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A B S T R A C T   

This paper proposes a novel micromechanics model tailored for dissolvable composites, where the inclusion 
undergoes dissolution and diffusion within the matrix, with the aim of analytically predicting the time-dependent 
properties of composites. The dissolution of inclusion leads to a reduction of its volume fraction and the for-
mation of a growing interphase layer around the inclusion. This versatile model is applicable to both short-term 
dissolutions, as observed in the fabrication process of composites and long-term degradation occurring in high- 
temperature or corrosive environments, common in industrial and biological applications. Dimensionless ex-
pressions for time-dependent volume fractions of composite components are related to the dissolution and the 
diffusion rates, and a micromechanics three-phase model is established to evaluate the properties of the com-
posite as a function of dissolution time. A detailed parametric study is performed to demonstrate the effect of all 
the parameters on the final properties. The model is successfully applied to the experimental data in the literature 
to show its capability and flexibility in predicting the practical dissolution examinations. The introduced model 
provides a pioneering framework for the future evolution of the dissolvable micromechanics concept.   

1. Introduction 

In the evolving landscape of modern structures and technologies, 
engineered materials continue to thrive, offering novel possibilities for 
efficient designs to address emerging challenges in material science. In 
the realm of modern materials, composites emerge as a paradigm, 
embodying the versatile integration of distinct phases, each contributing 
unique physical or chemical properties. These materials, characterized 
by the synergy of multiple components, exemplify a sophisticated 
approach to engineering solutions. Presently, composites find extensive 
applications in various domains, including civil [1,2], mechanical [3–5], 
aerospace [6,7], and biomedical engineering [8,9]. Composites are 
commonly categorized into layered, fiber-reinforced, and 
particle-reinforced types, with fibrous reinforcement being the pre-
dominant choice due to the inherent strength and stiffness of fibers. The 
use of long continuous fibers is the most effective, although chopped 
fiber composites are prevalent in high-volume manufacturing to miti-
gate costs, albeit at the expense of mechanical performance. Addition-
ally, advancements in nanotechnology have enabled the utilization of 
nano-sized filler particles, offering reinforcement even in low volume 
fractions [10–14]. 

Micromechanics, a branch of continuum mechanics, predicts the 
effective behavior of composite materials by homogenizing constituent 
materials [15–19]. Simplified models, introduced by Voigt and Reuss, 
were later refined by Hashin and Shtrikman, while an advanced me-
chanics of material model considers packing geometry for realistic 
predictions [20–22]. Micromechanics models, rooted in elasticity the-
ory, offer exact stress and strain distributions at the micromechanical 
level [23]. These models, including the self-consistent method, Mor-
i–Tanaka method, and others, address limitations in Eshelby’s solution 
[24–28]. Tandon and Weng combined Eshelby’s and Mori–Tanaka’s 
solutions for a closed-form solution [29], but numerical solutions are 
often needed for complex geometries. Semiempirical micromechanics 
models, like Halpin and Tsai (H-T), use curve-fitting to predict proper-
ties [29]. H-T, derived from the self-consistent micromechanics method, 
is widely applied, simplifying to Reuss and Voigt approximations at 
fitting parameters of zero and infinity [30–33]. 

In general, the term "phase transformation" refers to the change in 
the arrangement, structure, and fractions of the constituent materials, i. 
e., inclusions, and matrix, within the composite, leading to alterations in 
its overall behavior. The phases undergo transformation triggered by 
external stimuli and environmental factors, including temperature 
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variations, changes in applied loads, as well as exposure to aging con-
ditions such as corrosion or degradation, leading to a range of me-
chanical and functional responses. Understanding and controlling phase 
transformations in composites are crucial for tailoring their properties to 
meet specific application requirements. Researchers and engineers delve 
into the intricate mechanisms of these transformations to optimize the 
performance of composites in diverse fields, including aerospace, 
automotive, and biomedical engineering. 

