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A B S T R A C T

The current paper proposes a novel analytical micromechanics model to progressively predict the mechanical
behavior of composites reinforced by continuous or discontinuous aligned fibers considering the nonlinear
mechanical behavior of components and statistical breakage of fiber bundles based on the Curtin model. The
PA6-based Single polymer composites (SPCs) are selected and extensive sets of experimental measurements
on 12 available PA6 fibers with adequate repetitions to find reliable statistical Weibull parameters are
performed. In addition, 10 different PA6 matrix samples, polymerized with various dosages of additives and
raw materials, are tested. A remarkable potential for enhancing both strength and toughness of neat PA6
matrix is demonstrated. Results reveal that using tough matrices with elongation in the order of PA6 fibers
significantly enhances both strength and toughness of the SPC. The developed progressive micromechanics
model provides an analytical parametric framework and a design guideline for developing new recyclable
SPCs.
1. Introduction

The demand for polymers as replacements for wood, metals, and
ceramics is steadily increasing due to their unique low weight on
the side of relatively low-cost manufacturing processes. Character-
ized by inferior mechanical properties, polymers normally need to
be reinforced when used in loading bearing components in automo-
tive, marine, medical, sport, construction, and aerospace industries [1,
2]. The valuable extensive history of polymeric composite materials
proves the successful use of traditional reinforcements, mostly glass,
carbon, and Kevlar® fibers, on the scale of industrial mass produc-
tion [3]. Although excellent mechanical properties can be achieved,
however, the unsolved challenge of recycling at the end of the life-cycle
limits their immense continued production considering environmental
impacts since these fibers are almost impossible to be recycled. To
overcome this, the composite community performed vast research and
developments on alternatives to replace traditional reinforcement. Sub-
sequently, biodegradable composites implementing natural fibers and
even bio-based polymers [4], and nano-composites [5,6] relying on
the idea of reinforcing polymers with a low percentage of nanopar-
ticles with high surface-to-volume ratios emerged. Despite successful
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developments of these modern composites especially in the automotive
and aerospace sectors, they could not take the place of a large amount
of mass production of traditional composites, especially those made
of carbon and glass fibers, due to economic and technical issues. In
addition, the biodegradable composites made from natural fibers are
not mechanically recyclable as the fiber and the matrix are not the
same/similar material. The increasing importance of environmental
legislation and waste management regulations, considering the limited
landfill space, and thinking of global warming which is affected by
incinerator emissions, encourage both researchers and industries in the
field of composite to look for effective recyclable composites, without
sacrificing the primary goal of developing composites, i.e., enhance-
ment in mechanical properties [7,8]. Furthermore, introducing new
easy-recyclable composites can improve the efficiency of the recycling
process in terms of energy consumption, which is conceivable from an
economic point of view [9,10].

Keeping in mind the fact that the main challenge in the recycling
of traditional composite is the fiber since the polymeric thermoplastic
matrix can be melted and extracted, one may think of implementing
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polymeric fibers resulting in the concept of environmentally friendly
all-polymeric or polymer–polymer composites (PPCs) [11]. The PPC
concept becomes more logical when considering that the mechanical
properties of components are reduced after each re-extrusion. Having
a base material similar to the matrix, polymeric fibers provide supe-
rior mechanical properties thanks to their highly oriented molecular
structure with a high degree of crystallinity which is achieved by
spinning or solid-state drawing manufacturing techniques [12]. On
the other hand, similarity in the chemical composition of the fiber
and the matrix allows for the formation of strong chemical bonding
and enhanced interfacial adhesion without any surface treatment as
a result of molecular entanglements and possible H-bonding which
increases the stress transfer capacity of the interface [13]. It surmounts
the classical problem of weak interface and debonding failure in the
conventional composite where the fiber and the matrix possess quite
different chemical composition and surface energies and weak van der
Waals forces act across the interfacial region. In conclusion, proposing
satisfactory mechanical properties, high recyclability, strong interfacial
bonding along with low density (even less than carbon fibers) and
remarkable performance/cost balance make polymeric fibers ideal for
replacing traditional fibers. A wide selection of high-performance poly-
meric fibers such as PE, PT, PET, PP, iPP, PLA, PA6, PA6.6, PMMA,
etc., with a performance comparable to traditional fibers, are available
to be combined with thermoplastic polymeric matrices leading to fully
recyclable PPCs [14].

In general, PPCs consist of two different polymers which are from
the same family. As a subset of PPCs, single polymer composites (SPCs)
are composed of the exactly same polymer or of polymers belonging to
the same type. SPCs are also known as one-polymer, self-reinforced, or
homo-composites. Referring to the composite material definition, de-
spite the same base material of the components, the highly anisotropic
arrangement of molecular structure in the fiber serves for reinforcement
while the matrix with mostly isotropic, due to randomly oriented
molecular structures, transfers the load. This combination enhances
the mechanical properties of the SPC compared to the neat polymeric
matrix [13]. From a recycling point of view, where with every re-
extrusion the material quality undergoes a reduction, PPCs are melted
down to a polymeric blend of the components, however, recycling of
SPCs is essentially melting a single polymer [15]. It means SPCs are
recycled to an almost single-phase homogeneous raw material which
can be utilized for manufacturing a new SPC or be used as a matrix of
a conventional composite or any other application [16]. Even though
there is a potential for down-cycling of thermoplastic-based composites
reinforced by traditional fibers, along with ongoing research focused
on their up-cycling, SPCs can still be considered major alternatives
due to their remarkable recycling characteristics and strong interfacial
bonding advantages in various applications [17]. However, they suffer
from the small temperature window during the manufacturing process
because the fiber and the matrix have close melting temperatures [18].
In this situation, the main challenge is to retain the properties of the
highly oriented polymer molecules of the fiber, since it tends to be
relaxed approaching the melting temperature. It opens a window for
the optimized design of SPCs since on the other hand it is reported that
partial melting of the polymeric fibers before mixing can enhance the
interfacial bonding [19]. It is essential to acknowledge that introducing
polymeric fibers in SPCs typically has the potential to enhance the
mechanical properties by a few times, whereas conventional composites
utilizing Glass, Carbon, and Kevlar® fibers offer orders of magnitude in-
rease in properties. Consequently, when the utmost performance is the
rimary consideration in composite design, replacing SPCs might not
e always feasible. Another remarkable potential application for SPCs,
specially those based on more economical polymers like PA6, could
nvolve substituting other high-performance, expensive neat polymers
uch as PEEK.

The successful developments of SPCs with desirable mechanical
2

roperties are extensively reported confirming the potential of SPCs
with superior recycling capacity as an alternative to conventional com-
posites. A PA6-based SPC was made by combining hot compaction
and film stacking techniques in [20]. The high-tenacity PA6 yarn as
the reinforcement and PA6 film as the matrix are combined to make
the SPC with a proper difference in the melting temperature of the
components. The prepared layered self-reinforced composite shows
superior mechanical properties where the tensile modulus and ulti-
mate strength are improved by 200% and 300%–400%, respectively,
compared to the isotropic matrix film. A PE-based SPC composed
of UHMWPE fiber and UHMWPE matrix without using any chemical
treatment was introduced in [21] and a remarkable interfacial bonding
and a strength comparable to Kevlar®-resin composites were reported.
It was also proved that the developed SPC provided better mechanical
performance compared to the PPCs consisting of UHMWPE fibers and
other polymeric matrices. Preparation and characterization of PP-based
SPCs fabricated by the film-stack method were reported in [22] and the
results revealed that controlling consolidation temperature and holding
time can enhance the mechanical and morphological properties. A self-
reinforced composite composed of a PMMA matrix reinforced by a
high-strength PMMA fiber with desirable mechanical properties was
introduced in [23] and the effect of processing temperature and time on
the fracture toughness, morphology, and the thermal properties of this
PMMA-based SPC were probed. They stated that the SPCs were fab-
ricated using an anionic polymerization process, making re-extrusion
impractical as a recycling solution, since depolymerization is the only
viable recycling method. The advantage of depolymerization over re-
extrusion is the ability to revert back to raw material without partial
polymer degradation. The effect of hot compaction temperature on the
crystallinity and molecular orientation of PET SPCs was investigated
in [24] and it was observed that the impact strength of the SPC can be
improved by 500%–700% compared to the neat PET matrix. A novel
method based on the in-situ anionic polymerization was developed
in [7] to fabricate the polyamide SPCs mixing a PA6 fiber and a PA6
matrix. The effect of process parameters and molding temperature on
the performance of SPCs was studied. Performing three-point bending
and tensile tests, an optimum molding temperature of 160 ◦C where
both tensile strength and flexural strength are maximal was reported.
Besides, a low fraction of voids and a strong fiber/matrix interface were
reached.

Predicting the mechanical properties of polymeric composites has
always been of great importance in designing and manufacturing
durable optimized structures. The aim of all micromechanics models
is to perform this duty by having the arrangement and mechanical
properties of the constitutive materials as the input. Of course, knowing
the effective elastic properties of composites is essential as the first step
of the design and accordingly, a number of well-known micromechanics
approaches such as the rule of mixture, the Halphin–Tsai equation,
and the Mori–Tanaka model are developed for this purpose which is
reviewed in detail in [25]. However, the evaluation of the failure of
composites demands a more advanced complicated micromechanics
model due to the complex nature of composites, progressive failure
characteristics, and the existence of local nonlinear effects, such as
damage, debonding, and inelasticity [26,27]. In consequence, a com-
prehensive fully validated model for the failure prediction of composite
materials is difficult to achieve. From a microscopic point of view,
the failure of composites may be led by fiber progressive breakage
and then fiber pull-out, fiber/matrix debonding, matrix cracking, and
delamination [28–30]. A comprehensive review of micromechanical
progressive failure models in unidirectional fiber-reinforced composites
is presented in [31].

The prediction of the effective elastic properties of SPCs can be
performed by employing the general micromechanics model reviewed
in [25], without any need for specific modifications. The only point is
that the difference between the elastic properties of the fiber and the
matrix in SPCs may not be comparable to that of carbon or glass fiber-

reinforced composites and consequently, the effective properties of the
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SPCs may remain in the same order of its constitutive components.
However, predicting the failure of SPCs demands a more advanced
specific model. This paper aims to propose a progressive microme-
chanics model exclusively developed to be applicable for predicting
the mechanical behavior of SPCs reinforced by aligned fibers parallel
to the applied unidirectional loading. The model considers inelastic
behavior for both the fiber and the matrix, which is common in SPCs,
by converting their nonlinear stress–strain curve to an approximated
segmented piece-wise linear curve. Moreover, the classical shear lag is
modified. Although the model is capable to introduce weak interfacial
bonding, however, it does not consider the fiber/matrix debonding fail-
ure model which is reasonable in SPCs with strong chemical interfacial
bonding. No delamination failure is introduced into the model since the
SPC is assumed to be non-layered. The failure mechanism is defined as
the competition between the progressive breakage of polymeric fibers
and the matrix failure at its failure strain. The model also takes into
account the fiber pull-out and its extra effect on the SPC toughness. To
demonstrate the ability of the model to predict the properties of SPCs,
first, a comprehensive experimental investigation on the properties of
PA6 fiber and PA6 matrices is performed and imported to the model to
evaluate the mechanical performance of PA6-based SPC as a case study.
It is followed by a parametric study on the effect of interfacial bonding
and experimental validation.

2. Development of the model

In this section, a progressive micromechanics model is proposed
that estimates the stress–strain curve and consequently the stiffness,
strength, and toughness of composites using the stress–strain curves of
the components. It is developed based on the Curtin-stochastic fiber
breakage model that applies Weibull strength statistics for fibers [32–
36] along with a modified Kelly–Tyson shear-lag analysis [37] for bet-
ter capturing the effect of the shape of cross section and non-uniformity
in the interfacial shearing stress. Both continuous and discontinuous
aligned fibers are considered.

