statistical properties of the available data (statistical re-

sults based on correlation analysis),18 and this allows for a very partial attainment of

the potential impact of such experimental results.

This work aims to be general within the framework of a multiscale description of

physical phenomena and the deduction of larger-scale properties from the struc-

tures at lower scales. Indeed, in the formulation of the specific case study here

analyzed, we have considered three scales starting from the micro (protein) scale

to the macro scale passing through the meso scale. We explicitly impose in our

approach that these three scales interact with each other in a hierarchical way. In

particular, we consider the three possibilities of deduction of the meso from the mi-

cro properties, a successive macro from meso, and eventually an interesting direct

micro to macro deduction.

Our results show the effectiveness of the proposed method to deduce new physical

knowledge on the studied phenomenon. In particular, regarding the considered

example of spider silk, among other results, we deduce a functional relation between

the thermal degradation temperature and the parameters describing themicro-scale

protein structure, a very simple relationship between the diameter of the silk thread

and the meso-scale properties, and finally, a straightforward and effective relation-

ship that describes how to deduce the macro-scale supercontraction property as a

direct function of micro-scale parameters. Additionally, we identify ameso-scale var-

iable that does not depend on the consideredmicro variables, suggesting the impor-

tance of other micro variables in shaping the meso-scale structure of silk material.

Thus, even the hierarchical structure of the involved variables results from the pro-

posed approach, suggesting different micro-meso, meso-macro, and micro-macro

relationships depending on the considered variables together with the determina-

tion of the effective dependent-independent variables.

We show that the proposed methodology also allows to enhance existing physical

approaches by increasing the understanding of the underlying physical processes.

In this respect, we have also identified possible directions for further investigating

some relationships that have already been theorized. To this end, we interpret the

obtained results in relation with a recent physically based model introduced by

some of the authors.19,20
Cell Reports Physical Science 5, 101790, February 21, 2024 3
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We argue that this is a first step toward a more effective adoption of the new avail-

ability of data and data modeling techniques that can be of fundamental help in

several fields of multiscale phenomena compared with the diffuse ANN physically

based approaches.
RESULTS AND DISCUSSION

Concepts and motivation of symbolic machine learning using EPR

Digital transition is defined as the review of processes, using products based on dig-

ital products, technologies (hardware), and strategies (software), to increase effi-

ciency. The simpler, more accessible, and representative collection and evaluation

of data relating to processes is the knowledge base to provide useful information

for efficiency. The process to be made efficient considered here is the scientific

knowledge.

The technological event, then, does not explain and is not alone the digital transition.

In fact, at the basis of today’s digitalization, there are always humans who developed

the theories, paradigms, and concepts that generated the strategies, methods, and

algorithms. The latter have not only allowed the development of digital technologies

together with supporting the evolution of electronics, but strategies of the digital

transition are also the basis to make efficient the processes themselves.

The scientific studies that have generated the possibility of today’s digital transition,

impacting definitively on the development of both digital strategies, pertain to the

fields of mathematical logic and mathematics. They have developed throughout the

last few centuries.

We report some fundamental stages that in the past have given rise to the science

and conditions of the digital transition and the specific symbolic machine learning

strategy here used, namely EPR.21

Alan Turing, already in the 1930s, had introduced the concepts of algorithms and

calculating machines that would later lead to the development of computers. In

fact, he is considered the father of information technology and of the concept ofma-

chine learning, which has nowadays entered everyday life with the idea of artificial

intelligence. It is useful to clarify, without dwelling excessively on the subject, that

machine learning or data modeling or data driven are more appropriate terms

than the generic one of artificial intelligence. The latter is, in our opinion ,an abused

‘‘slogan,’’ rooted often in motivations distant from scientific reality, which should not

be used for at least two reasons.

� It is misleading with respect to the possibility of digital machines tomake all the

processes more efficient using an unsupervised strategy, i.e., without the inter-

vention of the human reasoning. This is especially true when digitalization is

used to support and make more efficient the progress of scientific knowledge.

� It is not yet known what human intelligence is, either at the mechanistic or bio-

logical level of brain functioning; therefore, it is impossible to build machines

that simulate something that is unknown in the intrinsic mechanisms that, in

addition, generate human consciousness, for example, a concept itself that is

difficult to understand.

The idea of artificial intelligence was born with McCulloch and Pitts in 194322 when

they published a work showing a simple system of artificial neurons able to perform
4 Cell Reports Physical Science 5, 101790, February 21, 2024
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basic logical functions. At least in theory, this system could learn in the sameway that

humans learn by using experience through trial and error that strengthens or

weakens the connections between neurons. ANNs are machine learning techniques

based on this idea from McCulloch and Pitts. They brought to the today well-known

ANNs that were already programmed in the first personal computers when Rumel-

hart, Hinton, and Williams developed the error back-propagation method,23 in

1986, to train them or rather to calibrate the weights of the ‘‘synapses’’ that connect

the neurons simulating, in a ‘‘very simplified way,’’ the functioning of the human

brain. Note that ANNs can be seen today as a category of machine learning strate-

gies, which are based on the original paradigm with developments of the mathemat-

ical structure and learning strategies.

As said, we propose the symbolic machine learning strategy, in particular EPR,

searching for models using a multi-objective strategy based on evolutionary optimi-

zation by genetic algorithms. Thus, as a summary for the reader, we report a brief

history of the origin of evolutionary optimization to better understand the motiva-

tions of adopting EPR together with a Multi-Objective Genetic Algorithm (EPR-

MOGA).24

The idea of evolutionary optimization was born in the last century and is nowadays a

relevant component of process efficiency strategies, which in our context can be

identified with the scientific knowledge. In 1973, Ingo Rechenberg was the pioneer

of evolutionary calculation and artificial evolution,25 whose theories were taken up

again in 1975 by John Holland who developed the theory of genetic algorithms re-

ported in the book Adaptation in Natural and Artificial Systems.26 In 1989, David

Goldberg, a student of John Holland and a hydraulic engineer, wrote a book27

that became the milestone for the use of genetic algorithms.