Raising temperature is a key factor driving phase transformation in 
composites. If the temperature variation only affects individual phase 
properties without altering their microstructure or causing phase mix-
ing, it’s typically seen as a composite with temperature-dependent 
properties rather than a phase transformation. When the temperature 
surpasses the melting point of the phases, phase transformation becomes 
unavoidable, known as solid-liquid phase transformation. Phase change 
materials (PCM) are illustration of harnessing this type of phase trans-
formation in composite materials, particularly in energy storage appli-
cations [34–36]. Another instance of composites with phase 
transformation due to component melting is found in shape memory 
polymers (SMPs), where semicrystalline polymer fiber network can 
switch between solid crystals and melt phases over the operative tem-
perature range [37–39]. 

Composites reinforced with fibers made from shape memory alloys 
(SMA) represent another instance of phase transformation driven by 
temperature variation. In this case, temperature alteration doesn’t 
induce a solid to liquid state change but rather triggers a reversible 
phase transformation in the microstructure of the alloy. SMA wires, 
often composed of nickel-titanium or copper-aluminum-nickel, undergo 
a phase transformation between austenite and martensite phases [40]. 
At higher temperatures, the alloy is in the austenitic phase, which has a 
higher symmetry and allows for deformation and shaping. When the 
alloy is cooled below a certain temperature, it transforms into the 
martensitic phase, characterized by a lower symmetry crystal structure. 
The unique aspect of SMA is their ability to revert to their original, 
austenitic shape when heated above a specific transition temperature. 
This process is reversible and can be repeated multiple times, making 

SMAs valuable in various engineering applications, including actuators, 
sensors, and medical devices [41,42]. 

At high enough temperatures but even lower than melting point, 
particularly when the chemical composition of the components is 
similar, elevated temperature can act as an activator for dissolution of a 
phase (usually a strengthener) and its diffusion within the other phase 
(usually the matrix) resulting in blending of phases and formation of 
interphase zones. An example for temperature-driven phase trans-
formation in term of dissolution is the fabrication of single polymer 
composites (SPCs), where the small melting temperature difference 
between the fiber and the matrix poses a serious challenge [43–52], see 
Fig. (1a) from [48]. To benefit from the economic and ecological ad-
vantages of these recyclable composites, having a model for estimating 
the properties of the composite according to the dissolution and diffu-
sion phenomena is vital for finding an optimal design. Reports indicate 
that for a high degree of dissolution, the initial reinforcing effect of in-
clusion expected from classical micromechanics models may be 
completely lost or even the properties of the composite may be weaker 
than that of the base matrix [53]. 

Unlike short-term phase transformations due to temperature varia-
tion, which typically occur in relatively short periods and occasionally 
during the composite production process, long-term phase trans-
formations originating from material aging under environmental con-
ditions gradually take place throughout the composite’s lifetime. An 
example of gradual phase transformation due to aging is apparent in 
reinforced concrete with steel rebar experiencing corrosion. In this 
scenario, the phase transformation manifests as the ongoing diffusion of 
corrosion products from the steel rebar near the steel-concrete interface, 
as depicted in Fig. (1b). While the mass reduction of steel is restricted, 
the formation of a weak interphase zone leads to concrete cracking 
[54–56]. An additional instance of gradual phase transformation over a 
lifetime occurs when fiber-reinforced composites are exposed to hy-
draulic degradation in subsea and offshore applications. Assessments of 
various properties of composites subjected to aqueous media indicate a 
potential significant decline in mechanical properties [57–60]. A sample 
micrograph, as shown in Fig. (1c) from [57], displays dissolved glass 

Fig. 1. Various examples of dissolvable composites. (a) Sample optical micrographs of a dissolved polymeric fiber in an SPC [48], (b) Dissolution of steel rebars in 
reinforced concrete due to corrosion and formation of a weak interphase zone [56], (c) Micrograph of dissolved glass fibers surrounded by interphase exposed to 
dissolution [57], (d) Cross-section micrographs of magnesium alloy implant after six weeks of implantation [68]. 
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fibers surrounded by an interphase due to exposure to a solution. In 
contrast to the unavoidable and undesirable phase transformations in 
the previous two engineering applications, certain biomedical applica-
tions seek a controlled yet complete phase transformation of the rein-
forcement through dissolution, aiming to achieve the concept of 
resorbable implants [61–72]. Fig. (1d) displays cross-section micro-
graphs of a magnesium alloy implant after six weeks of implantation, 
illustrating the time-lapse of the implant (inclusion) dissolution [68]. 