2.1. Inputs of the model

First, the required inputs of the progressive model are defined and
formulated. In the whole text, superscripts 𝑓 , and 𝑚 denote the fiber
and the matrix, respectively. Consider a composite consisting of fibers
of volume fraction 𝑣𝑓 aligned parallel to the direction of an applied
strain, 𝜀. For the case of unbroken continuous fibers, the strain in both
the matrix and the fibers are the same and equal 𝜀, while for discon-
tinuous or broken continuous fibers the applied strain is transferred to
the fiber through a distance from the ends via interfacial shearing stress
between the fibers and the matrix. In general, the stress–strain curves
of the components are not linear, particularly for SPCs where both the
fiber and the matrix are polymeric. The stress–strain curve of either the
fiber or the matrix can be approximated as a combination of 𝑁 linear
segments where for the 𝑘th segment the starting strain is 𝜀𝑘 and the
slope is 𝐸𝑘. Then, the stresses corresponding to the applied strain, 𝜀,
across the 1st segment, 𝜀0 < 𝜀 < 𝜀1, the 2nd segment, 𝜀1 < 𝜀 < 𝜀2, and
generally the 𝑘th segment, 𝜀𝑘−1 < 𝜀 < 𝜀𝑘, where 𝑘 = 3, 4,… , 𝑁 , are
approximated as:

𝜎1 (𝜀) = 𝐸1
(

𝜀 − 𝜀0
)

(1a)

𝜎2 (𝜀) = 𝐸1
(

𝜀1 − 𝜀0
)

+ 𝐸2
(

𝜀 − 𝜀1
)

(1b)

𝜎𝑘 (𝜀) =
𝑗=𝑘−1
∑

𝑗=1

(

𝐸𝑗 (𝜀𝑗 − 𝜀𝑗−1)
)

+ 𝐸𝑘
(

𝜀 − 𝜀𝑘−1
)

(1c)

This approximation is schematically shown in Fig. 1(a). At the ending
point of the curve, the strain reaches the maximum, named the elonga-
tion at break or failure strain, denoted by 𝜀 = 𝑒, and the corresponding
3

𝑁 𝐷
stress is the strength, denoted by 𝜎(𝑒) = 𝑆. Setting 𝑘 = 𝑁 and 𝜀 = 𝑒 in
Eq. (1), the expression for the strength in a segmented sense is obtained:

𝑆 =
𝑘=𝑁
∑

𝑘=1
𝐸𝑘(𝜀𝑘 − 𝜀𝑘−1) (2)

The toughness, 𝑇 , is approximated as the area under the curve:

𝑇 = 1
2

𝑘=𝑁
∑

𝑘=1
(𝜀𝑘 − 𝜀𝑘−1)(𝜎

(

𝜀𝑘
)

+ 𝜎(𝜀𝑘−1)) (3)

ince it is assumed that the strength of fibers obeys the Weibull strength
tatistics, a reference strength and a reference elongation at break, 𝑆𝑓

0
nd 𝑒𝑓0 , are introduced. The reference fiber length corresponding to 𝑆𝑓

0
s indicated as 𝑙0. For a fiber with an arbitrary length 𝑙, the total number
f flaws that are broken when the arbitrary stress 𝑆𝑓 is applied to the
iber is:

(

𝑆𝑓 , 𝑙
)

= 𝑙
𝑙0

(

𝑆𝑓

𝑆𝑓
0

)𝛼

(4)

and the cumulative probability of fiber failure of length 𝑙 at a given
stress 𝑆𝑓 is determined by [35]:

𝑃
(

𝑆𝑓 , 𝑙
)

= 1 − 𝑒𝑥𝑝

[

− 𝑙
𝑙0

(

𝑆𝑓

𝑆𝑓
0

)𝛼]

(5)

where 𝛼 is the ‘‘Weibull modulus’’, normally ranging from 2 to 20
corresponding to very brittle fibers with dispersed values of strength
to ductile ones with a low dispersion. From Eq. (5) it can be obtained
that for the reference conditions of 𝑙 = 𝑙0, and 𝑆𝑓 = 𝑆𝑓

0 , the cumulative
probability of fiber failure is 𝑃 = 1−1∕𝑒 = 0.63. This implies that some
fibers can break for higher stress values than 𝑆𝑓

0 . This is considered in
the stress–strain curve of the fibers by extending the 𝑁th segment with
slope 𝐸𝑁 , as shown in Fig. 1(b). For large values of Weibull modulus,
𝛼, the scattering in the strength of fibers around the reference strength
decreases resulting in a shorter dashed line in Fig. 1(b). In addition,
Eqs. (4) and (5) reveal that not only is the fiber strength at a fixed
length a statistically distributed quantity but also that the fiber strength
is length dependent, as given by:

𝑆𝑓
𝑙 = 𝑆𝑓

0

(

𝑙0
𝑙

)1∕𝛼
(6)

It is assumed that the initial strength, 𝑆𝑚
0 , and the elongation at break,

𝑒𝑚0 of the matrix before composition with the fibers, are not statistical
variables, however, the possibility of adding an extra elongation is
considered as a result of composition with the fibers which is exper-
imentally observed in some references [12]. This extra elongation is
included in the model by appending to the end of the approximated
stress–strain curve of the matrix an extension to the 𝑁th segment, as
depicted in Fig. 1(b).

2.2. Modified shear-lag analysis

Before developing the progressive micromechanics model, a mod-
ification to the classical Kelly–Tyson shear-lag equation is presented
to better account for the shape of cross-section and non-uniformity in
the distribution of interfacial shear stress. This equation is required
for the evaluation of stresses along either the discontinuous or broken
continuous fibers. Fig. 2 shows a fiber with an arbitrary cross-section
shape, laid within a matrix media where the interfacial shearing stress,
𝜏𝑟𝑧(𝑧), transfers the axial load to the fiber in the 𝑧 axis direction. If the
origin of the 𝑧 axis is on the fiber tip, the axial load is zero at 𝑧 = 0 and
t increases along a load transferring length to reach a maximum value
f 𝜎𝑓𝑚𝑎𝑥 at 𝑧 = 𝑙𝑡. As shown in Fig. 2(c), the cross-section of a fiber with
n area 𝐴 and a perimeter 𝑆 can be surrounded by a circle of diameter

. From the equilibrium along the fiber axis, the axial stress carried by
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Fig. 1. The schematic of the approximated stress–strain curve with 𝑁 linear segments.

the fiber over the transferring length can be related to the interfacial
shear using the equation:

𝑑𝜎𝑓𝑧 (𝑧)
𝑑𝑧

𝐴 = 𝑆𝜏𝑟𝑧 → 𝜎𝑓𝑧 (𝑧) = (𝑆
𝐴
)∫

𝑧

0
𝜏𝑟𝑧 (𝑧) 𝑑𝑧 (7)

Lacking symmetry in a general non-circular cross-section, the interfa-
cial shear 𝜏𝑟𝑧(𝑧) is not uniform within the 𝑟𝑧 planes and therefore it is
replaced with its average, 𝜏𝑟𝑧(𝑧) in Eq. (7). The perimeter-to-area ratio
of the fiber, 𝑆∕𝐴, depends on the geometry, and it has its minimum
value (𝑆∕𝐴)𝑚𝑖𝑛 = 4∕𝐷 for a circular cross-section. For any arbitrary
cross-section, this ratio is larger:

(𝑆∕𝐴) = 𝛾(𝑆∕𝐴)𝑚𝑖𝑛 = 𝛾(4∕𝐷) (8)

The values of the cross-section correction factor, 𝛾 ≥ 1, are presented
for some typical cross-sections in Fig. 3 and plotted in Fig. 4. For 𝑛-
sided regular polygons it varies between 𝛾 = 1 for circular (𝑛 → ∞) and
𝛾 = 2 for triangular (𝑛 = 3). For an elliptical cross-section 𝛾 = 1 where
the aspect ratio 𝑟 = 𝐷∕𝑡 = 1 (circular) and it increases by increasing 𝑟,
while for a rectangular cross-section, the correction factor is 𝛾 =

√

2
where the aspect ratio is 𝑟 = 𝑤∕𝑡 = 1 (square) and it increases by
increasing 𝑟. The correction factor of the elliptical cross-section remains
lower than the rectangular one until the aspect ratio 𝑟2 ≈ 2.86 and then
for 𝑟 > 𝑟2, the elliptical overs. The 3-pointed star cross-section turns to
a hexagonal when its aspect ratio is minimum, i.e., 𝑟 = 𝐷∕𝑡 = 2∕

√

3
with 𝛾 = 2∕

√

3. Its correction factor increases by increasing the aspect
ratio, 𝑟. It is always higher than the elliptical cross-section for all aspect
ratios, however, it is lower than rectangular for 𝑟 < 𝑟1 ≈ 1.86. For
𝑟 > 𝑟1 the 3-pointed star cross-section has the highest 𝛾 among all the
other mentioned cross-sections for a given 𝑟. It is important to note
that the efficient packing capabilities inherent in cross-sectional shapes,
such as rectangular, square, or hexagonal fiber cross-sections, play a
pivotal role in achieving high fiber volume fractions and, consequently,
4

Fig. 2. Modified shear-lag equation. (a) The equilibrium of the interfacial shearing
and the axial fiber stress, (b) the interfacial shearing and the axial fiber stress
variation along the load transferring length, (c) the geometrical parameters of the fiber
cross-section.

enhance the load-carrying capacity of the composite. This advantage
is particularly pronounced in polymer tape-based SPCs, resulting in a
synergistic combination of a high fiber volume fraction and an elevated
𝛾 value, thereby contributing to superior composite performance.

Eq. (7) needs the variation of average interfacial shear with respect
to 𝑧. Assuming a polynomial of the 𝑝th order in the form:

̄𝑟𝑧 (𝑧) = 𝜏𝑚𝑎𝑥

(

1 − 𝑧
𝑙𝑡

)𝑝
(9)

and integrating Eq. (7), one can obtain the variation of axial stress of
the fiber over the transferring length as:

𝜎𝑓𝑧 (𝑧) = 𝛾(4∕𝐷)𝜏𝑚𝑎𝑥
1 −

(

1 − 𝑧∕𝑙𝑡
)𝑝+1

(𝑝 + 1)∕𝑙𝑡
(10)

Knowing that the axial stress of fiber reaches its maximum at the end
of load transferring length, 𝜎𝑓𝑧

(

𝑙𝑡
)

= 𝜎𝑓𝑚𝑎𝑥, gives the equation for 𝑙𝑡 as:

𝑙𝑡 =
𝐷 (𝑝 + 1) 𝜎𝑓𝑚𝑎𝑥

4𝛾𝜏𝑚𝑎𝑥
(11)

Eq. (10) and Eq. (11) are simplified to the special case of the classical
Kelly–Tyson equation by setting a constant value for the interfacial
shearing stress, i.e., setting 𝑝 = 0, thus, 𝜏𝑟𝑧 (𝑧) = 𝜏𝑚𝑎𝑥 = 𝜏, and a circular
cross-section for the fiber, 𝛾 = 1, resulting in a linear variation for the
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Fig. 3. The perimeter-to-area correction factor, 𝛾, in Eq. (8), for different cross-sections.