The tools allowing for the optimization with evolutionary calculation strategies such

as genetic algorithms are essential to attain system efficiency. Indeed, they allow

cost-benefit (efficiency) problems to be solved by considering more than a single

objective, contrary to most of the classical techniques. Moreover, these strategies

allow for the adoption of the so-called Pareto front of optimal or efficient solutions28

from the cost-benefit point of view or more solutions with different trade-offs based

on the objective functions. These may become a decision support for the efficiency

of any process, which in the case of this paper regards scientific knowledge.

In this respect, we remark that EPR-MOGA uses a genetic algorithm to search for

symbolic models of data because the strategy is to search for the best trade-off

models in complexity vs. data fitting. We point out that symbolic modeling of

data is a specific strategy internal to the paradigm of genetic programming.

In 1992, John Koza developed the paradigm of genetic programming, showing29

the possibility of creating machines that program themselves to solve problems

postulated by humans. Genetic programming integrates machine learning, in a

wider sense with respect to the original studies, with evolutionary optimization in

an original way. Much of what is proposed today as artificial intelligence refers to

the paradigm of genetic programming. Symbolic modeling is a specific application

of Koza’s paradigm to obtain models by means of the integration of machine

learning and genetic algorithms in the form of symbolic formulas that can be evalu-

ated as such by the expert. This is a paradigm alternative to that of ANNs (see the

previous section), which are general mathematical structures characterized by the

‘‘universal’’ ability of interpolating data but, for this reason, they are not suitable
Cell Reports Physical Science 5, 101790, February 21, 2024 5
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for the interpretation of the results with respect to the physical knowledge of the

expert and the required cause-effect relation.

Roughly speaking, the key idea of EPR-MOGA is that the domain of formulas inter-

polating data is very wide also because of the unavoidable data errors. In other

words, we can argue that many formulas might exist of different structures that inter-

polate the same data with a similar accuracy. However, a clear scientific interpreta-

tion is crucially favoured by simple polynomial structures because the parameters

can be simply evaluated as being a problem of linear optimization; i.e., a single

set of constants exists given a standard error function as opposed to an artificial

network whose training depends on the initial ‘‘guess’’ of the weights (parameters).

In summary, EPR is a two-stage strategy: (1) a polynomial structure is selected, and

(2) the constants are calculated. Each monomial is composed of one constant and

the product of independent variables. If we assign to each of those independent var-

iables an exponent, or they are an argument of logarithm or exponential functions,

we obtain a very wide family of possible, non-linear, formula models with the same

fundamental characteristics of being linear in parameters. Thus, EPR model’s coding

is through exponents and functions for independent variables and the maximum

number of monomials (parameters). They are prior assumptions of the expert hu-

man, who is the only candidate for model building.

The model building is based on the evolution of polynomial structures, which are so-

lutions of a genetic algorithm; each solution is assigned as a set of exponents (where

the null exponent reduces the number of independent variables and of monomials)

that determines the model structure and parameters.

Thus, as explicitly described in the following, a genetic algorithm determines

evolving analytical solutions with the single objective of best fitting to data, possibly

with constraints such as the statistical relevance of a monomial. Then the algorithm

searches for the optimal values of the constant polynomial parameters, based on a

sequence of linear optimizations.

The further development of EPR24 was to use the MOGA strategy. In this way, the

optimization searches for the best trade-off of model complexity versus fitting to

data. The complexity is measured with two functions to be minimized, the number

of monomials and the number of independent variables used. In this way, a Pareto

set of symbolic models is obtained with two competing terms: the model parsimony

and the fitting to data.

This is a very effective innovation with respect to standard machine learning, in addi-

tion to being useful in scientific knowledge support. In fact, the expert human

assumes the exponents, functions, and independent variables, and the strategy re-

turns a front of models, which is a decision support for the expert at the end of the

model search. The symbolic structure of the Pareto front of models, together with

possible recursive functional terms and independent involved variables, allows for

the selection of the adopted analytical model by the expert in a more robust way

with respect to a pure statistical assessment.

In a few words, EPR-MOGA returns the model formulas with the best trade-offs of

complexity (parsimony) versus fitting to data. The expert chooses the best model

looking at the whole Pareto front and its symbolic structure, also considering the in-

crease of complexity versus the effective improvement in terms of fitting to data. In
6 Cell Reports Physical Science 5, 101790, February 21, 2024
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the following section, we give, for the help of the reader, a brief introduction to the

mathematical treatment of numerical optimization problems based on EPR algo-

rithms. We refer to other works21,24 for a detailed description of the method.
EPR algorithm

In the simple setting considered in this paper, EPR generates explicit mathematical

expressions to fit a set of data points starting from the symbolic equation

Y = a0 +
Xm
j = 1

ajX
ESj1
1 X

ESj2
2 . X

ESjk
k ; (Equation 1)

where Y is the considered output dependent variable, X is the vector of input vari-

ables, and ao is a bias term. Thus, we assume that Y can be expressed as a polynomial

function composed of m terms, here represented by products of powers of the Xi

generated by the algorithm. Other simple functions can be considered instead of

powers.24 Observe that, as previously anticipated, each of the m terms is linearly

dependent on the unknown parameters aj . The power exponents ESji are selected

from a predetermined set of values.

Synthetically, EPR is performed in two steps: (1) structure identification and (2)

parameter estimation. The first stage entails simultaneously determining the

best ‘‘arrangement’’ of the independent variables and the related exponents. A

multi-objective genetic algorithm termed OPTIMOGA, which stands for OPTImized

Multi-Objective Genetic Algorithm, is used to finalize this optimization. This algo-

rithm is based on the MOGA strategy, introduced in the previous section and exten-

sively described elsewhere.24,30 We refer the readers to those papers for more

detailed information.

We remark that, since the user defines a priori the set of candidate exponents, the

possible negligible input variables are obtained by including zero among them.

This represents a fundamental option for the important aspect, recalled in the intro-

duction, of determining the effective independent variables. The values of the

parameters aj are determined in a second stage using the linear least squares

(LS) approach, which minimizes the sum of squared errors (SSE). In addition to the

usual LS search, the LS is typically performed by searching for only positive values

(constraints aj >0). This choice can be removed by the EPR algorithm, and it can

be a fortiori justified in our physical model of spider silks by referring to only positive

values of the input and output variables. However, this choice helps in avoiding over-

fitting, by excluding sequences of terms with negative/positive aj values that may

result from the modeling of the data noise.31

Moreover, the uncertainty of the coefficients (aj ) is evaluated during the search, and

the distribution of estimated pseudo-polynomial coefficients is used to eliminate

those parameters whose value is not sufficiently larger than zero.21,32 Indeed, it

may be argued that a low coefficient value with respect to the variance of estimates

relates to terms that describe noise rather than the underlying function of the phe-

nomenon being studied.