In classical micromechanics models, the assumption is typically 
made that the volume fraction and properties of constitutive phases 
remain constant over time, excluding the consideration of phase trans-
formations. However, in the quest to understand the inherent effects of 
phase transformations on composite properties, several advanced 
models have been developed, often rooted in the foundational concepts 
of classical micromechanics composite models. Some have incorporated 
the Eshelby inclusion framework based on a mean-field micro-
mechanical approach to elucidate phase transformations in heteroge-
nous material systems. Romanovskaia et al. [73] utilized the generalized 
self-consistent field method for examining microstructural stresses in 
composite materials subjected to phase transformations. Incorporating 
the Eshelby tensor and the generalized Hooke’s law, they provided a 
closed system of equations to determine average stresses and de-
formations in the phase components. As a phase transformation com-
posite system of SMA wires embedded in an elastic matrix, Marfia and 
Sacco [74] studied the thermomechanical behavior of the composite, 
influenced by the super-elastic and shape memory effects using the 
Eshelby dilute distribution theory as the base of developed micro-
mechanics model. An Eshelbian Homogenization solution for the 
coupled mechanical-diffusion problem of metallic matrix composite was 
proposed by Zhang et al. [75] and an analytical solution to the effective 
diffusion coefficient tensor is developed assuming it solely depended on 
the inclusion volume fraction. Examining the phase transformation 
phenomenon of interface diffusion in composites, a theoretical micro-
mechanics framework based on Eshelby’s solution was employed to 
analyze its significant impact on the creep behavior of metal matrix 
composites at high temperatures. The study considered misfit defor-
mation and stress redistribution through the introduction of a 
time-evolving eigenstrain into reinforcements [76]. Pan and Weng [77] 
investigated thermal stress and volume changes in the phase trans-
formation of the iron-carbon system in steel. They developed a theo-
retical foundation based on Eshelby’s inhomogeneity and 
transformation principle, allowing for the consideration of factors such 
as elastic heterogeneity, thermal expansion coefficients, phase trans-
formation strain, and inclusion shape. 

The central focus of this study is the dissolution of reinforcing in-
clusions within the matrix. This process entails an ongoing decrease in 
the volume fraction of the inclusion, subsequently leading to the crea-
tion of an interphase zone. This zone comprises the dissolved portion of 
the inclusion and the involved portion of the matrix, influenced by the 
diffusion of the dissolved inclusion. From the standpoint of phase 
transformation, the composite transitions into a three-phase mixture 
with time-dependent volume fractions for all components. It signifi-
cantly affects the properties of the composite predicted by the micro-
mechanics models in both short-term and long-term practical scenarios. 
The present study aims to provide a novel update to foundational clas-
sical micromechanics models, including the rule-of-mixture (both direct 
and inverse) and the Halpin-Tsai equation, to enhance their applicability 
in predicting the properties of composites undergoing phase trans-
formation due to dissolution. By inserting the dissolution and diffusion 
rates in the classical micromodel model, the volume fraction of the 
constituent components become variable and a function of the phase 
transformation time. In addition, the emergence and growth of the 
interphase zone, as a nested composite consists of the dissolved portion 
of inclusion and the portion of matrix affected by diffusion products, 
provides an additional degree of freedom allowing for predicting the 
modified properties of composite due to dissolution. Hence, despite of its 

inherent simplicity compared to sophisticated micromechanical models 
rooted in the Eshelby solution, the presented model exhibits the essen-
tial capability to analyze phase transformations in scenarios character-
ized by substantial changes in the volume fraction of components as 
observed in dissolution and degradation phenomena. This attribute can 
be acknowledged as an innovative feature. Notably, the model in-
troduces a novel aspect by incorporating the dissolution dimension (one- 
dimensional (1D) for plate-like, two-dimensional (2D) for fiber-like, and 
three-dimensional (3D) for spherical-like inclusions), allowing it to ac-
count for the impact of inclusion shape on the evolution of volume 
fraction over dissolution time. Nevertheless, it is important to recognize 
that the proposed model lacks the capability to predict certain behav-
iors, such as the failure of the interface zone which may be manifested as 
a weakened bond or debonding between the inclusion and the matrix. 
This limitation arises from fundamental simplifications rooted in the 
selected classic model as the base. While these simplifications may not 
substantially impact the determination of elastic properties, they can 
influence the estimation of strength which should be acknowledged as a 
constraint of the current model. 