Fig. 4. The variation of the cross-section correction factor, 𝛾, versus geometrical ratio,
𝑟, defined in Fig. 3.

axial stress of the fiber [37]:

𝜎𝑓𝑧 (𝑧) =
( 4𝜏
𝐷

)

𝑧 (12)

and the load-transferring length of

𝑙 =
𝐷𝜎𝑓𝑚𝑎𝑥 (13)
5

𝑡 4𝜏
Since the axial stress varies along the fiber length, it is useful to obtain
the average axial stress, �̄�𝑓 , carried by a fiber of length 𝑙 according
to the modified shear-lag model. This quantity can be obtained by
integrating 𝜎𝑓𝑧 (𝑧) over its length:

�̄�𝑓 = 1
𝑙 ∫

𝑙

0
𝜎𝑓𝑧 (𝑧)𝑑𝑧 (14)

Comparing the length of the fiber with the load transferring length, two
cases may happen:

Under Critical Condition: The length is shorter than twice of transfer-
ring length, 𝑙 < 2𝑙𝑡, which means the fiber is not long enough such that
its axial stress reaches the maximum value of 𝜎𝑓𝑚𝑎𝑥 corresponding to 𝑙𝑡.
The axial stress symmetrically increases from zero starting from both
tips and the average stress can be calculated by substituting Eq. (10) to
Eq. (14):

�̄�𝑓 =
2𝛾𝜏𝑚𝑎𝑥

𝐷

(

1 − 1
𝑝+2

)

(𝑝 + 1)
𝑙 (15)

which is simplified for the classical Kelly–Tyson equation with 𝑝 = 0,
𝜏𝑚𝑎𝑥 = 𝜏, and 𝛾 = 1 to:

�̄�𝑓 = 𝜏 𝑙
𝐷

(16)

Over-Critical Condition: The length is longer than twice of transferring
length, 𝑙 > 2𝑙𝑡, resulting in a length of 𝑙 − 2𝑙𝑡 at the middle of fiber
carrying constant axial stress equal to the maximum value of 𝜎𝑓𝑚𝑎𝑥.
Thus, the integral of Eq. (14) is divided into two parts:

�̄�𝑓 = 1
𝑙

(

2∫

𝑙𝑡

0
𝜎𝑓𝑧 (𝑧)𝑑𝑧 + (𝑙 − 2𝑙𝑡) 𝜎𝑓𝑚𝑎𝑥

)

(17)

Replacing 𝜎𝑓𝑧 (𝑧) from Eq. (10) and 𝑙𝑡 from Eq. (11) yields:

�̄�𝑓 = 𝐶1𝜎
𝑓
𝑚𝑎𝑥 (18)

where

𝐶1 =
(

1 − 2
(𝑝 + 2)

𝑙𝑡
𝑙

)

(19)

The coefficient 𝐶1 < 1 counts for the effect of the length of discontin-
uous fibers or the axial stress carried by the transferring length at the
tips of a broken continuous fiber and tends to one when 𝑙 ≫ 𝑙𝑡. For
constant interfacial shearing stress, 𝑝 = 0, Eq. (18) reduces to:

�̄�𝑓 =
(

1 −
𝑙𝑡
𝑙

)

𝜎𝑓𝑚𝑎𝑥 (20)

Eqs. (18) to (20) reveals that for a specific length of the fiber, 𝑙, the av-
erage stress carried by fiber increases when the load transferring length,
𝑙𝑡, decreases. Note that according to Eq. (11), 𝑙𝑡 is directly proportional
to the outer diameter, 𝐷, and (𝑝 + 1) and is inversely proportional to
the cross-section correction factor, 𝛾, and to the interfacial shear, 𝜏𝑚𝑎𝑥.
The obtained formulation for the average axial stress, �̄�𝑓 , is used in the
next section for estimating the total stress carried by the composite.

2.3. The fiber breakage model

In this subsection, the Curtin-statistic fiber breakage model is em-
ployed to add the effect of damage progression in fibers to the proposed
model. A bundle of continuous fibers is considered, whose strength
obeys the Weibull model introduced in Eqs. (4) to (6). The bundle is
subjected to axial stress 𝜎(𝜀), and the fibers break one by one while the
axial load increases. When none of the fibers in the bundle has been
broken yet, the average stress carried by the fiber bundle is equal to the
applied stress. However, as soon as the first fiber breakage happens, the
average stress carried by the bundle is reduced, since the broken fiber
supports a lower axial load along a length of 2𝑙𝑡, (i.e., ±𝑙𝑡 on both sides
of the breaking point) according to the shear-lag analysis. This behavior
continues until the average stress of the bundle reaches the ultimate
value which corresponds to the breakage of all the fibers in the bundle.
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To evaluate the effective average stress of the bundle under applied
stress, two factors are needed: the carrying load by a broken fiber with
respect to an unbroken fiber, and the fraction of broken fibers. The
reduction in the average stress of a broken fiber with respect to an
unbroken one, �̂�1, can be obtained by setting 𝑙 = 2𝑙𝑡 in the evaluation
f Eq. (19) for the coefficient 𝐶1:

̂1 = 1 − 1
𝑝 + 2

(21)

which is �̂�1 = 1∕2 for a constant interfacial shear, 𝑝 = 0, proving the
fact that for a linear variation in axial stress, the average equals half,
see Eq. (20). On the other hand, the statistical fraction of broken fibers,
𝑃 , under the applied stress 𝜎(𝜀) within a length of 𝑙 = 2𝑙𝑡 is predicted
from Eq. (5) as:

𝑃 = 𝑃
(

𝜎(𝜀), 2𝑙𝑡
)

= 1 − 𝑒𝑥𝑝

[

−
2𝑙𝑡
𝑙0

(

𝜎(𝜀)
𝑆𝑓
0

)𝛼]

(22)

where 𝑙𝑡 is the load transferring length defined in Eq. (11) correspond-
ing to the maximum stress equal to the applied stress to the bundle,
𝜎𝑚𝑎𝑥 = 𝜎(𝜀). One can rewrite Eq. (22) in a compact form as follows:

𝑃 = 1 − 𝑒𝑥𝑝

[

−
(

𝜎(𝜀)
𝜎∗

)𝛼+1
]

(23)

y introducing the characteristic stress, 𝜎∗:

∗ =

⎛

⎜

⎜

⎜

⎝

2
(

𝑆𝑓
0

)𝛼
𝛾𝜏𝑚𝑎𝑥𝑙0

𝐷(𝑝 + 1)

⎞

⎟

⎟

⎟

⎠

1
𝛼+1

(24)

he characteristic interfacial shear, 𝜏∗𝑚𝑎𝑥 is defined as the shear that
esults in 𝜎∗ = 𝑆𝑓

0 which is calculated by solving Eq. (24) for 𝜏𝑚𝑎𝑥:

∗
𝑚𝑎𝑥 =

𝑆𝑓
0 𝐷(𝑝 + 1)
2𝛾𝑙0

(25)

Note that Eq. (23) can be approximated by retaining only first-order
terms of the exponential function of Taylor series expansion as:

𝑃 ≈
(

𝜎(𝜀)
𝜎∗

)𝛼+1
(26)

Then, the effective average stress of the fiber bundle, �̄�𝑓𝑒𝑓𝑓 is:

�̄�𝑓𝑒𝑓𝑓 =
(

1 − �̂�1𝑃
)

𝜎 (𝜀) = 𝐶2𝜎 (𝜀) (27)

here 𝐶2 = (1 − �̂�1𝑃 ) is a coefficient that reflects the effect of damage
rogression in the fibers. Note that 𝐶2 is a function of 𝜎 (𝜀) which
ntroduces a softening effect: by increasing 𝜎 (𝜀) until the ultimate
pplied stress, 𝜎𝑓𝑢 , is reached, the last fiber of the bundle breaks and
urther increments of 𝜎 (𝜀) no longer increases the effective average
tress of the bundle. Hence, 𝜎𝑓𝑢 can be taken as the value that makes
he variation of �̄�𝑓𝑒𝑓𝑓 with respect to 𝜎 (𝜀) to zero (horizontal slope in
he �̄�𝑓𝑒𝑓𝑓 −𝜎 (𝜀) graph). The maximum effective average stress of bundle,
�̄�𝑓𝑒𝑓𝑓

)

𝑢
, is given by equating the derivative to zero:

𝑑(�̄�𝑓𝑒𝑓𝑓 )

𝑑(𝜎 (𝜀))
= 0 (28)

The approximated Eq. (26) simply gives 𝜎𝑓𝑢 at 𝜀 = 𝜀𝑓𝑢 and the corre-
ponding maximum effective strength of bundle:
𝑓
𝑢 ≈ 𝜆1(𝛼)𝜎∗ (29a)

�̄�𝑓𝑒𝑓𝑓
)

𝑢
≈ 𝜆2(𝛼)𝜎∗ (29b)

1(𝛼) =
( 2
𝛼 + 2

)

1
𝛼+1 (29c)

2(𝛼) = 𝜆1(𝛼)
(

1 − 1
𝛼 + 2

)

(29d)
6

E

owever, the exact Eq. (23) yields:

𝑓
𝑢 = ℎ(

1
𝛼+1 )𝜎∗ (30a)

(

�̄�𝑓𝑒𝑓𝑓
)

𝑢
= 1

2
ℎ(

1
𝛼+1 ) (1 + exp(−ℎ)) 𝜎∗ (30b)

t 𝜀 = 𝜀𝑓𝑢 , where ℎ is the smallest positive root of this equation:

+ (1 − (𝛼 + 1)ℎ) exp (−ℎ) = 0 (31)

fter estimating the strength of the fiber bundle, it is useful to present
n approximated expression for the average pull-out length and then
he pull-out work as a result of the progressive breakage of fibers which
ffects the total toughness of the composite. The characteristic length,
∗, corresponds to the characteristic stress, is introduced as twice the
ransferring length, 𝛿∗ = 2𝑙∗ and is obtained by replacing 𝜎𝑓𝑚𝑎𝑥 with 𝜎∗

n Eq. (11):

∗ =
⎛

⎜

⎜

⎝

𝐷 (𝑝 + 1)𝑆𝑓
0 (𝑙0)

1
𝛼

2𝛾𝜏𝑚𝑎𝑥

⎞

⎟

⎟

⎠

𝛼
𝛼+1

(32)

It is shown in [35] that the average pull-out length of fibers, ⟨𝑙𝑝⟩, is
proportional to this characteristic length as:

⟨𝑙𝑝⟩ =
1
4
𝜆3(𝛼)𝛿∗ (33a)

𝜆3(𝛼) =
(

0.664
𝛼0.6

+ 0.716
)

(33b)

Then, the work per unit area of composite to pull out all of the fibers,
𝑊𝑝, is proportional to 𝜎∗𝛿∗ [35]:

𝑊𝑝 =
1
12

𝜆4(𝛼)𝑣𝑓𝜎∗𝛿∗ (34a)

4(𝛼) =
(

1.87
𝛼0.75

+ 0.50
)

(34b)

which is claimed to be accurate (5% approximation) for 𝑚 ⩾ 1 [35].
Substituting Eq. (24) and Eq. (32) into Eq. (34a), yields:

𝑊𝑝 =
1
12

𝜆4(𝛼)𝑣𝑓

⎛

⎜

⎜

⎜

⎜

⎝

𝐷(𝑝 + 1)
(

𝑆𝑓
0

)
2𝛼
𝛼−1 (𝑙0

)
2

𝛼−1

2𝛾𝜏𝑚𝑎𝑥

⎞

⎟

⎟

⎟

⎟

⎠

𝛼−1
𝛼+1

(35)

Fig. 5 illustrates the variation of 𝜆1 to 𝜆4 as a function of Weibull
modulus in the range of 5 < 𝛼 < 30 where the modulus of most of
the polymeric fibers stands. The labels 𝐹𝑖 correspond to the PA6 fibers
experimentally investigated in Section 3.