The algorithm is depicted in the flowchart shown in Figure 1. As a starting point, the

candidate independent variables, the general polynomial structure, the functions

composing the monomials, the candidate exponents, and the maximum number of

terms are assigned, possibly based on the initial knowledge of the physical phenom-

enon. The exponents can reflect the types of relationships between the inputs and
Cell Reports Physical Science 5, 101790, February 21, 2024 7



Figure 1. Flowchart of EPR working phases

Step-by-step evolutionary process for constructing the set of final models composing the Pareto

dominance front complexity versus fitting.
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output. For example, if the vector of candidate exponents is chosen to be ES = ½ �1;

�0:5;0;0:5;1�, if the maximum number of terms ism = 4; and if the candidate inde-

pendent input variables are k = 3, the polynomial regression problem is to find ama-

trix of exponent ES433. In a first stage, an initial population of matrix of exponents is

generated. An example of such a matrix is

ES43 3 =

2
664

1 0:5 0
0 0 1
0 � 0:5 1
� 1 0 0:5

3
775; (Equation 2)

so that the Equation 1 is

Y = ao + a1 X1 X
0:5
2 + a2 X3 + a3 X

� 0:5
2 X3 + a4 X

� 1
1 X0:5

3 (Equation 3)

The adjustable parameters aj are then computed by minimizing the SSE as a cost

function. It follows the evaluation of the fitness function: if the termination criterion

is satisfied, the output results are shown; otherwise, a new matrix of exponents is
8 Cell Reports Physical Science 5, 101790, February 21, 2024
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generated through the genetic algorithm including crossover, mutation, and ranking

selection.21 Then, again, the adjustable parameters are calculated, and the fitness

function is evaluated until the termination criterion is satisfied.

The equally performing models are those composing the Pareto dominance

front,24,33 and since EPR returns the whole set of formulas of the Pareto front, the

final choice of the model among different possible relations can be based on phys-

ical considerations.34 In this respect, we observe that genetic alghoritms generate

formulas/models for f, coded in tree structures of variable size, performing a global

search of the expression for f as symbolic relationships among X, while the parame-

ters aj play a role only in the optimization process. On the other hand, the ANN goal

is to map f, without focusing on the level of knowledge of the functional relationships

among X. This is why we argue that EPR represents a better tool for data-driven

knowledge discovery.

Spider silk case study

Spider silk is one of the most studied natural materials due to its extrememechanical

properties, particularly its strength and toughness, which overcome many high-per-

formance man-made materials. Furthermore, spider silks are regarded as a funda-

mental material for a new class of high-performance fibers in the context of

biomimetics.35,36 The availability of increasingly sophisticated experimental

techniques has allowed for a deeper understanding—both chemically and structur-

ally—of the complex multiscale, hierarchical material underlying their notable me-

chanical behavior. Despite this, many relevant phenomena governing their loading

history dependence, rate, temperature, and humidity effects remain unknown.37

At the molecular level, spider silks are made up of an amorphous matrix of oligopep-

tide chains and pseudo-crystalline regions composed primarily of polyalanine b

sheets38,39 with dimensions ranging from 1 to 10 nm,40 mostly oriented in the fiber

direction.41 The radial cross-section of the fiber is highly organized.39,42,43 Further-

more, the chemical and structural composition varies according to the different silks

produced by the different glands and, of course, the different species. Here, we

focus on the most performing and extensively studied type of silk known as dragline.

Many biological examples of evolutionary material optimization suggest the possi-

bility of obtaining unreached material performances at the macro scale, based on

a clever, hierarchical organization of weak composingmaterials at the lower scales.44

A further enrichment in biological structure is to possibly include different

composing materials.45 The analytical description of how the macroscopic perfor-

mances result from these complex low-scale material organizations is far from being

reached and represents a benchmark not only for their theoretical interest, but also

in the crucial field of bioinspired material design.36,46

Spider dragline silk fibers (also known as major ampullate silk) are constituted by

structural proteins called spidroins, which are divided into two major subtypes,

MaSp1 and MaSp2. The overall sequence architectures of the two subtypes are

similar, with a highly repetitive core region flanked by small N-terminal and C-termi-

nal domains (NTD and CTD, respectively). The repetitive regions, which account for

90% of the primary structure, are composed of alternating runs of polyalanine and

multiple glycine-rich motifs arrayed in tandem. Moreover, very recent studies,

prompted primarily by advances in proteomics and sequencing technologies, paint

a more complex picture of dragline silk composition than a simple MaSp1/MaSp2

dichotomy.18 Despite this complexity, here, we only consider the proteins MaSp1
Cell Reports Physical Science 5, 101790, February 21, 2024 9
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andMaSp2, which are widely recognized as the twomain ones composing the spider

silk. From the secondary structure point of view, the MaSp1 is mainly organized into

pseudo-crystalline polyalanine b-pleated sheets.42,47 On the other hand, the MaSp2

is mainly constituted by proteins with a proline content preventing the formation of b

sheet crystals,39 resulting in a structure with significantly lower crystallinity and mac-

romolecules with weaker crystal domains, typically in the form of a helices and b

turns.39,48

We remark that, as recognized in polymer mechanics49 and described also for the

spider silk case,19 the number of monomers of the macromolecule (i.e., protein for

the silk case) is fundamental for the mechanical behavior of the material. Based on

the facts that (1) the mechanical behavior of the spider silk material is to be ascribed

to the repetitive region features more than the terminal region of the protein,50 and

(2) the pseudo-crystalline b sheets, mainly present in the MaSp1, are recognized to

be the most impactful feature in determining the exceptional strength of the spider

silk,51 here we consider the following three quantities describing the protein scale of

the silk material.

� Length of the repetitive region of the protein MaSp1 in terms of number of

amino acids.

� Length of the repetitive region of the protein MaSp2 in terms of number of

amino acids.

� Length of the polyalanine b sheet in the protein MaSp1 in terms of number of

alanine amino acids.