The paper is structured as follows: Section 2 presents the derivation 
of dimensionless expressions for the volume fractions of all components, 
along with a detailed discussion of various scenarios for interphase 
growth, and inclusion and matrix fading. In Section 3, the dissolvable 
micromechanics model is established based on the three-phase version 
of classical micromechanics models, incorporating the volume fractions 
derived in Section 2. Finally, Section 4 applies the proposed micro-
mechanics model to analyze experimental data from the literature. The 
focus is on two case studies: the fabrication of Single Polymer Com-
posites (SPCs) addressing short-term issues and the degradation of glass 
fiber composites in water addressing long-term concerns. 

2. Mathematical Model for Dissolution and Diffusion of 
Inclusions 

In this section, the process of dissolution of inclusion within the 
composite over time is characterized and formulated and the required 
inputs for establishing the model in Section 3 are clearly defined and 
discussed. Consider an inclusion of initial volume fraction v0

p within a 
matrix of initial volume fraction of v0

m = 1 − v0
p and assume that the 

inclusion tends to be dissolved within the matrix over the time, t. At the 
initial state of composition, corresponding to t = 0, the components 
construct an undissolved composite obeying the 2-phase classical 
micromechanics models widely developed in the literature of composite 
materials [78,11]. Three typical geometries of inclusions i.e., plate-like, 
fiber-like, and sphere-like are considered and the same geometry for the 
surrounding matrix is assumed (see Fig. 2(a)). The initial thickness of an 
inclusion, D0

p , is related to its initial volume fraction, v0
p , as, 

D0
p =

̅̅̅̅̅̅̅̅̅̅̅
cv0

pVc

α(3− n)
p

3

√

, n = 1, 2, 3. (1a)  

In Eq. (1a), c is a constant related to the exact geometry of inclusion 
which is 6/π, 4/π, 4/π, and 1 for spherical, cylindrical, discus, and 
square platelet inclusions, respectively, αp is the aspect ratio of the in-
clusion (length to thickness for cylindrical, diameter to thickness for 
discus, and side-length to thickness for square platelet), n defines the 
dimension of the inclusion, which is 1, 2, and 3 for plate-like, fiber-like, 
and sphere-like inclusions, and Vc is the total volume of composite (see 
Fig. 2(a)). Regarding Eq. (1a), for an identical initial volume fraction, v0

p , 
the thicknesses of fiber- and plate-like inclusions are lower than the 
sphere-like one due to higher aspect ratios. One can obtain the ratio of 
the thickness of discus and cylindrical inclusions to spherical ones as a 
function of aspect ratio by Eq. (1b) which is also plotted in Fig. 2(b). It 
reveals that for an identical initial volume fraction and aspect ratio, a 
plate-like inclusion has a lower thickness than the fiber-like one due to 

S.K. Jalali and N.M. Pugno                                                                                                                                                                                                                   



International Journal of Mechanical Sciences 266 (2024) 108913

4

its highest surface area. 
(

D0
p

)

non− sphere(
D0

p

)

sphere

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2

3α(3− n)
p

3

√

, n = 1, 2. (1b) 

Traveling through time, the inclusion starts dissolving which results 
in a reduction of its volume fraction. Simultaneously, diffusion of the 
dissolved part of inclusion within the matrix media forms an expanding 
zone as an interphase between the inclusion and the matrix. Note that 
growth of interphase is affected by both dissolution and diffusion pro-
cesses. Fig. 3(a) depicts the schematic of the formation of interphase. 
The dissolution rate, q(t), and the diffusion rate, p(t), lead the rapidity of 

the process. The former is mainly related to the composing process 
conditions (temperature and pressure) and the nature and the strength 
of inclusion-matrix intermolecular attractions, while the latter mainly 
depends on temperature (directly) and the viscosity of the matrix 
(inversely). It is why the dissolution and consequently diffusion phe-
nomena are neglectable for the classical composites whose inclusion- 
matrix intermolecular attractions are weak and/or the matrix has 
quickly solidified (high viscosity). 