The extra absorbed energy by the composite is equivalent to the
pull-out work which enhances the toughness of the composite. 𝑊𝑝
can be converted to the strain energy per unit volume, i.e., the area
under the stress–strain curve by dividing it by the gauge length of the
composite sample under axial loading, 𝐿:

𝑇𝑝 =
𝑊𝑝

𝐿
(36)

To add an approximated horizontal pull-out line at the end of the
stress–strain curve, it is assumed that the total extra pull-out strain,
�̄�𝑝, is:

�̄�𝑝 =
⟨𝑙𝑝⟩
𝐿

(37)

and the average pull-out stress, �̄�𝑝, can be estimated as:

�̄�𝑝 =
𝑊𝑝

⟨𝑙𝑝⟩
(38)

he total toughness of the composite is obtained by adding Eq. (36)
o the general 𝑁-segmented expression for the toughness presented in
q. (3).
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Fig. 5. Variation of 𝜆𝑖 parameters with respect to 𝛼.

2.4. The progressive micromechanics model

The progressive micromechanics model for composites under lon-
gitudinal tensile loading can be established on the basis of volume
averaging of axial stresses on the components. In fact, the proposed
model is a modified version of the standard rule-of-mixture benefiting
the modified shear-lag analysis, and the fiber breakage model presented
in Section 2.2 and Section 2.3, respectively. Given the approximated
𝑁-segmented representative stress–strain curves for the fibers and the
matrix introduced in Eq. (1), the progressive model aims to predict
the corresponding 𝑁-segmented stress–strain curve of the composite.
Then, the strength, 𝑆𝑐 , and the toughness, 𝑇𝑐 , of the composite can
be achieved from Eqs. (2) and (3) with the additional term of pull-out
introduced in Eq. (36).

The equilibrium in a random cross-section perpendicular to the
direction of fibers, which are aligned parallel to the applied tensile
strain, 𝜀, yields the relationship between the equivalent axial stress of
the composite, 𝜎𝑐 (𝜀), and the effective average stress carried by the
fibers, ̄̄𝜎𝑓 (𝜀), and the matrix, �̄�𝑚(𝜀), as:

𝜎𝑐 (𝜀) = 𝑣𝑓 ̄̄𝜎𝑓 (𝜀) +
(

1 − 𝑣𝑓
)

�̄�𝑚(𝜀) (39)

For the matrix, it is assumed that the average axial stress carried in
every cross-section is the same and can be captured from the stress
corresponding to the applied strain, 𝜀, from its stress–strain curve,
�̄�𝑚 (𝜀) = 𝜎𝑚(𝜀). For determining the effective average stress of the fibers
in the cross-section, first of all, the fiber length, 𝑙, should be compared
to a critical length to determine if the fiber is in Under or Over critical
condition. The critical length, 𝑙𝑐 , is twice the transferring length, 𝑙𝑡,
defined in Eq. (11), however, by setting the maximum stress equal to
the reference strength of fiber, 𝜎𝑓𝑚𝑎𝑥 = 𝑆𝑓

0 :

𝑙𝑐 =
𝐷 (𝑝 + 1)𝑆𝑓

0
2𝛾𝜏𝑚𝑎𝑥

(40)

Note that this comparison is valid for discontinuous fibers and it is
meaningless for continuous fibers which are always subjected to Over
critical condition since the length is assumed to be infinity, 𝑙 → ∞. Two
cases may occur:

Case one, 𝑙 < 𝑙𝑐 : According to Under Critical Conditions in Sec-
tion 2.2, the average stress carried by the fibers is obtained from
Eq. (15), resulting in a weak strengthening effect. The average stress of
the composite is obtained from Eq. (39) by replacing ̄̄𝜎𝑓 with Eq. (15):

𝜎𝑐 (𝜀) = 2𝛾𝜏𝑚𝑎𝑥
𝑙

(

1 − 1
𝑝+2

)

𝑣𝑓 +
(

1 − 𝑣𝑓
)

𝜎𝑚(𝜀) (41)
7

𝐷 (𝑝 + 1)
In Eq. (41), it is assumed that the interfacial shearing stress slightly and
linearly increases by increasing the applied strain to reach its maximum
capacity. Since for 𝑙 < 𝑙𝑐 the stress in the fiber never reaches 𝑆𝑓

0 , it
is expected that the composite fails when the applied strain reaches
the failure strain of the matrix, 𝜀 = 𝑒𝑚, and its corresponding strength,
𝑆𝑚 = 𝜎𝑚(𝑒𝑚). Thus, the strength of the composite, 𝑆𝑐 , can be obtained
from Eq. (41) by replacing 𝜎𝑚(𝜀) with 𝑆𝑚:

𝑆𝑐 = 2𝛾𝜏𝑚𝑎𝑥
𝑙
𝐷

(

1 − 1
𝑝+2

)

(𝑝 + 1)
𝑣𝑓 +

(

1 − 𝑣𝑓
)

𝑆𝑚 (42)

Note that the contribution of these short fibers is only in terms of
interfacial shearing stress and it is independent of the properties of
fibers. It is why interfacial strength is vital for strengthening with
low-sized reinforcements, 𝑙 ≪ 𝑙𝑐 , e.g., nanocomposites.

Case two, 𝑙 > 𝑙𝑐 : In this case, the fibers are long enough to present
an effective reinforcement, however, 𝜎𝑓 (𝜀) captured directly from the
fiber stress–strain curve, should be modified by two correction factors,
𝐶1, and 𝐶2 to take into account the reduction of load carrying along
the transferring length and the progressive breakage of fibers, respec-
tively discussed in Section 2.2 (Eq. (19)) and Section 2.3 (Eq. (27)).
It is obvious that for continuous fibers, where theoretically 𝑙 → ∞,
the coefficient 𝐶1 → 1, and for the fibers with completely uniform
properties, where theoretically 𝛼 → ∞, the coefficient 𝐶2 → 1.

In addition to 𝐶1 and 𝐶2, a third correction factor, 𝐶3, is defined,
to take into account the size-dependent strength of the composite as a
result of the size-dependent strength of fibers defined in Eq. (6):

𝐶3 =
(

𝑙0
𝑙

)1∕𝛼′

(43)

in which 𝛼′ is a fitting parameter, used for calibrating the numerical
simulations and/or experimental measurements on the properties of
composites of different sizes. It is reported in many cases of studies [35]
that the sensitivity of the composite to the size effect is less than that of
the fiber meaning that 𝛼′ > 𝛼. Note that not only the length of the fiber,
𝑙, but also the number of fibers may represent the size-dependency,
which is not covered here. Applying all the considered corrections,
the average effective stress carried by the fibers, ̄̄𝜎𝑓 (𝜀), and then the
average stress of composite, �̄�𝑐 (𝜀) is estimated as:

̄̄𝜎𝑓 (𝜀) = 𝐶1𝐶2𝐶3𝜎
𝑓 (𝜀) (44a)

�̄�𝑐 (𝜀) = 𝑣𝑓𝐶1𝐶2𝐶3𝜎
𝑓 (𝜀) +

(

1 − 𝑣𝑓
)

𝜎𝑚(𝜀) (44b)

where 𝐶1, as a function of applied strain, 𝜀, is replaced from Eqs. (11)
and (19) with 𝜎𝑓𝑚𝑎𝑥 = 𝜎𝑓 (𝜀). Unlike Under critical condition where the
failure of the composite is always corresponding to the failure of the
matrix, for Over critical condition two different scenarios for the failure
of the composite are conceivable depending on which one of the fiber
or the matrix reaches its failure strain sooner.

Scenario one, 𝑒𝑚 > 𝜀𝑓𝑢 :
In this scenario the fibers are completely broken at the strain, 𝜀 =

𝜀𝑓𝑢 , defined in Eq. (29a) or Eq. (30a), however, the matrix has not
reached its failure strain, 𝑒𝑚, yet. The maximum effective stress carried
by the fibers just before all the fibers are broken can be obtained from
Eq. (44a) by replacing 𝐶2𝜎𝑓 (𝜀) with

(

𝜎𝑓𝑒𝑓𝑓
)

𝑢
according to Eq. (27):

̄̄𝜎𝑓
(

𝜀𝑓𝑢
)

= 𝐶1𝐶3

(

𝜎𝑓𝑒𝑓𝑓
)

𝑢
(45)

Thus, assuming that failure of the composite corresponds to the failure
of the fibers, 𝑒𝑐 = 𝜀𝑓𝑢 , one can estimate the strength of the composite
by inserting Eq. (45) into Eq. (44b):

𝑆𝑐 = 𝑣𝑓𝐶1𝐶3

(

𝜎𝑓𝑒𝑓𝑓
)

𝑢
+
(

1 − 𝑣𝑓
)

𝜎𝑚(𝜀𝑓𝑢 ) (46)

where 𝜎𝑚(𝜀𝑓𝑢 ) ⩽ 𝑆𝑚 is the stress carried by the matrix at 𝜀𝑓𝑢 evaluated
from its stress–strain curve. The assumption that the composite fails



Composites Part A 180 (2024) 108042S.K. Jalali et al.

f

𝑆

s
a
m
t

𝑣

w
O
p
i
t

(

O
l
i
o
t
t

𝑣

O
m
𝑣

S

b
b
f
E

𝑆

w
c
w
a
a
c
i
a

g
s
b
a
i
i
t
c

𝐸

v
b
r
t
p
t
P
d
d
d
f

s
a
v
a
𝑁
p
t
n
𝐹

T
𝑒

e
a

when the fibers fail, 𝑒𝑐 = 𝜀𝑓𝑢 , is correct if the complete breakage of
ibers results in the sudden failure of the matrix. It needs:
𝑐 >

(

1 − 𝑣𝑓
)

𝑆𝑚 (47)

ince whole the composite load should be carried by the matrix in the
bsence of the fibers. Substituting Eq. (46) into Eq. (47), determines a
inimum volume fraction for the fibers, 𝑣𝑓𝑚𝑖𝑛, that must be exceeded if

he strength of the composite, 𝑆𝑐 , is to be given by Eq. (46):

𝑓
𝑚𝑖𝑛 =

𝑆𝑚 − 𝜎𝑚(𝜀𝑓𝑢 )

𝐶1𝐶3

(

𝜎𝑓𝑒𝑓𝑓
)

𝑢
+ 𝑆𝑚 − 𝜎𝑚(𝜀𝑓𝑢 )

(48)

here 𝐶1 is obtained from Eq. (11) and Eq. (19) with 𝜎𝑓𝑚𝑎𝑥 = 𝜎𝑓𝑢 .
therwise, when 𝑣𝑓 < 𝑣𝑓𝑚𝑖𝑛, the applied strain should be increased
rogressively to reach the maximum elongation of the matrix which
s indeed the elongation of the composite, 𝑒𝑐 = 𝑒𝑚, and the strength of
he composite is:

𝑆𝑐 )′ = (1 − 𝑣𝑓 )𝜎𝑚(𝜀𝑓𝑢 ) for 𝑣𝑓 < 𝑣𝑓𝑚𝑖𝑛 (49)

f course, it is not a desirable reinforcing condition since the fibers act
ike voids in the matrix. In addition, it is useful to check if laying fibers
n the matrix results in any reinforcing effect by comparing the strength
f the composite to the strength of the matrix before composition with
he fibers. Equating Eq. (46) to 𝑆𝑚 defines a critical volume fraction of
he fibers, 𝑣𝑓𝑐𝑟 as:

𝑓
𝑐𝑟 =

𝑆𝑚 − 𝜎𝑚(𝜀𝑓𝑢 )

𝐶1𝐶3

(

𝜎𝑓𝑒𝑓𝑓
)

𝑢
− 𝜎𝑚(𝜀𝑓𝑢 )

(50)

ne can see from Eq. (48) and Eq. (50) that always 𝑣𝑓𝑚𝑖𝑛 < 𝑣𝑓𝑐𝑟 which
eans the condition 𝑣𝑓 > 𝑣𝑓𝑐𝑟 always automatically satisfies 𝑣𝑓 >
𝑓
𝑚𝑖𝑛 [37].

cenario two, 𝑒𝑚 < 𝜀𝑓𝑢 :
In this scenario, the matrix failure happens before the complete

reakage of the fibers. The average stress in the composite is evaluated
y Eq. (44) and it is assumed that the composite fails when the matrix
ails, i.e., 𝑒𝑐 = 𝑒𝑚. Thus, the strength of the composite is evaluated from
q. (44b) at 𝜀 = 𝑒𝑚:
𝑐 = 𝑣𝑓𝐶1𝐶2𝐶3𝜎

𝑓 (𝑒𝑚) +
(

1 − 𝑣𝑓
)

𝑆𝑚 (51)

here 𝜎𝑓 (𝑒𝑚) is the partial contribution of the fiber in the maximum
arried stress by the composite. Note that according to this scenario
hen the matrix fails at the strains much lower than that of fibers,
significant loss in reinforcing potential of the fibers may happen as
result of anticipating the composite failure. Hence, the majority of

ommercial PPC/SPCs are designed in such a way that this scenario is
mprobable due to the fact that the isotropic matrix typically exhibits
considerably higher strain to failure compared to the fibers.