At the meso scale, we consider the proteins’ secondary structure, how macromole-

cules are arranged in the fiber, and properties regarding the chemical and structural

stability of the polymer. In particular, we analyze the following material properties.

� Birefringence. It reflects the degree of molecular orientation of silk protein

chains. The birefringence of the dragline silk fiber was calculated from the

retardation value and silk fiber diameter.18

� Degree of crystallinity. It was calculated based on wide-angle X-ray scattering

analysis.18 In particular, it was obtained as the ratio of the total area of the sepa-

rated crystalline scattering components to that of the crystalline and amor-

phous scattering components as resulting from the 1D profile obtained by

the 2D diffraction.

� Degradation temperature. This quantity gives a measure of the chemical and

structural stability of the silk. In Arakawa et al.,18 the thermal degradation tem-

perature has been defined as the temperature that yielded 1% weight loss in

the silk samples. Indeed, heating leads to changes of the molecular weight

that in turn decreases the mass due to the production of gaseous by-products

of the chemical reactions.

Spider silk is a very interesting material from the point of view of its mechanical per-

formance at the macroscopic scale. In particular, here, we focus on the material’s

stiffness and strength. The Young’s modulus, on the order of tens of GPa, is above

man-made polymers and at the top among other natural materials. The strength is

even more interesting, being comparable with high-strength steels (order of magni-

tude of 1 GPa) and with the best-performing man-made composites like carbon and

kevlar reinforced composites.52 The reason for these outstanding properties with

respect to standard materials is not yet clear, with a relevant role also of the

extremely small diameter of dragline spider silk.53 For this reason, we also consider
10 Cell Reports Physical Science 5, 101790, February 21, 2024
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the diameter in the properties at the macro scale. Finally, we address the very signif-

icant role of hydration in thematerial behavior of spider silks. Indeed, a striking effect

observed in spider silks is the so-called supercontraction, addressed, to the knowl-

edge of the authors, for the first time in 1977,54 which occurs when a spider silk

thread is exposed to humidity. Depending on the silk composition, the experiments

show the existence of a relative humidity (RH) threshold beyond which the fiber con-

tracts up to half of its initial (dry) length. This also results in the possibility of exploit-

ing the supercontraction in the actuation field.20 The experimentally observed

contraction depends on several factors, including spider species,55 type of silk

(among the up to seven different ones that some spiders can produce56,57), environ-

mental conditions,58 and hydration rate.59 The quantities we consider at the macro

scale are therefore the following.

� Young’s modulus, obtained from the stress-strain curves determined through

tensile tests of single dragline silk fibers conducted at 25�C and RH z50%:18

� Tensile strength, calculated as the breaking force determined by tensile test

divided by the undeformed cross-sectional areas of the fiber samples deter-

mined by SEM observations.18

� Diameter, determined by SEM observations.18

� Maximum supercontraction, calculated as ðL0 � Lf Þ=L0, where L0 is the length

in dry condition and Lf in fully wet conditions (RH = 100%).18

Modeling strategy

For all the EPR run, the maximum number of terms has been set to 3 and the chosen

set of candidate exponents has been ½� 1; � 0:5;0;0:5;1� to keep the expression as

simple as possible, thus allowing their physical interpretability. Moreover, the ex-

pressions were optimized with a bias term ao since this element may compensate

for the possible lack of relevant inputs in the model.

The choice of the maximum number of terms is justified by comparing the expressions

provided in Notes S1–S11 and their corresponding performances in Figure 4. Indeed,

we achieve nearly maximal performance with just one or two terms, and adding a third

term to the expression does not result in a significant improvement in fitting perfor-

mance. In any case, this represents an optimization parameter that can be easily varied.

Moreover, the choice of the candidate exponents can be considered as the simplest

choice to consider the important possibility of determining the non-relevance of a

candidate input (0), of a linear direct or inverse dependence (1 and �1), and just a

simple non-linear direct or inverse dependence (0.5 and �0.5). Other richer choices,

depending on the problem under investigation, could be considered. As a matter of

fact, the proposed model, differently from the widely used ANN approaches, requires

a systematic connection between the scientist and the machine learning results. All

these choices are therefore guided by the specific physical problem at hand. Thus,

they are part of the modeling and of the scientist’s physically guided data

preprocessing.

In this regard, we also remark that we considered the possibility of more complex

elementary functions and verified the optimality of our choice of power functions.

It’s worth noting that such comparisons are computationally inexpensive compared

to similar possibilities in an ANN, which is another notable advantage of the

approach here proposed.

Once again, we refer the readers interested to the numerical performances of EPR to

e.g., Giustolisi and Savic21,24 and references therein. Here, we aim to focus on the
Cell Reports Physical Science 5, 101790, February 21, 2024 11



Table 1. Material properties considered for the data modeling case study divided by scales

Micro scale a length of the repetitive region of MaSp1

b length of the repetitive region of MaSp2

c length of the polyalanine b sheet in the MaSp1

Meso scale A crystallinity

B birefringence

C thermal degradation temperature (1% loss)

Macro scale A Young’s modulus

B tensile strength

C diameter

D supercontraction
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applicability of such an already tested numerical efficient approach to hierarchical

problems in material science, a field of wide interest in the recent literature on phys-

ically based data modeling techniques.

As anticipated above, to exemplify the proposed approach, we focus on the chal-

lenging case of spider silks. In particular, we refer to the recently proposed experi-

mental campaign,18 where the authors analyzed the properties, at different scales,

of approximately 1,000 different silks. From our perspective, this represents a signif-

icant opportunity for scientists interested in unraveling the ‘‘secrets’’ behind the

remarkable mechanical properties of this material in relation to its hierarchical

structure.

In the original paper, the authors already proposed a statistical correlation analysis,

based on the classical study of the Pearson correlation coefficient. Here, we show

how our data modeling approach, combined with our theoretical understanding

of the model,19,20 allows us to gain deeper physical insights in the considered exper-

imental data.

Among the material properties analyzed in the paper, we chose the ones reported in

Table 1 with the corresponding adopted symbols (the type of font distinguishes the

scales). Notice that each quantity is considered with the unit of measurement re-

ported in the original database, namely GPa for Young’s modulus and limit

stress, mm for the diameter, �C for the thermal degradation temperature. All the mi-

cro-scale properties are expressed in terms of the number of amino acids, whereas

the supercontraction and the crystallinity are two non-dimensional quantities

ranging in (0,1). As a result the parameters aj (see Equation 1), estimated by means

of the minimization of the SSE, can be dimensional quantities.