The variation of volume, V(t), with respect to time, V̇(t), due to 
dissolution and diffusion, is proportional to the front surface, S(t) of 
dissolution and diffusion. Although, for an inclusion of general 3D 
shape, both dissolution and diffusion progress in 3D, however, the 

Fig. 2. The three typical geometries of inclusions. (a) Schematic of geometry of inclusions and definition of the initial inclusion thickness, D0
p , for every 

configuration. (b) The effect of the aspect ratio of the plate- and fiber-like inclusions on the relative thickness with respect to sphere-like ones based on Eq. (1b). For 
the same initial volume fraction and aspect ratio, a plate-like inclusion shows a smaller thickness compared to a fiber-like one, attributed to its greater surface area. 

Fig. 3. Dissolution and diffusion of inclusion within the matrix and the variation of the dimension of inclusion with respect to the dissolution time. (a) 
Schematic of one-dimensional dissolution and diffusion of the inclusion along x-axis. Dot lines present the initial state of composition where there is no interphase 
and xdis and xdif coincide with x0. The diffusion rate, p(t), and dissolution rate, q(t) lead the fronts of interphase growth which are generally time-dependent. (b) 3D 
dissolution, n=3, (c) 2D dissolution, n=2, (d) 1D dissolution, n=1. 
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geometry of inclusion determines the portion of V̇(t) along every spatial 
direction. For a sphere-like inclusion, the dissolution and diffusion 
progress along 3 spatial directions (3D dissolution, n=3). For a fiber-like 
inclusion, the ratio of ends to lateral surface is negligible, and therefore 
the dissolution and diffusion in the direction of the axis of inclusion can 
be ignored. Therefore, it can be assumed that both dissolution and 
diffusion happen only along the two other directions perpendicular to its 
axis (2D dissolution, n=2). Similarly, for a plate-like inclusion, one can 
neglect the in-plane directions and only consider the direction perpen-
dicular to the plate (1D dissolution, n=1). Considering the variation of 
the geometry of these three types of inclusions with respect to time, 
schematically depicted in Fig. 3(b-d), and dissolution and diffusion rates 
defined in Fig. 3(a), one can formulate the variation of the thickness of 
the inclusion and the interphase with respect to time as, 

Ḋp(t) = − 2q(t)→Dp(t) = − 2
∫t

0

q(t)dt + D0
p (2a)  

Ḋi(t) = 2p(t)→Di(t) = 2
∫t

0

p(t)dt + D0
p, (2b)  

where Dp(t) represents the thickness of dissolving inclusion, Di(t) is the 
thickness of the interphase layer (outer dimension), and D0

p is the initial 
thickness of the inclusion (and the interphase). The dissolution and the 
diffusion rates are needed for obtaining the thicknesses of the inclusion 
and the interphase as a function of time by integrating Eqs. (2a) and 
(2b). 

In the following it is assumed that the dissolution and the diffusion 
rates are constant: q(t) = q̄, and p(t) = p̄. Note that these average rates 
can generally be temperature-dependent. If their assignment is based on 
the corresponding temperature of the process, the predictions of the 
presented model will implicitly be a function of temperature. The 
thicknesses are obtained as, 

Dp(t) = − 2q̄t + D0
p (3a)  

Di(t) = 2p̄t + D0
p. (3b) 

The volume fractions of the inclusion, vp(t), the interphase, vi(t), and 
the matrix, vm(t), can be obtained as a function of time, t, as, 

vp(t) = v0
p

(
Dp(t)

D0
p

)n

= v0
p

(
− 2q̄t
D0

p
+ 1

)n

, (4a)  

vi(t) = v0
p

[(
Di(t)
D0

p

)n

−

(
Dp(t)

D0
p

)n]

= v0
p

[(
2p̄t
D0

p
+ 1

)n

−

(
− 2q̄t
D0

p
+ 1

)n]

,

(4b)  

vm(t) = 1 − v0
p

(
Di(t)
D0

p

)n

= 1 − v0
p

(
2p̄t
D0

p
+ 1

)n

. (4c) 

Some milestones should be defined on the timeline of the dissolution 
progress. The time when the inclusion is completely dissolved is called 
inclusion fading time, tp. It can be obtained by equaling Dp(t) to zero: 

tp =
D0

p

2q̄
. (5)  