After a clear definition of the failure scenarios, the proposed pro-
ressive model is ready to be applied for the prediction of the stress–
train curve of the composite: the applied strain increases from 𝜀 = 0
y an increment of 𝛥𝜀. The stresses carried by the components, 𝜎𝑓 (𝜀)
nd 𝜎𝑚(𝜀), are evaluated from their 𝑁-segmented stress–strain curves
ntroduced in Eq. (1). The corresponding average stress of composite
s calculated according to the Under or Over critical conditions. The
angent modulus of composite, 𝐸𝑐 (𝜀), as the slope of its stress–strain
urve is calculated as:
𝑐 (𝜀) =

𝜎𝑐 (𝜀 + 𝛥𝜀) − 𝜎𝑐 (𝜀)
𝛥𝜀

(52)

Increasing the applied strain continues to reach the failure strain of the
composite, 𝜀 = 𝑒𝑐 which is defined by the failure scenario to find the
strength of the composite, 𝑆𝑐 . Finally, the toughness can be estimated
as the area under the generated stress–strain curve of composite using
Eq. (3) by adding the pull-out term presented in Eq. (36).
8

Fig. 6. The normalized 𝑁-segmented stress–strain curves of the PA6 fibers, 𝐹1 to 𝐹12.

3. Experimental measurements for the inputs of the model

In this section, the experimental measurements of the required
inputs for the proposed progressive model are presented and analyzed.
Both the reinforcing fiber and the matrix are assumed to be made
of PA6 polymer. 12 different PA6 fibers, named 𝐹1 to 𝐹12, having a
ariety of cross-section sizes and shapes listed in Table 1 are tested
y a tensile test machine. For the fibers, 𝐹1 to 𝐹8 the number of
epetitions is limited to 5, while for 𝐹9 to 𝐹12 adequate samples are
ested to guarantee the accuracy in the evaluation of statistical Weibull
arameters since these fibers are used for more detailed studies on
he properties of PA6-based SPCs. For the matrix, 10 different anionic
A6, named 𝑀1 to 𝑀10, with a wide range of elongations at the break
ue to various types of raw materials as well as different types and
osages of additives are considered for tensile tests. It provides 120
ifferent combinations of fibers and matrices as a huge design space
or fabricating PA6-based SPCs.

First of all, a systematic approach for post-processing of the stress–
train curves obtained from experiments is needed to make them suit-
ble for insertion into the model by converting them to an 𝑁-segmented
ersion compatible with Eq. (1). The step-by-step procedure for this
pproximation is explained in Appendix in detail. The approximated
-segmented stress–strain curves for the PA6 fibers and matrices are

lotted in Fig. 6 and Fig. 7, respectively. All the stresses are normalized
o the strength of the strongest Fiber, 𝐹11, while all the strains are
ormalized to the elongation at the break of the most flexible fiber,
12, denoted by ̌(.) superscript:

�̌� = 𝜎
(𝑆𝑓 )𝐹11

, �̌� = 𝜀
(𝑒𝑓 )𝐹12

(53)

he normalized mean strength, �̌� = 𝑆∕(𝑆𝑓 )𝐹11 , and failure strain,
̌ = 𝑒∕(𝑒𝑓 )𝐹12 , of the fibers and the matrices are presented in Table 1.

Then, the Weibull parameters of the fibers are extracted from the
xperiments. From Eq. (5), the cumulative probability of fiber failure
t the measured stress 𝑆𝑓 is:

𝑃
(

𝑆𝑓 ) = 1 − 𝑒𝑥𝑝

[

−

(

𝑆𝑓

𝑆𝑓
0

)𝛼]

(54)

Note that the length of fiber samples under tensile test is indeed the
reference length, i.e., 𝑙 = 𝑙0, which is substituted in Eq. (5). Rearranging
and taking the natural logarithm of both sides of Eq. (54), one can
obtain the following representation:

ln
(

ln
( 1
1 − 𝑃

))

= 𝛼 ln𝑆𝑓 − 𝛼 ln𝑆𝑓
0 (55)

To evaluate the Weibull parameters from experiments, first, the mea-
sured strengths of 𝑛 fiber samples are ranked in ascending order,
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Table 1
Geometry and normalized properties of the PA6 fiber, 𝐹1 to 𝐹12.

Fiber No. samples 𝑙0 [mm] 𝜏∗∕𝜏∗(𝐹11 )
Cross section Weibull Means

𝐷 [μm] 𝛾 �̌�𝑓
0 𝛼 𝑒 �̌�

F1 5 10 1.165 71 1.97 0.478 28.69 0.781 0.490
F2 5 10 0.833 72 2.69 0.460 9.13 0.690 0.456
F3 5 10 0.885 55 2.04 0.486 10.10 0.671 0.483
F4 5 10 0.555 11 1 0.746 12.08 0.375 0.749
F5 5 10 0.961 22 1 0.647 54.34 0.431 0.669
F6 5 10 0.498 21 1.76 0.617 11.40 0.402 0.618
F7 5 10 1.145 75 2.03 0.459 23.86 0.764 0.465
F8 5 10 0.766 50 2.52 0.571 16.46 0.457 0.579
F9 41 20 8.495 343 1 0.733 9.08 0.519 0.724
F10 26 20 1.677 62 1 0.795 15.25 0.547 0.802
F11 23 20 1 28 1 1 11.79 0.356 1
F12 18 20 0.199 55 3.79 0.406 7.97 1 0.415

M1 5 – – – – – – 0.065 0.082
M2 5 – – – – – – 0.572 0.087
M3 5 – – – – – – 0.200 0.097
M4 5 – – – – – – 0.252 0.087
M5 5 – – – – – – 0.101 0.028
M6 5 – – – – – – 0.114 0.101
M7 5 – – – – – – 0.512 0.099
M8 5 – – – – – – 0.605 0.092
M9 5 – – – – – – 0.244 0.081
M10 5 – – – – – – 0.090 0.088
t
E
s
t
s
𝑝
s
t
v
r
p
a
o
t

F
o
H
s

Fig. 7. The normalized 𝑁-segmented stress–strain curves of the PA6 matrices, 𝑀1 to
10.

= 1, 2,… , 𝑛. Then, the ordered probabilities corresponding to the 𝑖th
easured strength in the ranking can be calculated as:

𝑖 =
( 𝑖 − 0.5

𝑛

)

(56)

eplacing the ranked strengths, 𝑆𝑓
𝑖 , and the corresponding probabili-

ies, 𝑃𝑖, into the right hand and the left hand of Eq. (55) provides the
air coordinates of 𝑛 points:

n
(

ln
(

1
1 − 𝑃𝑖

))

= 𝛼 ln𝑆𝑓
𝑖 − 𝛼 ln𝑆𝑓

0 (57)

By a linear curve fitting of Eq. (55) among the points obtained from
Eq. (57), one can evaluate the reference strength, 𝑆𝑓

0 , and the Weibull
modulus, 𝛼, from the interpolated slope and intercept. The calculated
Weibull moduli as well as the reference strengths which are normalized
to the reference strength of fiber 𝐹11, i.e., �̌�𝑓

0 = 𝑆𝑓
0 ∕(𝑆

𝑓
0 )𝐹11 , are listed

in Table 1 for all the tested fibers.

4. Results and discussion

In this section, the progressive micromechanics model proposed in
Section 2 is employed to predict the properties of PA6-based SPCs.
9

t

The required inputs of the model are presented in Section 3 from an
enormous set of experimental measurements on available PA6 fibers
and matrices with a wide range of geometrical and mechanical prop-
erties. As seen in Table 1, for all the fibers, the required properties,
i.e., diameter, 𝐷, cross-section correction factor, 𝛾, reference length, 𝑙0,
reference strength, 𝑆𝑓

0 , and the Weibull modulus, 𝛼, are given. The fit-
ting parameter for the size effect, 𝛼′, defined in Eq. (43), is assumed to
be equal to the Weibull modulus, 𝛼′ = 𝛼, due to the lack of experimental
data. In addition, the approximated 𝑁-segmented stress–strain curves
of the fibers are provided in Table A.1. On the other hand, the mean
strength and mean failure strain of the matrices listed in Table 1 in
conjunction with the approximated 𝑁-segmented stress–strain curves
of the fibers provided in Table A.2, fully define the required properties
of the matrix for the model. Note that for the purpose of generality, all
the reported stresses and strains are normalized according to Eq. (53).

Reviewing the model development from Eq. (1) to Eq. (52), one can
see that the only inputs remaining to be defined are the power, 𝑝, and
he maximum interfacial shear, 𝜏𝑚𝑎𝑥. The power, 𝑝, was introduced in
q. (9) to consider the general assumption of non-constant interfacial
hear with the maximum, 𝜏𝑚𝑎𝑥, at the tip of the fibers. Although
he progressive micromechanics model has the ability to capture this
hearing stress concentration at the tip of the fibers breakages with
≠ 0, however, for the presented results a constant interfacial shearing

tress is assumed, resulting in 𝑝 = 0 and 𝜏𝑚𝑎𝑥 → 𝜏. In other words,
he classical Kelly–Tyson equation for interfacial shear with linear
ariation in axial stress along the fiber is applied for these numerical
esults. This averaged-sense interfacial shear is the key parameter in the
rediction of the properties of the PA6-based SPCs. In order to perform
parametric study, first, the characteristic interfacial shear stress, 𝜏∗,

f the fiber with the highest strength, 𝐹11, is calculated by Eq. (25) and
he interfacial shear, 𝜏 is normalized to it as:

𝜏 = 𝜏
𝜏∗(𝐹11)

(58)

Then, a range of variations for the interfacial shear stress is assumed:

0.1 < 𝜏 < 5 or 0.1𝜏∗(𝐹11) < 𝜏 < 5𝜏∗(𝐹11) (59)

or the fiber 𝐹11 itself, it is a reasonable range from a weak (10%
f its characteristic) to a strong (500% of its characteristic) bonding.
owever, one needs to compare the characteristic interfacial shear

tress of the other fibers to 𝜏∗(𝐹11) to have an idea about the mapping of
he selected range for them. The ratio of characteristic interfacial shear
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Fig. 8. The schematic of the PA6 SPC samples under tensile test. The length of the
fibers outside the grips is 𝑙 and assumed to be 40 mm and the gauge length, 𝐿, for
recording displacement and converting to the strain is assumed to be 25 mm.