The role of these variables in the material hierarchical structure and response of spi-

der silk is schematized in Figure 2.

As a main parameter of accuracy, we report for the different numerical results the

coefficient of determination R2. We recall the classical definition R2 = 1 �
PN

i = 1
ðxnumi � x

exp
i Þ2

ðxexpi � xexpÞ2 , where the xnumi are the output variables of the numerical test,

and x
exp
i are the corresponding experimental values, with i = 1;.N, where N is

the number of experimental observations considered as dependent variables.

Observe that EPR also considers other, not explicitly reported here, indicators of

performance, e.g., the SSE. As a result, R2 does not necessarily increase as the

complexity of the expressions grows. The physical valence of the expressions found

is discussed, by following Arakawa et al.,18 also through the comparison with the
12 Cell Reports Physical Science 5, 101790, February 21, 2024



Figure 2. Scheme of the hierarchical structure of spider silks and of the considered variables at the different scales in the data modeling analysis

Macro scale: mechanical properties (elastic modulus and limit stress), morphology of the fiber (diameter), and the macroscopic behavior under humid

environment (supercontraction), considered as a key characteristic of the spider silk. Meso scale: proteins’ secondary structure (crystallinity),

macromolecule alignment within the fiber (birefringence), and chemical/structural stability of the polymer (thermal degradation temperature). Micro

scale: primary structure of the proteins, in particular length of the repetitive region of the proteins MaSp1 and MaSp2 in terms of number of amino acids

and length of the polyalanine b sheet in the protein MaSp1 in terms of number of alanine amino acids.
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correlation matrix represented in Figure 3 obtained by calculating the Pearson cor-

relation coefficient between the different considered variables for the analyzed silks.

We recall the classical definition for the Pearson coefficient, a measure of linear cor-

relation between two sets of data fxi; i = 1;.; ng and fyi; i = 1;.;ng with n the

number of data, defined as r =

Pn

i = 1
ðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i = 1
ðxi � xÞ2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i = 1
ðyi � yÞ2

p , where x = 1
n

Pn
i = 1 xi

and y = 1
n

Pn
i = 1 yi are the mean values.

Observe that, from the database by Arakawa et al.,18 we considered only the data

where the searched output and the considered input are reported simultaneously.

Thus, since there are some experimental properties missing for some silks in the

database, the number of silks composing the training set is different for each consid-

ered output. In doing so, for each target output, we consider the maximum possible

available information in terms of the number of silks.

The EPR technique has returned a series of polynomial expressions for each depen-

dent variable. In Figures 4D, 4E, and 4F, we report the variation of the accuracy of the

analytical expressions in reproducing the experimental data. Thus, in a Pareto front

approach, the model let us choose the best formulas considering parsimony (simple

expression) and accuracy. Observe that the analysis of the whole expression set,
Cell Reports Physical Science 5, 101790, February 21, 2024 13



Figure 3. Experimental correlations

Pearson correlation coefficient for each pair of the multiscale properties, considering all the silk

reported in the work of Arakawa et al.18
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reported in the supplemental information, allows for a rational choice of the most

suitable material relations (reported in Table 2) that can be selected considering

not only parsimony and performance but also analyzing the physical interpretation

of the experimental matrix correlations in Figure 3.
Multiscale deduction

In the following, we consider different possible data analyses. Specifically, we

examine three potential deduction scenarios: deriving meso from micro properties,

then macro from meso properties, and eventually a direct deduction from micro to

macro. On one hand, this facilitates the identification of relationships between vari-

ables and the potential analytical forms of these relationships. On the other hand, it

highlights the significant role of scales in the considered model and the analysis of

the best-performing multiscale functional relationships.

In particular, we point out that, based on the possibility of analyzing the functional

relations at different scales, with immediate control over functionality and accuracy,

we do not assume in advance that a sequential micro-meso-macro variable depen-

dence is the most reasonable as typical of multiscale approaches. We instead sup-

pose that also direct micro-macro variable relations can be observed.

In what follows, we show that this is actually the case, and we find a direct effective

relation between a micro and a macro variable. Moreover, we obtain that one of the

meso variables does not depend on the consideredmicro variables, thus suggesting

the possibility that other micro variables could be important for the meso-scale

structure of the silk material. These results exhibit the efficiency of the model in
14 Cell Reports Physical Science 5, 101790, February 21, 2024



A B C

D E F

Figure 4. Deduction strategy and performance of the EPR models for each output variable

Prediction of material properties using two scales at a time: (A and D) meso from micro experimental properties, (B and E) macro from meso

experimental properties, (C and F) macro from micro experimental properties. (A, B, and C) Scheme of the strategy to obtain each quantity: solid

(dashed) box indicates experimental (obtained from EPR) quantities. (D, E, and F) EPR model performance in terms of R2 plotted against the number of

the found model.
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selecting the correct functional dependence, the possibility of missing dependence

among considered measured variables, and the role of the complex interactions

among the different involved scales.

Meso-micro

Firstly, the meso-scale properties have been calculated using all the micro-scale

quantities as independent variables (see Figure 4A) according to Equation 1. The re-

sults of the accuracy are reported in Figure 4D, and the resulting functional depen-

dencies are reported in Table 2.

As a common property of the considered numerical tests (see in particular the vari-

ables A and C in Figure 4D), we may typically distinguish two regimes of the perfor-

mance curves. In the first regime, the performance increases rapidly with the number

of expressions and thus with the model’s complexity. In the second regime, the per-

formance curves stabilize in a saturation band. This indicates an easy way of selecting

an optimal model complexity and to avoid overfitting due to possible noise of the

considered data.

Regarding the selected functional dependence, first, we observe that the crystal-

linityA decreases with b, in accordance with the general correlationmatrix (Figure 3).

The presence of the bias term is coherent with the value of R2 = 11%, since, as re-

called before, the bias may compensate for the lack of relevant inputs in the model.