If t > tp, the volume fraction of inclusion is zero and does not obey Eq. 
(4a) anymore and the mixture is converted to a 2-phase composite 
consist of the interphase and the matrix. Diffusion of interphase is 
completed at the maximum diffusion time when the matrix is fully 
converted to the interphase which is called matrix fading time, tm. By 
setting the volume fraction of matrix to zero in Eq. (4c), one obtains, 

tm =
D0

p

2p̄

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
/

v0
p

)
n

√

− 1
)

. (6)  

For t > tm, there is no matrix which results in a 2-phase composite 
including the inclusion and the interphase. In this condition Eq. (4b) is 
not valid, and Di(t), remains constant as: 

Di(t) = Di(tm) = 2p̄tm + D0
p = D0

p

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
/

v0
p

)
n

√

= Dc, (7)  

where Dc is the dimension of the composite. Then, the volume fraction of 
the interphase grows only because of dissolution of the inclusion and is 
obtained as, 

vi(t) = 1 − v0
p

(
− 2q̄t
D0

p
+ 1

)n

, for t > tm. (8)  

Note that both the inclusion fading time, tp, and the matrix fading time, 
tm, are proportional to the initial thickness of inclusion and based on Eq. 
(1b), for an identical initial volume fraction of inclusion, they decrease 
by decreasing n and increasing the aspect ratio, αp. The ratio of the 
matrix fading time, tm, to the inclusion fading time, tp, is, 

tm

tp
=

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
/

v0
p

)
n

√

− 1
)(

q̄
p̄

)

. (9) 

By equating this ratio to one (tm = tp), the critical ratio of the 
dissolution to the diffusion rate can be defined as 

tp = tm→(q̄/p̄)crit =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
/

v0
p

)
n

√

− 1
. (10)  

Substituting Eq. (10) in Eq. (9), 

tm

tp
=

(q̄/p̄)
(q̄/p̄)crit

. (11)  

For this “critical condition”, the inclusion is completely dissolved exactly 
when the interphase layer has just covered whole the matrix and the 3- 
phase composite turns suddenly to a 1-phase fully interphase material. If 
the dissolution to diffusion ratio, (q̄ /p̄), is higher than the critical value 
(tm > tp), named the “over-critical condition”, the matrix has not been fully 
converted to the interphase when the dissolution of the inclusion is 
completed, while for the (q̄ /p̄) ratios lower than the critical one (tm < tp), 
called the “under-critical condition”, the matrix is fully converted to the 
interphase before complete dissolution of the inclusion, (inclusion 
fading), which may result in saturation of the mixture. Fig. 4(a) depicts 
the variation of this critical ratio, (q̄/p̄)cri, versus the initial volume 
fraction of the inclusion, v0

p for 1D, 2D, and 3D dissolution. It is seen that 
increasing the initial volume fraction of the inclusion remarkably in-
creases the critical ratio for all types of inclusions which means for high 
volume fractions of inclusions the dissolution rate should be very higher 
than the diffusion rate to both processes end simultaneously. In other 
words, for high initial fractions of the inclusion, it is more possible that 
the actual (q̄ /p̄) ratio be under the critical one and the matrix is con-
verted to interphase before the complete dissolution of the inclusion 
(under-critical condition), while low values of v0

p provide low critical 
ratio which can support the complete dissolution of the inclusion before 
full diffusion of the interphase in the matrix (over-critical condition). 
Besides, it is observed that increasing the dissolution dimension, n, in-
crease the critical ratio for all the initial volume fractions. It means for a 
given value of (q̄ /p̄), the plate-like inclusions have more potential for 
locating within the over-critical condition to completely dissolve before 
full diffusion of interphase while the sphere-like ones show the lowest 
possibility of full dissolution and may fall into the under-critical con-
dition. This is consistent with the thickness ratio of these inclusions 
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presented in Eq. (1b) and Fig. 2(b). 
The dissolution and the diffusion processes may be stopped by 

complete solidification of the mixture at the solidification time, t = ts, 
which can be adjusted by controlling the environmental conditions 
(temperature and pressure) and/or using appropriate additives like 
catalyzers, initiators, and activators. If the inclusions are introduced in 
the matrix for playing a reinforcing role, it is desirable to stop the 
progress somewhen in the course of the dissolution of inclusion instead 
of after inclusion fading. The concept of “dissolution window” is defined 
as the time interval before completely losing the impact of inclusion on 
the properties of the composite. In this case, the composition process of 
the composite should be designed so that the solidification time, ts, be 
somewhen within the dissolution window, 0 < ts < tp to optimize the 
demanded properties of the composite. 