stress for all the fibers is listed in Table 1. When 𝜏∗(𝐹𝑖)∕𝜏
∗
(𝐹11)

< 1, the se-
lected range of interfacial shear stress results in stronger bonding with
respect to the characteristic shear stress. For example, from Table 1
it can be obtained that 𝜏∗(𝐹11) ≈ 5𝜏∗(𝐹12). Substituting into the selected
range in Eq. (59), the interfacial shear stress, 𝜏, for 𝐹12, varies from
50% to 2500% of its characteristic value. In contrast, for 𝜏∗(𝐹𝑖)∕𝜏

∗
(𝐹11)

> 1,
the selected range is mapped to relatively weaker bonding compared
to the characteristic shear stress. For instance, fiber 𝐹9 presents the
highest characteristic shear, 𝜏∗(𝐹11) ≈ 0.118𝜏∗(𝐹9) resulting a low range
of interfacial shear stress from 1.18% to 59% of its characteristic shear
stress. In other words, for an identical interfacial shear stress, 𝜏, 𝐹12
has the strongest bonding while 𝐹9 presents the weakest one. The
reason is in definition and physical meaning of 𝜏∗ in Eq. (25) which
is proportional to the diameter, 𝐷, and inversely proportional to the
𝛾 correction factor. Note that 𝐹9 has the maximum 𝐷 and minimum
𝛾 while 𝐹12 is vise-versa. It makes sense physically that a fiber with a
thicker diameter and circular cross-section provides the lowest bonding
since both reduce the interacting surface between the fiber and the
matrix. In the upcoming parametric study, the focus is on these three
fibers as the main representatives of the PA6 fibers: 𝐹9, the thickest
with the lowest interaction surface, 𝐹11, the strongest, and 𝐹12, with
the maximum failure strain.

In order to assess the model and predict the stress–strain curve of
the SPC samples under unidirectional loading, the length of continuous
PA6 fibers outside the grips of the tensile test machine is assumed
to be 𝑙 = 40 mm, and the gauge length of the sample for recording
displacement and converting to the strain is selected to be 𝐿 = 25 mm,
as schematically shown in Fig. 8. This dimension imposes an upper limit
for the average pull-out length, ⟨𝑙𝑝⟩ introduced in Eq. (33), as it cannot
increase indefinitely even for very low interfacial shear stress. Here, the
upper limit for the average pull-out length of the fibers is assumed to
be 25% of the total fiber length,i.e., ⟨𝑙𝑝⟩𝑚𝑎𝑥 = 0.25 𝑙 = 10 mm.

Fig. 9 plots the critical length introduced in Eq. (40), normalized
to the fiber length, 𝑙𝑐∕𝑙, versus the normalized interfacial shear, 𝜏, for
the fibers 𝐹9, 𝐹11, and 𝐹12. It is seen that fiber 𝐹12 which presents
the maximum potential of bonding with the matrix thanks to its non-
circular cross-section, has the lowest critical length, always in the
desirable over-critical zone (𝑙𝑐∕𝑙 < 1), even for a very low interfacial
shear stress. In contrast, 𝐹9 provides the highest critical length with an
exponential increase for low interfacial shear stresses, 𝜏 < 1, resulting
in an under-critical condition. Only for high enough interfacial shear
stresses, 𝜏 > 4.3, it drops to over-critical condition. Fiber 𝐹11 behaves
more similar to 𝐹12, however, proposes a higher critical length because
it is the strongest fiber, notice 𝑆𝑓

0 in the numerator of Eq. (40), and it
has a circular cross-section with 𝛾 = 1. However, 𝐹11 rapidly reaches the
desirable over-critical condition for 𝜏 > 0.5. The same trend is observed
for characteristic length, 𝛿∗, defined in Eq. (32). It is used to evaluate
the average pull-out length which is investigated in Fig. 10.

The variation of the average pull-out length normalized to the fiber
length, ⟨𝑙𝑝⟩∕𝑙, with respect to the normalized interfacial shear stress, 𝜏,
for the fibers 𝐹9, 𝐹11, and 𝐹12 is demonstrated in Fig. 10. In general,
increasing the interfacial shear stress decreases the average pull-out
length, as expected due to the strengthening of the bonding between
10

the fiber and the matrix and in other words the lower critical length.
Fig. 9. Variation of the normalized critical length 𝑙𝑐∕𝑙 and the normalized characteristic
length, 𝛿∗∕𝑙, with respect to the normalized interfacial shear stress, 𝜏, for the selected
PA6 fibers, 𝐹9, 𝐹11, and 𝐹12. The length of fibers is set to 𝑙 = 40 mm.

Fig. 10. Variation of the normalized average pull-out length, ⟨𝑙𝑝⟩∕𝑙 with respect to the
normalized interfacial shear stress, 𝜏, for the selected PA6 fibers, 𝐹9, 𝐹11, and 𝐹12. The
length of fibers is set to 𝑙 = 40 mm.

One observes that around 𝜏 = 3.5 fiber 𝐹9 reaches the upper limit of the
average pull-out length (which is assumed to be 25% of fiber length)
imposed by the total length of the fiber within the SPC sample, see
Fig. 8. For 𝜏 < 3.5 fiber 𝐹9 is capable of providing even longer average
pull-out lengths if the SPC sample is longer as well, plotted by dashed-
line. Fiber 𝐹12 gives the shortest pull-out length, less than 10% of the
fiber length even for very low interfacial shear stresses as a result of its
non-circular cross-section, lower strength compared to 𝐹11. Fiber 𝐹11
approaches the upper limit for the normalized interfacial shear stress
as low as 𝜏 = 0.5.

Fig. 11 compares fibers 𝐹9, 𝐹11, and 𝐹12 in terms of the effect of
interfacial shear stress, 𝜏, on the characteristic normal stress, defined
in Eq. (24). 𝜎∗ has been normalized to the strength of 𝐹11, i.e., �̌�∗ =
𝜎∗∕(𝑆𝑓

0 )𝐹11 . The characteristic normal stress is used by the model for
evaluating both the effective strength of the fiber bundle, defined in
Eq. (29b), and the pull-out work, defined in Eq. (34a). The general
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Fig. 11. Variation of the normalized characteristic stress of the fiber bundles, 𝜎∗, with
respect to the normalized interfacial shear, 𝜏, for the selected PA6 fibers, 𝐹9, 𝐹11, and
𝐹12.

trend of �̌�∗ versus 𝜏 is increasing for all the fibers which means the
higher the interfacial shear stress the higher the strength of the fiber
bundle under progressive breakage. However, it is not correct to con-
clude in the same way that increasing 𝜏 results in an increase in put-out
work because according to Eq. (34a) the pull-out work is proportional
to 𝜎∗𝛿∗, and as seen before in Fig. 9, 𝛿∗ decreases. It is seen that for the
plotted range of normalized interfacial shear stress, �̌�∗ of 𝐹12 is always
higher than its normalized reference strength, (𝑆𝑓

0 )𝐹12 = 0.406 (see
Table 1), while, for 𝐹9 it is always lower than its normalized reference
strength, (𝑆𝑓

0 )𝐹9 = 0.733. The behavior of fiber 𝐹11 is between, where
it is lower than (𝑆𝑓

0 )𝐹11 = 1 for 𝜏 < 1 and is higher afterward. The
observed influence of interfacial shear stress on the effective strength
of fiber bundles can significantly affect the predicted properties of SPC
as will be presented in upcoming results. Note that a reduction in
the effective strength of the bundle will also result in a reduction in
its failure strain of the fiber bundle, see Section 2.3, which is vital
when compared to the failure strain of the matrix to predict the failure
scenario of SPC as explained in Section 2.4.

Fig. 12(a) to (c) respectively demonstrate the normalized stress–
strain curve of the fiber bundles, 𝐹9, 𝐹11, 𝐹12 for three different nor-
malized interfacial shear stresses, 𝜏 = 0.1, 1, 5 according to Eq. (27).
As seen, when 𝜏 decreases, the complete breakages of the fiber bundle
happens sooner resulting in lower effective strength,

(

�̄�𝑓𝑒𝑓𝑓
)

𝑢
, as well

as lower failure strain, 𝑒𝑓𝑢 , due to its statistical nature explained by the
Weibull model. It is obvious that a reduction in the effective strength
of the bundle reduces the strength of SPC as well, however, one should
notice the reduction in the failure strain of the bundle, 𝑒𝑓𝑢 , with more
scrupulosity, since it defines the failure scenario of SPC when compared
to the failure strain of the matrix, 𝑒𝑚. Probing the failure stain of the
matrices in Fig. 7, the matrices can be categorized into three groups:
brittle group with 𝑒 < 0.12, i.e., 𝑀1, 𝑀5, 𝑀6, and 𝑀10, intermediate
roup with 0.12 < 𝑒 < 0.25, i,e., 𝑀3, 𝑀4, and 𝑀9, and tough group
ith 0.25 < 𝑒 < 0.61, i.e., 𝑀2, 𝑀7, and 𝑀8. For the purpose of clarity

n the presented graphs, matrices 𝑀10, 𝑀4, and 𝑀2 are selected as the
epresentative of brittle, intermediate, and tough groups, respectively,
hich are plotted in red in Fig. 7. From Fig. 12(a) it is seen that for

he fiber 𝐹9 with the mean failure strain, 𝑒𝑓 = 0.519, the failure strain
f fiber bundle is higher than the brittle and the intermediate matrices
hile it is lower than the tough group in the range of interfacial shear
11

tress, 0.1 < 𝜏 < 5. The failure strain of the bundle of fiber 𝐹11 is higher
han the brittle group and lower than the tough group. However, since
ts mean failure strain, 𝑒𝑓 = 0.356, is in the range of the failure strain
f intermediate matrices, variation in the interfacial shear stress can
hift its failure strain between 𝑒𝑓𝑢 < 𝑒𝑚 and 𝑒𝑓𝑢 > 𝑒𝑚 which means that
he failure scenario is changed by modifying the interfacial shear stress.
ince the fiber 𝐹12 is the most ductile one, the failure strain of its bundle
s higher than all the matrix groups even for a low interfacial shearing
tress.

The normalized stress–strain curves predicted by the progressive
icromechanics model for the PA6-based SPCs composed of the Fiber
9 with the volume fraction, 𝑣𝑓 = 0.15, and three different interfacial
hearing stresses are presented in Fig. 13 where the matrix is assumed
o be brittle (𝑀10), intermediate (𝑀4), or tough (𝑀2), in Fig. 13(a),
b), or (c), respectively. As shown before in Fig. 9 and Fig. 11, even the
ormalized interfacial shear stress, 𝜏 = 5, is a relatively weak bonding
or the fiber 𝐹9 due to its high strength and thick circular cross-section.
ence, a high enough interfacial shear stress of 𝜏 = 50 is assumed

or this fiber to also demonstrate a strong bonding with a low pull-
ut phenomenon. In accordance with Fig. 12(a), for both 𝑀10 and 𝑀4
atrices the failure of SPC is based on scenario 2 since 𝑒𝑚 < 𝑒𝑓𝑢 , while

or the tough matrix, 𝑀2, it switches to scenario 1 because the failure
train of fiber remains lower than that of the matrix even for a high
nterfacial shear stress of 𝜏 = 50 which makes possible to take the full
dvantage of fiber in terms of strengthening. It is observed that for low
alues of interfacial shear a long horizontal line is added to the stress–
train curve corresponding to a long average pull-out length as shown
n Fig. 10 for 𝐹9.