The birefringence B shows a very low accuracy R2 < 5%, coherent with the experi-

mental results that show a very low Pearson correlation between B and a;b; and c

(see Figure 3). We remark that, in this case, the EPR method avoided data overfitting

that could have resulted in better performing, but physically misleading, expressions

deduced by other numerical approaches. We therefore conclude, in this case, that

the considered meso-scale quantity, the birefringence B, cannot be predicted
Cell Reports Physical Science 5, 101790, February 21, 2024 15



Table 2. Prediction across two scales: selected explicit expressions

Scale Expression R2ð%Þ Model number

Meso
from micro

A = 3:5562
1

b
+ 0:10262

11 2

C = 3;186:7046
1

a
+ 0:86787 a c0:5 + 45:2672

23:54 4

Macro
from meso A = 0:091301

B0:5

A
+ 29:2668 A

9:01 4

B = 0:013837
B0:5

A
+ 0:014276 A C

12:81 5

C = 0:81928
A0:5C

B

22:37 4

Macro
from micro

D = 0:61926
b

c
+ 0:0047393

43:35 3
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starting from the consideredmicro-scale properties, and we consider instead B as an

independent variable to compute the macro-scale quantities in the following.

On the other hand, in the case of the thermal degradation temperature C, the EPR

found expressions with higher R2. In this case, the selected expression provides a

quantitative estimate of the target quantity with a trend increasing with a and c, in

accordance with the experimental correlation matrix in Figure 3.

Macro-meso

As a second data modeling analysis, we consider the possible functional depen-

dence of the macro properties from the meso-scale quantities, now considered as

independent variables (see Figure 4B). The results of the accuracy are reported in

Figure 4E, and the resulting functional dependencies are reported in Table 2.

Regarding the Young’s modulus A, the chosen expression correctly reports the

monotonic growth with crystallinityA, as can be immediately deduced by comparing

the derivative of the expression for A>0 with the experimental correlation matrix.

Regarding the limit stress B, the selected expression correctly reports the highest

experimental correlation, namely the positive one with the birefringence B.

The expression chosen for the diameter C has the highest accuracy among the

macro-meso case (R2 = 22:37%) with a very simple expression composed of only

a single term that includes all three variables at the meso scale. The correlation is

positive for A and C and negative for B in accordance with the experiments.

For this last case, in Table 3, we report the complete Pareto front of formulas ob-

tained as the output of the EPR method, along with the corresponding accuracy

(R2) for each expression. It is worth noting that the trend of accuracy concerning

the model’s complexity is illustrated in Figure 4E. By comparing the set of expres-

sions with the accuracy of the 8 models found by EPR, we observe a rapid increase

in accuracy (R2 = 0/R2z12:5) when the inverse dependence on variable B is intro-

duced in model 2. A further significant increase in accuracy (R2z12:5/R2z18) is

achieved by considering the dependency on A0:5 in model 3. The last substantial ac-

curacy improvement (R2z18/R2z22:5) is obtained by including the linear depen-

dence on variable C in model 5. This expression is considered the most suitable for

describing the relationship between the diameter and the meso-scale variables. It

combines relatively high accuracy with a simple and interpretable structure. The

models from 6 to 8, while more complex, do not significantly enhance predictive
16 Cell Reports Physical Science 5, 101790, February 21, 2024



Table 3. Pareto front of models for predicting the diameter (C) from the meso-scale variables

Model number Expression R2ð%Þ
1 C = 2 0

2
C = 81:9474

1

B
12:53

3
C = 177:4203

A0:5

B
+ 0:051737

17:73

4
C = 0:81928

A0:5C

B

22:37

5
C = 0:00021001C + 0:80165

A0:5C

B

22:49

6
C = 0:0037544

C

B0:5
+ 0:76892

A0:5C

B

23:79

7
C = 0:011782

C

B
+ 0:0025068

C

B0:5
+ 0:76003

A0:5C

B

23:77

8
C = 0:028813

C

B
+ 0:69464

A0:5C

B
+ 0:010027

A0:5C

B0:5

23:50
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accuracy ðR2 z22:5/R2 z23:5Þ. This implies that the additional terms in these ex-

pressions, compared to the previous one, describe noise in the data rather than play-

ing a real physical role in the considered phenomenon.

Finally, we note that the dependence on 1=B is maintained frommodel 2 to model 4,

indicating the robustness of this relationship. It is considered reliable as it was pre-

served even when EPR attempted to reduce expression complexity. On the other

hand, the analysis of the complete Pareto front permits the identification of terms

that appear in only one model (see models 5 to 8); such terms are likely to be weakly

related to the physical phenomenon but rather specific to the error present in the

data. Similar considerations apply when examining the complete Pareto fronts for

each considered output variable, as reported in Notes S1–S11. The Pareto front

has been extensively discussed in this case, which is particularly suitable for explan-

atory purposes due to the shape of the Pareto front (Figure 4E), combining a rapid

increase for the initial models and a clear performance saturation band for the more

complex models.

We remark that the final choice of the appropriate equation requires an evaluation of

the resulting physical consequences. This may necessitate further experimental and

theoretical investigations, as is common in the analysis of any scientific open prob-

lem. In our opinion, it is only a continuous efficient interaction between data

modeling with analytical formulas and scientific interpretation of them that can

ensure the desired advancement of the understanding of the physical phenomena.

Eventually, we consider the selected expression for the supercontraction D. In this

case, we are not able to produce a good estimate of the target output from the

meso variables (R2 < 8%).
Macro-micro

As anticipated, we now consider the possibility of direct dependence between

macro and micro variables. Thus, the macro properties have been calculated also

using all the micro-scale quantities as independent variables (see Figure 4C). The re-

sults of the accuracy are reported in Figure 4F, and the resulting functional depen-

dencies are reported in Table 2.

In this case, regarding the Young’s modulus (A), the limit stress (B), and the diameter

(C), the values of R2 are generally low. On the other hand, the supercontraction D is
Cell Reports Physical Science 5, 101790, February 21, 2024 17
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predicted with a relatively high accuracy (R2 >40%), and the selected expression

(R2 = 43:35%) provides a reasonably precise quantitative estimate of the supercon-

traction, higher than the ones deduced from the meso variables. This suggests the

intriguing possibility of a direct influence of micro variables on the macroscopic

supercontraction variable representing still a debated effect of spider silk beha-

vior.19,60 Moreover, we remark on the simplicity of the obtained analytical expres-

sion including the two most relevant experimental correlations between the super-

contraction and the micro-scale properties, i.e., the positive one with b and the

negative one with c. This result demands by itself a theoretical investigation, which

will be the focus of our future studies.