To generalize the formulation, the dimensionless time variables, (~), 
are defined by dividing them by the fading time of inclusion, tp, as, 

(̃t, t̃m, t̃s) = (t, tm, ts)
/

tp. (12a)  

Hence, the dimensionless dissolution window is 0 < t̃ < 1. Substituting 
Eq. (12a) to Eq. (11) gives, 

(q̄/p̄)
(q̄/p̄)crit

= t̃m, (12b)  

which means the condition is under-critical for ̃tm < 1, critical for ̃tm =

1, and over-critical for ̃tm > 1. 
It should be noted that in this dimensionless timeline, there is no 

distinction between short-term and long-term phase transformations. If 
the change in composite properties in real-time is of interest, the model 
results need to be mapped from the dimensionless to the real-time 
framework using Eq. (12). The thickness of the inclusion, and the 
interphase, as well as the volume fraction of components, can be re- 
written in terms of dimensionless time by substituting Eq. (12) to Eqs. 
(3), (4), and (8) as, 

Dp (̃t) = D0
p(1 − t̃), for 0 ≤ t̃ ≤ 1, (13a)  

Dp (̃t) = 0, for t̃ > 1, (13b)  

Di (̃t) = D0
p

⎛

⎜
⎜
⎝1+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
/

v0
p

)
n

√

− 1

t̃m
t̃

⎞

⎟
⎟
⎠, 0 < t̃ ≤ t̃m, (13c)  

Di (̃t) = D0
p

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
/

v0
p

)
n

√

− Dp (̃t), for t̃ > t̃m, (13d)  

ṽp(̃t) = v0
p(1 − t̃)n

, for 0 ≤ t̃ ≤ 1, (13e)  

ṽp(̃t) = 0, for t̃ > 1, (13f)  

ṽi (̃t) = v0
p

⎛

⎜
⎜
⎝1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
/

v0
p

)
n

√

− 1

t̃m
t̃

⎞

⎟
⎟
⎠

n

− ṽp (̃t), for 0 < t̃ ≤ t̃m, (13g)  

ṽi (̃t) = 1 − ṽp (̃t), for t̃ > t̃m, (13h)  

ṽm(̃t) = 1 − v0
p

⎛

⎜
⎜
⎝1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
/

v0
p

)
n

√

− 1

t̃m
t̃

⎞

⎟
⎟
⎠

n

, for 0 ≤ t̃ < t̃m, (13i)  

ṽm(̃t) = 0, for t̃ > t̃m. (13j) 

Derived from Eq. (13e) over dimensionless time, the rate of change in 
the volume fraction of inclusion can be found as, 

d
(
ṽp (̃t)

)

d̃t
= ˙̃vp (̃t) = − nv0

p(1 − t̃)n− 1
, for 0 < t̃ ≤ 1. (14a) 

Eq. (14a) explains that the rate of dissolution for plate-like inclusions 
(n=1) is constant while it reduces by the passage of t̃ for fiber- and 
sphere-like inclusions. The reason is that for plate-like inclusion the 
dissolution surface, S(̃t), does not change over time while it reduces for 
the other two geometries of inclusions. The rate of dissolution for the 
three different types of inclusion can be compared as (see Fig. 4(b)), 
⎧
⎨

⎩

˙̃vp (̃t)fiber >
˙̃vp(̃t)platẽt < 0.5

˙̃vp(̃t)fiber =
˙̃vp (̃t)plate t̃ = 0.5

˙̃vp(̃t)fiber <
˙̃vp (̃t)plate t̃ > 0.5,

(14b)  

⎧
⎪⎪⎨

⎪⎪⎩

˙̃vp (̃t)sphere >
˙̃vp (̃t)plate t̃ <

(
1 − 1

/ ̅̅̅
3

√ )
≅ 0.42

˙̃vp (̃t)sphere =
˙̃vp (̃t)plate t̃ =

(
1 − 1

/ ̅̅̅
3

√ )
≅ 0.42

˙̃vp (̃t)sphere <
˙̃vp (̃t)plate t̃ >

(
1 − 1

/ ̅̅̅
3

√ )
≅ 0.42.