Fig. 14 illustrates the normalized stress–strain curves for the SPCs
omposed of the strongest fiber, i.e., 𝐹11 with the volume fraction, 𝑣𝑓

0.15 for 𝑀10, 𝑀4, or 𝑀2 matrices. Three different interfacial shear
stresses, 𝜏 = 0.1, 1, and 5 are assumed for every matrix to see the effect
of bonding on the properties of the SPCs. As seen before in Fig. 12(b),
when a strong fiber like 𝐹11 is composed with a brittle matrix like 𝑀10,
the SPC fails soon at 𝑒𝑚 = 0.09 (scenario 2) which is far from the mean
failure strain of this fiber where its maximum stress bearing capacity is.
In this case, as plotted in Fig. 14(a), although the variation in 𝜏 does not
affect the strength of the SPC, however, the main effect is observed in
increasing the toughness by extending the pull-out with low interfacial
bonding. In Fig. 14(c), where the matrix is tough, the situation is
completely opposite since the failure strain of matrix 𝑀2 is higher than
that of 𝐹11 (scenario 1) even for high interfacial bonding, 𝜏 = 5. In
this case, increasing 𝜏 significantly increases the strength of the SPC
because the failure strain of the composite is the failure strain of the
fiber bundle. Note that it also increases the toughness of the SPC as the
area under the curve before the complete breakage of the fibers (and
SPC), however, the pull-out toughness is reduced when the interfacial
shear stress decreases. For the intermediate matrix, 𝑀4, presented in
Fig. 14(b), the situation is a mixture of cases (a) and (c) because
the variation in 𝜏 switches the failure scenario as discussed before in
Fig. 12(b). Unlike the fact that increasing the interfacial bonding always
results in a higher strength of the SPC, a lower interfacial bonding
that allows for considerable pull-out toughness may be an optimized
solution when both toughness and strength of the SPC have the same
priority. In other words, it is possible to sacrifice a little in strength to
gain more in toughness.

To have a better insight into the SPC made of 𝐹11, Fig. 15(a) and
(b) plot the enhancement in its toughness and the strength normalized
to the neat matrix 𝑀10. One can see that when the matrix is brittle,
i.e., 𝑀10, although the strength of SPC is not affected by the interfacial
shear, however, the toughness decreases due to a reduction in average
pull-out length. Note that for very low interfacial shears, the toughness
is a little raising and then it drops. The reason is that for such low
values of 𝜏 the pull-out length reaches its assumed upper limit (see the
first horizontal part of 𝐹11 in Fig. 10) and therefore ⟨𝑙𝑝⟩ is constant
with respect to 𝜏. However, increasing 𝜏 slightly increases 𝜎∗ which

increases the pull-out work defined in Eq. (34). For the intermediate,
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Fig. 12. Normalized stress–strain curve of the bundles of selected PA6 fibers for
different normalized interfacial shear stress, 𝜏 = 0.1, 1, and 5 compared to the selected
matrices. (a) 𝐹9, (b) 𝐹11, and (c) 𝐹12.

𝑀4, and tough, 𝑀2, matrices the strength increases by increasing the
interfacial shear because by increasing 𝜏 the effective strength of the
bundle increases and enough elongation of 𝑀4 and 𝑀2 before failure
allow for taking the reinforcing effect of 𝐹11. For the toughness, 𝑀4
and 𝑀2 have different stories with variation in 𝜏. When the matrix is
tough with proper failure strain, increasing the interfacial shear stress
12

s

Fig. 13. Normalized stress–strain curves of the SPC composed of fiber 𝐹9 with volume
raction 𝑣𝑓 = 0.15 and for different normalized interfacial shear stress, 𝜏 = 0.1, 5, and 50.
a) The brittle matrix, 𝑀10, (b) the intermediate matrix, 𝑀4, and (c) the tough matrix,
2.

llows the stress–strain curve of the SPC to rise up and consequently,
he area under the curve adequately increases which is more important
han losing the pull-out toughness. For the intermediate matrix, 𝑀4,
round 𝜏 = 1.3 the failure strain of the fiber bundles reaches the failure
train of the matrix, and therefore the failure scenario switches from 1
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Fig. 14. Normalized stress–strain curves of the SPC composed of fiber 𝐹11 with volume
fraction 𝑣𝑓 = 0.15 and for different normalized interfacial shear, 𝜏 = 0.1, 1, and 5. (a)

he brittle matrix, 𝑀10, (b) the intermediate matrix, 𝑀4, and (c) the tough matrix,
2.

o 2 which means the increase in 𝜏 does not enhance the stress–strain
urve of the SPC and only causes a reduction in the pull-out toughness
hich means the total toughness of the SPC decreases.

Fig. 16 presents the normalized stress–strain curves for the SPC
ade of the most flexible fiber, 𝐹12, with the volume fraction of 𝑣𝑓 =
.15. As described earlier in Fig. 12(c), the failure strain of this fiber
emains always higher than that of the matrices even for tough 𝑀 , and
13

2

Fig. 15. Variation in the properties of the SPC composed of 𝐹11 with volume fraction
𝑣𝑓 = 0.15 as a function of normalized interfacial shear, 𝜏. (a) The toughness of
composite with respect to the matrix 𝑀10, (b) the strength of composite with respect
to the matrix 𝑀10.

the failure of the SPC is always led by scenario 2. Note that the mean
failure strain of 𝐹12 is 𝑒𝑓 = 1, where its maximum loading capacity is
located. Hence, it is difficult to take its strengthening effect since the
failure strain of the matrix is around 𝑒𝑚 = 0.57 in the best case for the
tough matrix, 𝑀2. It is seen from Fig. 16(a) that for the brittle matrix,
𝑀10, the strength of the SPC is even lower than that of the matrix,
however, the pull-out phenomenon may be considered as a mechanism
to enhance the toughness significantly. From Fig. 16(c) one can observe
that when the matrix elongates more, the SPC can slightly experience
the reinforcing effect of the fiber 𝐹12. Besides, it is seen that for 𝑒𝑚

around 0.57 (matrix 𝑀2) the pull-out almost vanishes which means a
strong almost fully bonded interface between 𝐹12 and the matrix has
formed due to its non-circular thin cross-section and relatively low
strength compared to 𝑆9 and 𝑆11.

Until here a detailed investigation of the influence of interfacial
shear stress on the properties of the PA6 SPCs made of the combination
of three selected fibers is presented: the thickest, 𝐹9, the strongest, 𝐹11,
and the most ductile, 𝐹12 and three representative matrices: brittle,
𝑀10, intermediate, 𝑀4, and tough, 𝑀2. As the final prediction, the
whole available design area of PA6-based SPCs according to the experi-
mental measurements in Section 3 is demonstrated. Combination of 12
fibers, 𝐹1, to 𝐹12, with 10 matrices, 𝑀1 to 𝑀10, considering five values
for the normalized interfacial shear, 𝜏 = 0.25, 0.5, 1, 3, and 5, results in
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Fig. 16. Normalized stress–strain curves of the SPC composed of fiber 𝐹12 with volume
fraction 𝑣𝑓 = 0.15 and for different normalized interfacial shear, 𝜏 = 0.1, 1, and 5. (a)
The brittle matrix, 𝑀10, (b) the intermediate matrix, 𝑀4, and (c) the tough matrix,
𝑀2.

600 different PA6-based SPCs whose predicted properties are plotted in
a strength-versus-toughness Ashby plot in Fig. 17. Note that while the
model does not explicitly consider the impact of process parameters like
temperature and time on composite properties, the influence of these
parameters is introduced into the model by explicitly incorporating a
range of interfacial shear strength values from weak to strong for each
fiber–matrix combination. The strength and the toughness of the SPCs
14
Fig. 17. Ashby plot (strength versus toughness) for all 600 possible combinations of
PA6 SPCs, i.e., 12 fibers and 10 matrices listed in Table 1 and for five different
normalized interfacial shearing strengths, 𝜏 = 0.25, 0.5, 1, 3, and 5. (a) Neglecting pull-
out toughness, 𝑇𝑝, introduced in Eq. (36), (b) taking into account the extra toughness
of pull-out.

are normalized with respect to the representative brittle matrix, 𝑀10,
to reveal the enhancement in the properties of the SPCs. Fig. 17(a)
neglects the extra toughness due to the pull-out defined in Eq. (36)
while Fig. 17(b) includes it. The results are separated into three groups
according to the categories of the matrices defined before, i.e., brittle,
intermediate, and tough because the failure strain of the matrix plays
a vital role in the failure scenario of the SPCs. In general, it is seen
that the maximum enhancement in both the strength and the toughness
belongs to the tough matrices group and the minimum is for the brittle
group. The Ashby plot shows that SPC reinforced with a PA6 fiber and
tough matrix can achieve a toughness over 13 times, or strength over
2.5 times of a neat brittle PA6 like 𝑀10 which means a huge design
area for optimization of the PA6-based SPCs exist.

Besides, in general, the pull-out mechanism results in an enhance-
ment in the toughness of the SPCs which is more noticeable in the
brittle and intermediate groups. This observation is demonstrated in
more detail in Fig. 18 which plots the Ashby plot for brittle and tough
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Fig. 18. More detailed illustrations of the effect of pull-out on the Ashby plots (strength versus toughness) of PA6 SPCs. (a) Brittle matrices with 𝜏 = 0.1 (b) brittle matrices with
̌ = 5, (c) tough matrices with 𝜏 = 0.1, and (d) tough matrices with 𝜏 = 5.
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roups and for two normalized interfacial shear stresses, 𝜏 = 0.1 and 5.
ollow points neglect the pull-out and the solid ones include the extra

oughness from the pull-out. One can conclude that the pull-out affects
he toughness more when the matrix is brittle. In addition, it is shown
hat the pull-out has a significant role when the interfacial shear stress
s low. The reason is that the lower the interfacial shear, the higher the
verage pull-out length. In Fig. 17(b) one can notice that for 𝜏 = 5 the
ull-out significantly enhances the toughness of SPC made of 𝑆9. It is
ot surprising since it is revealed before in Fig. 10 that 𝑆9 presents a
igh pull-out length at 𝜏 = 5. It is due to the fact that 𝜏 = 5 is equivalent
o 500% and 2500% of the characteristic interfacial shear stress, 𝜏∗, of
ibers 𝐹11 and 𝐹12, respectively, while it is only 59% of 𝜏∗(𝐹9). In other
ords, 𝜏 = 5 does not present a high enough interfacial bonding for 𝐹9
s a result of its circular thick cross-section.

. Conclusion

A novel analytical progressive micromechanics model is developed
o predict the stress–strain curve of composites reinforced by contin-
ous or discontinuous aligned fibers based on the well-known Curtin
tatistical progressive fiber breakage model. The proposed model con-
iders the nonlinear behavior of the components which makes it ideal
15

or better SPCs and the classical shear lag assumption is modified to o
ake into account the concentration of interfacial shearing stress at the
ip of broken fibers, and a non-circular cross-section of fibers which
s common in polymeric fibers. The model also captures the extra
fter-breakage toughness due to the pull-out of the fibers.