In summary, we observe that by employing this direct macro-micro deduction, from

one side, we obtain a relatively precise estimation of the supercontraction property

that was missing from the macro-meso analysis, but from a modeling point of view,

we deduce the possibility of modeling the supercontraction as a macro variable with

a direct functional dependence from the micro ones. Moreover, the low accuracy in

predicting the other macro variables (A, B, C) directly from the micro ones en-

lightens on the importance of the meso-scale structures in generally determining

the macro properties of the material, as expected from the classical hierarchical

dependence. For the particular case of the spider silk, this reflects established results

in the literature pointing out the dependence of the silk thread macroscopic

behavior from the secondary structures of the proteins,50,61 here described by the

meso-scale variables.
On the accuracy of the EPR formulas for the spider silk case

A general comment is in order on the accuracy of the relationship found by EPR. The

coefficient of determination of expressions found by the EPR method is generally

low if compared with other frameworks where EPR was applied,62–64 but this was ex-

pected for the study case of spider silks, as in biological materials, a high intrinsic

variability for experimental observations is known.65 Also, for this particular material,

a meaningful variability of the mechanical property of silks taken from the same in-

dividual under similar conditions is well recognized (see e.g., Madsen et al.66).

Further, the characteristics of the spider silks have high sensitivity to a large number

of parameters, among which are starvation, reeling speed66 other than the more ex-

pected spider species,55 type of silk (among the up to seven different ones that some

spiders can produce56,57), environmental conditions,58 and hydration conditions.59

In a very recent work,67 the variability of spider silk properties has been directly

compared to that of carbon fibers, and significantly higher variability in spider silk

in all properties considered has been reported. For these reasons, even if the R2

of the expressions found by means EPR is generally not as high as other frameworks,

the performances of the data modeling strategies are considered satisfactory.

Furthermore, we believe that the results we have described strongly demonstrate

the feasibility of our proposed approach when compared to the more commonly

used approaches, typically based on ANNs. This approach allows us to deduce

both analytical results and important physical properties related to the problem at

hand, thereby establishing a new way of investigation in the considered field.
Theoretical vs. experimental correlations

While the objective of this paper is general and mainly related to the exhibited pos-

sibilities of obtaining information on the considered physical properties, in this sec-

tion, we show operatively this possibility by comparing experimental and theoretical

results.
18 Cell Reports Physical Science 5, 101790, February 21, 2024
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Going to the considered case of spider silks, we are now in the position of deducing

the theoretical meso and macro response based on only the micro properties to

compare with the experimental meso and macro response. Specifically, we have

one set of data for which all properties are experimentally known, and on the other

hand, we construct a set of theoretical data based solely on the experimentally

determined properties at the micro scale. The properties at higher scales (i.e.,

meso and macro) of the theoretical dataset are then calculated using the explicit re-

lationships selected in Table 2. The purpose is to demonstrate the applicability of

EPR-derived relationships to predict macro-scale properties based on micro-scale

knowledge. We have chosen to utilize pairwise correlations between variables as a

means of comparison between experimental data and the relationships learned

through EPR.

Coherently with the hierarchical assumption of our model, we first deduce the meso-

scale variables by the micro ones, and then, based on previous analytical results, we

deduce the macro variables. Accordingly, with previously described numerical data

analysis, also the meso variable B (birefringence) is considered here as an indepen-

dent variable. On the other hand, in the special case of the supercontraction D, we

assume that it directly depends on micro variables. Notice that all this relevant phys-

ical information has been deduced by previous data modeling.

Regarding the experimental data, we consider a subset of the silks analyzed by

Arakawa et al.18 and in particular only those for which all the 10 considered prop-

erties (see Table 1) are known simultaneously (the so-obtained subset consists of

35 silks). As a possible comparison between the theoretical and experimental data-

sets, we consider the Pearson correlation coefficients for each pair of properties.

The comparisons of the correlation tables for theoretical and experimental results

are reported in Figure 5. They show a satisfactory correspondence almost exten-

sible to all the data and a satisfying result in terms of the values of the correlation

coefficients. To get a global comparison, we also adopt a positive definite relative

error:

er =
jeaj
em

; (Equation 4)

where ea = rt � re is the absolute error, and rt and re are the theoretical and ex-

perimental Pearson coefficients, respectively. Here em is the mean error that since

rm and re range in the interval ð�1;1Þ, we assume em = 1. The average value of

the relative error by considering all the possible pairs of the correlation matrix

er = 0:33, with 0<er < 2, indicates that the functional dependence found by the

EPR method reproduces in a reasonably accurate way the experimental correlations

among the properties of spider silks.

Eventually, as evidenced by Linka et al.,11 an important extension of the proposed

approach would be to consider a Bayesian framework for the uncertainty quantifica-

tion in order to compute each output in terms of statistical distribution with a mean

and a confidence interval by also taking into account the input data variability.
Toward integrating data-driven knowledge and physical modeling

The possibility of advancing, based on the proposed approach, the understanding

of the underlying physical relationships can be exhibited by considering possible

progresses in existing theoretical settings. To this end, we here explicitly refer to

the recent works previously proposed by some of the authors,19,20 where the depen-

dence of supercontraction on the MaSp2 protein has been addressed. In that
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Figure 5. Pearson correlations among the material properties at the three scales

(A) Experimental correlations obtained considering a subset of silks for which all the analyzed properties are reported simultaneously.

(B) Correlations among the material properties obtained from the data modeling EPR approach (macro and meso) starting from the known micro

experimental properties.
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context, the MaSp2 protein was treated using the classical approach of multiscale

analysis of soft macromolecular materials, based on a classical statistical mechanics

approach to quantify the expected length of the protein’s macromolecules. On the

other hand, based on the EPRmethod, an explicit relationship between the length of

the repetitive unit of the MaSp2 protein and supercontraction can be inferred. As an

extension of this work, this relationship will be employed to enhance the micro-

structure-based model considered in the previous works.19,20 Presumably, from

the EPR findings, it will be possible to establish a quantitative relationship between

micro-scale variables describing the primary structure of the MaSp2 protein and

supercontraction. In other words, owing to the interpretable relationships obtained

through EPR, it is feasible to extend the prediction of macroscopic supercontraction

behavior toward the precise primary structure of the involved proteins. Indeed, in

the previously proposed theoretical multiscale approach, this prediction was based

on more general properties of macromolecule behavior without specifying the

detailed primary structure properties obtained in previous analysis. This example

is just one illustration of our approach, but it serves as a representative instance of

how our work intends to improve the theoretical understanding in material science.