In order to test the ability of the model, PA6-based SPCs are selected
nd extensive sets of experimental measurements on the properties of
oth PA6 fibers and PA6 matrices are carried out to determine the
chievable space design of PA6-based SPCs. Tensile tests on 12 different
vailable PA6 fibers are performed (at least 5 repetitions per fiber type)
nd after an initial assessment of the stress–strain curves, three fibers,
.e., the thickest (𝐹9), the strongest (𝐹11), and the most ductile (𝐹12),
re selected and extra repetitions of the tensile tests are performed to
chieve reliable Weibull statistical parameters for more investigations.
n addition, 10 PA6 matrices are polymerized using different types
f PA6 raw materials and various dosages of additives and tested by
tensile test machine providing a wide range of failure strains from

rittle to tough (about 5% to over 60%).
Being employed as the inputs of the progressive model, the exper-

mentally measured properties of the PA6 fibers and the PA6 matrices
raw the whole achievable space for designing the PA6-based SPCs. The
wo main properties extracted from the predicted stress–strain curves

f these SPCs are strength and toughness (as the area under the curve)
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which are plotted in the form of Ashby plots for a better demonstra-
tion of conclusions. It reveals that there is considerable potential for
enhancement in both the strength and toughness of neat PA6 matrix
reinforced by PA6 fibers forming recyclable PA6-based SPCs. Besides,
the vital role of interfacial shear stress on the properties of the SPCs is
demonstrated in the results. The output of the progressive model shows
that the modification of interfacial shear stress may switch the failure
scenario. The reason is that the failure strain of the fiber bundle is
significantly shifted by varying the interfacial shear stress and therefore
the failure strain of a specific fiber may be lower or higher than that
of the matrix depending on the strength of interfacial bonding. This
phenomenon may not be noticeable in fiber-reinforced composites with
brittle fibers like glass or carbon where the failure strain of fibers is
normally lower than that of the matrix. However, in the case of SPCs
where flexible polymeric fibers provide high failure strains, the fact
that the failure strain can be tailored by the interfacial shear stress
is a key parameter for optimal design, especially where both strength
and toughness are important. Note that the extra pull-out toughness is
strongly dependent on the interfacial shear stress.

Given the presented Ashby plot, it is revealed that the composite
manufacturing path must aim to converge towards the absolute optimal
point where both the strength and toughness are maximum. However,
practical considerations in the manufacturing process and a cost-benefit
margin tailored to a specific product might lead to the selection of
alternative points on the Ashby plot. For instance, achieving the highest
performance necessitates making the highest possible shear strength
at the fiber–matrix interface, a task that may prove challenging or
expensive in practical manufacturing processes, potentially increasing
the overall cost of mass production. Additionally, in certain applica-
tions like impact loading, toughness may be prioritized over strength,
introducing a scenario where the significance of these properties is not
identical. In such cases, a fiber–matrix combination that meets require-
ments at a lower cost, perhaps due to the selection of more economical
fibers or a simpler manufacturing process, could be a more optimized
choice compared to the absolute optimal combination offering the high-
est strength and toughness simultaneously. In conclusion, the present
word proves that the proposed progressive micromechanical model in
conjunction with the given experimental inputs constructs a parametric
analytical framework for designing new recyclable SPCs with desired
mechanical performance.
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Appendix. Stess-strain curve fittings

In this appendix the step-by-step procedure of the approach used
for converting the original stress–strain curve to an approximated
𝑁-segmented one compatible with Eq. (1) is explained.

Step 1: As there is more than one stress–strain curve per material (each
fiber or each matrix), the one with the failure strain closest to the mean
failure strain is selected as the representative stress–strain curve and it
is normalized to its maximum stress (strength) and its maximum strain
(failure strain). Hence, the normalized curve always starts at the origin
(0, 0) and ends at (1, 1) if the maximum stress happens at failure strain
(compare 𝐹1 in Fig. A.2 and 𝑀2 in Fig. A.6).

Step 2: The normalized representative stress–strain curve is interpolated
by a 6th-order polynomial, �̃� = 𝑓 (�̃�), and the inflection points are found
as the roots of 𝑑2(𝑓 )

𝑑(�̃�) = 0. The maximum number of roots is four dividing
the stress–strain curve into five pieces of arcs. Note that regarding the
shape of the curve, the number of pieces may be less.

Step 3: An intermediate point is picked up on each piece enclosed be-
tween two inflection points by the procedure graphically demonstrated
in Fig. A.1(a).

Step 4: The approximated segmented stress–strain curve is constructed
by connecting the inflection and intermediate points one after another.

Step 5: Two adjacent segments are unified when the difference in the
slope is less than 5% by removing the common point, see Fig. A.1(b).

Step 6: The 6th-order polynomial cannot follow the almost straight
portion of stress–strain curves that may be observed where the matrix
is yielded or the behavior of fibers is linear. In these cases, the pseudo-
inflection points are removed to avoid unrealistic fluctuation in the
segmented curve, see 𝑀4 in Fig. A.7.

Step 7 : The 6th-order polynomial also cannot follow the very local
peaks in stress–strain curves that may be observed around the yielding
point of the matrix. In these cases, a manual shift is applied to the point
closest to the peak to improve the accuracy of the segmented curve
compared to the original one.

Figs. A.2 to A.9 graphically present the approximated 𝑁-segmented
stress–strain curves for the fibers 𝐹1 to 𝐹12, and the matrices 𝑀1 to 𝑀10.
In addition, the coordinates of the points and the slopes of the linear
segments are listed for the PA6 fibers and the matrices in Table A.1 and
Table A.2, respectively.

Fig. A.1. The schematic of approximating the stress–strain curve with an 𝑁-segmented
urve.
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Fig. A.2. The normalized approximated stress–strain curves of PA6 fibers (𝐹1 to 𝐹3).
17
Fig. A.3. The normalized approximated stress–strain curves of PA6 fibers (𝐹4 to 𝐹6).
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Fig. A.4. The normalized approximated stress–strain curves of PA6 fibers (𝐹7 to 𝐹9).
18
Fig. A.5. The normalized approximated stress–strain curves of PA6 fibers (𝐹10 to 𝐹12).
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𝑀

Fig. A.6. The normalized approximated stress–strain curves of PA6 matrices (𝑀1 to

3).
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Fig. A.7. The normalized approximated stress–strain curves of PA6 matrices (𝑀4 to
𝑀6).
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𝑀

Fig. A.8. The normalized approximated stress–strain curves of PA6 matrices (𝑀7 to

9).
20
Fig. A.9. The normalized approximated stress–strain curves of PA6 matrix 𝑀10.

Table A.1
The 𝑁-segmented approximation of the dimensionless stress–strain curves of the PA6
fibers.

Fiber Segments, 𝑖

0 1 2 3 4 5 6 7

�̃�𝑖 0 0.297 0.555 0.738 0.901 1
F1 �̃�𝑖 0 0.160 0.537 0.824 0.945 1

�̃�𝑖 – 0.538 1.463 1.569 0.742 0.556

�̃�𝑖 0 0.119 0.296 0.621 1
F2 �̃�𝑖 0 0.076 0.313 0.723 1

�̃�𝑖 – 0.641 1.337 1.262 0.730

�̃�𝑖 0 0.044 0.105 0.239 0.385 0.655 1
F3 �̃�𝑖 0 0.051 0.110 0.248 0.439 0.761 1

�̃�𝑖 – 1.179 0.954 1.028 1.310 1.192 0.693

�̃�𝑖 0 0.209 0.452 0.698 0.877 1
F4 �̃�𝑖 0 0.281 0.587 0.789 0.919 1

�̃�𝑖 – 1.344 1.259 0.822 0.726 0.659

�̃�𝑖 0 0.134 0.287 0.633 1
F5 �̃�𝑖 0 0.145 0.323 0.701 1

�̃�𝑖 – 1.084 1.161 1.092 0.815

�̃�𝑖 0 0.053 0.226 0.327 0.512 0.699 0.777 1
F6 �̃�𝑖 0 0.089 0.294 0.428 0.656 0.797 0.848 1

�̃�𝑖 – 1.693 1.183 1.324 1.230 0.756 0.651 0.683

�̃�𝑖 0 0.146 0.622 0.850 1
F7 �̃�𝑖 0 0.055 0.719 0.914 1

�̃�𝑖 – 0.374 1.397 0.854 0.573

�̃�𝑖 0 0.037 0.125 0.221 0.404 0.742 0.885 1
F8 �̃�𝑖 0 0.031 0.100 0.147 0.278 0.901 0.965 1

�̃�𝑖 – 0.838 0.791 0.484 0.714 1.843 0.450 0.304

�̃�𝑖 0 0.069 0.177 0.301 0.447 0.541 0.750 1
F9 �̃�𝑖 0 0.154 0.231 0.304 0.447 0.545 0.750 1

�̃�𝑖 – 2.232 0.713 0.589 0.979 1.048 0.977 1.002

�̃�𝑖 0 0.048 0.217 0.325 0.535 0.755 0.912 1
F10 �̃�𝑖 0 0.079 0.294 0.450 0.726 0.881 0.967 1

�̃�𝑖 – 1.655 1.268 1.449 1.319 0.701 0.546 0.379

�̃�𝑖 0 0.045 0.110 0.249 0.596 0.797 0.858 1
F11 �̃�𝑖 0 0.063 0.091 0.184 0.823 0.943 0.962 1

�̃�𝑖 – 1.413 0.429 0.668 1.843 0.596 0.301 0.272

�̃�𝑖 0 0.113 0.289 0.638 0.911 1
F12 �̃�𝑖 0 0.125 0.343 0.752 0.955 1

�̃�𝑖 – 1.104 1.240 1.172 0.744 0.506
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Table A.2
The 𝑁-segmented approximation of the dimensionless stress–strain curves of the PA6 matrices.

Matrix Segments, 𝑖

0 1 2 3 4 5 6 7

�̃�𝑖 0 0.110 0.278 0.698 1
M1 �̃�𝑖 0 0.082 0.303 0.813 1

�̃�𝑖 – 0.745 1.317 1.215 0.619

�̃�𝑖 0 0.130 0.335 0.720 1
M2 �̃�𝑖 0 1 0.943 0.900 0.800

�̃�𝑖 – 7.710 −0.278 −0.113 −0.355

�̃�𝑖 0 0.060 0.151 0.380 0.564 1
M3 �̃�𝑖 0 0.054 0.371 1 0.992 0.960

�̃�𝑖 – 0.891 3.501 2.747 −0.043 −0.073

�̃�𝑖 0 0.049 0.123 0.29 0.461 1
M4 �̃�𝑖 0 0.060 0.381 1 0.999 0.950

�̃�𝑖 – 1.233 4.328 3.707 −0.006 −0.091

�̃�𝑖 0 0.035 0.087 0.202 0.490 0.651 1
M5 �̃�𝑖 0 0.050 0.076 0.164 0.752 0.832 1

�̃�𝑖 – 1.427 0.499 0.765 2.042 0.499 0.481

�̃�𝑖 0 0.145 0.312 0.532 0.769 1
M6 �̃�𝑖 0 0.096 0.449 0.886 0.997 1

�̃�𝑖 – 0.660 2.112 1.989 0.469 0.013

�̃�𝑖 0 0.029 0.073 0.150 0.390 0.637 0.867 1
M7 �̃�𝑖 0 0.124 0.370 1 0.990 0.956 0.877 0.800

�̃�𝑖 – 4.324 5.551 8.182 −0.042 −0.138 −0.343 −0.579

�̃�𝑖 0 0.033 0.125 0.382 0.635 0.866 1
M8 �̃�𝑖 0 0.205 1 0.984 0.948 0.892 0.820

�̃�𝑖 – 6.212 8.641 −0.062 −0.142 −0.242 −0.537

�̃�𝑖 0 0.051 0.128 0.310 1
M9 �̃�𝑖 0 0.056 0.375 1 0.970

�̃�𝑖 – 1.094 4.141 3.434 −0.043

�̃�𝑖 0 0.061 0.149 0.558 1
M10 �̃�𝑖 0 0.101 0.257 0.848 1

�̃�𝑖 – 1.655 1.773 1.446 0.344
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