With each of the relationships considered in Table 2, and more broadly, as we

explore the Pareto front of expressions, additional relationships discovered among

variables are subjects of ongoing study by the authors. These investigations aim to

contribute significantly to the expansion of our knowledge concerning themultiscale

mechanisms responsible for the remarkable characteristics of spider silk. This exten-

sion is the subject of the forthcoming research of the authors.

Concluding remarks

We showed the possibility of adopting, based on a genetic programming approach,

data modeling techniques, innovative in the field of material science, that are partic-

ularly suitable for the deduction of analytical models for multiscale problems. Our

approach is based on the EPR method, which, as we showed, lets us deduce models
20 Cell Reports Physical Science 5, 101790, February 21, 2024
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that are both accurate and simple and able to describe the dependence of macro-

scale variables from the ones at lower scales, with their hierarchical order itself

deduced by a careful analysis of the data. The best-performing models are those

located on the Pareto dominance front, which takes into account both accuracy

and parsimony and are returned by the EPR algorithm. The final choice of the model

can then be based on physical considerations.

To explicitly show the possibility of acquiring physical insight in a complex multiscale

problem, and to evidence the key advantages of our multiscale approach compared

to classical, non-physically based techniques, we referred to the materials science

field and in particular to the complex case of spider silk: a biological material with

exceptional properties hugely analyzed also in the spirit of bioinspiration. The

choice of this specific case is due to the observation that such remarkable properties

are strictly based on an evolutionary hierarchical optimization, and the macroscopic

spider silk behavior is the result of noteworthy mesostructures emerging from the

aggregation of amino acids at the molecular scale. For this intriguing and very com-

plex material, many phenomena underlying the multiscale structure and the com-

plex energetic exchanges among the scales ensuring their notable properties are

still strongly unclear. We then used this paradigmatic example to show how the pre-

sented data modeling approach can be useful in several directions: to determine

dependent and independent variables, to indicate their hierarchical organization,

and to deduce explicit relations among different groups of variables. In this direc-

tion, we also want to remark that a possible important role can be attained by a

following dimensional analysis (e.g., Buckingham theorem) that should be related

to the possible absence of variables at the different scales. This is another important

aspect that is beyond the scope of this paper and will be the subject of our future

investigation.

Furthermore, we showed that the proposed approach lets us overcome the over-

fitting problem typically observed in the analysis of big data within the ANN frame-

work diffusely adopted in this field. Based on this, new physical knowledge is ac-

quired, which can be used as a starting point for determining new analytical

models, suggesting new experiments, and applying more focused data modeling

analysis. We also strive to enrich existing physical approaches by enhancing our

comprehension of the underlying physical processes. In this context, we investi-

gate the potential for enhancing some authors’ previously introduced physically

based theoretical analyses, leveraging the insights obtained from our current

approach.

In this sense, we assert that machine learning or artificial intelligence can have a

significant impact on scientific knowledge only if the data modeling approaches

are in continuous synergy with the scientific interpretation of the results. We

argue thus that a new mixed genetic programming-theoretical approach can be

a fruitful approach in material science but also in fields as diverse as biology

and medicine.
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SUPPLEMENTAL INFORMATION

EPR Expressions

Note S1. Cristallinity from micro properties

A = 0.19253 (S1.1)
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1
b

+ 0.10262 (S1.2)
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1
b

+ 0.0097339c + 0.013178 (S1.3)
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b
(S1.4)

A = 0.007611
b

a0.5 + 1.961
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b
(S1.5)

A = 0.0077062
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1
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+ 0.38037
c
b

(S1.6)

A = 0.0079125
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1
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c
b

(S1.7)

Note S2. Birefringence from micro properties

B = 45.0698 (S2.1)

B = 88.7638
1

b0.5 + 31.2338 (S2.2)

B = 188.8929
1
a
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1

b0.5 + 31.4271 (S2.3)
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1
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Note S3. Thermal degradation temperature from micro properties

C = 226.8169 (S3.1)
C = 3.1984c + 201.1538 (S3.2)
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1
c
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1
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Note S4. Young’s Modulus from meso properties

A = 9.4674 (S4.1)
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Note S5. Limit Stress from meso properties

B = 1 (S5.1)

B = 0.14344B0.5 + 0.2349 (S5.2)
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Note S6. Diameter from meso properties
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Note S7. Supercontraction from meso properties

D = 0.31695 (S7.1)
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Note S8. Young’s Modulus from micro properties
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Note S9. Limit Stress from micro properties

B = 1.2533 (S9.1)
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+ 0.054095

b
c

(S9.8)

Note S10. Diameter from micro properties

C = 1.5415 (S10.1)

C = +44.5973
1
b

+ 0.43669 (S10.2)

C = +1030.4476
1

ab
+ 0.82562 (S10.3)

C = +1367.643
1

ab
+ 0.013763b (S10.4)

C = +8702.7135
1

acb
+ 0.01363b + 0.17322 (S10.5)

C = +9507.752
1

acb
+ 0.0019587cb (S10.6)

C = +9491.6515
1

acb
+ 0.001894cb + 7.7482e − 05ac (S10.7)

C = +9609.6043
1

acb
+ 0.0014633cb + 7.4705e − 05a0.5cb (S10.8)
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Note S11. Supercontraction from micro properties

D = +0.32479 (S11.1)
D = +0.0055013b + 0.097111 (S11.2)

D = +0.061926
b
c

+ 0.0047393 (S11.3)

D = +0.53648
1
c

+ 0.050578
b
c

(S11.4)

D = +0.8009
1
c

+ 0.0072816
a0.5b

c
(S11.5)

D = +15.9524
1

cb
+ 0.008755

a0.5b
c

(S11.6)

D = +430.4092
1

acb
+ 0.0090635

a0.5b
c

(S11.7)
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