(14c) 

The variation of dimensionless volume fraction of the inclusion 
versus dimensionless time within the time window is depicted in Fig. 4 

Fig. 4. Dissolution and diffusion rates and the time-dependent volume fraction of inclusion for 1D, 2D, and 3D dissolutions corresponds to plate-, fiber-, 
and sphere-like inclusions. (a) The variation of the critical ratio of the diffusion to the dissolution rates, (q̄/p̄)cri, versus the initial volume fraction of the inclusion, 
v0

p . (b) The variation of dimensionless volume fraction of the inclusion versus dimensionless time within the time window from Eq. (13e). 

S.K. Jalali and N.M. Pugno                                                                                                                                                                                                                   



International Journal of Mechanical Sciences 266 (2024) 108913

7

(b) for 1D, 2D, and 3D dissolutions based on Eq. (13e). It is seen that at 
every dimensionless time, ̃t, by increasing the dissolution dimension, n, 
the percentage of reduction in the initial volume fraction of inclusion 
increases. For instance, at the middle of the time window, ̃t = 0.5, the 
percentage of reduction in the volume fraction of sphere-, fiber-, and 
plate-like inclusions are 87.5%, 75%, and 50%, respectively. Note that 
the time scale in Fig. 4(b) is dimensionless and the mentioned com-
parison for the effect of n is not valuable for the real time, t, since ac-
cording to Eqs. (1b), (5), and (6), for an identical initial volume fraction, 
different types of inclusions have different inclusion fading times, tp. 
Besides, the rate of changes in volume fraction presented by Eq. (14 a-c) 
can be observed as the slopes of the graphs. The slope for 1D dissolution 
corresponding to plate-like inclusions is constant as the dissolution 
process does not change the facing surface and only reduces the thick-
ness. For 2D and 3D cases, the surface area reduces over time which 
results in a reduction in the dissolution rate. 

Fig. 5(a-c) demonstrates how the interphase grows for under-critical, 

critical, and over-critical conditions, respectively. Two different low 
(v0

p = 0.1), and high (v0
p = 0.8) initial volume fractions of the inclusion 

are considered and the effect of different dissolution dimensions, n, is 
investigated. In Fig. 5(a) the dimensionless matrix fading time, t̃m, is 
assumed equal to 0.25 which means (q̄ /p̄) is a quarter of its critical 
value, to present a case of under-critical condition. In the first part 
(0 < t̃ < 0.25), the formation of interphase is due to both dissolution and 
diffusion processes constructing a 3-phase composite. However, at ̃t =
0.25 interphase reaches the outer boundary of the composite (matrix 
fading happens). In the second part of the graph, from matrix fading to 
the end of the time window (0.25 < t̃ < 1), the diffusion is stopped, and 
the growth of interphase is solely due to dissolution of inclusion, and it is 
why increasing the dissolution dimensions, n, results in higher volume 
fraction of interphase regarding the trend observed in Fig. 4(b). Finally, 
at ̃t = 1 the inclusion also completely turns to interphase, and interphase 
cover whole the composite. Fig. 5(b) shows the critical condition where 

Fig. 5. The variation of dimensionless volume fraction of interphase with respect to dimensionless time. (a) under-critical condition where the matrix fading 
happens before the inclusion fading as a result of ratio of dissolution to diffusion rate lower than the critical ratio. (b) critical condition where the inclusion and 
matrix fading happens simultaneously. and (c) over-critical condition where the inclusion fading happens before the matrix fading because of ratio of dissolution to 
diffusion rate higher than the critical ratio. See Eqs. (9) to (11). 
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t̃m = 1 and the fading of the inclusion and the matrix happens simulta-
neously at the end of the time window, t̃ = 1. Throughout whole the 
time window, all three phases exist, and the growth of interphase is led 
by both diffusion and dissolution fronts. It is seen that for v0

p = 0.1 
increasing n reduces the dimensionless volume fraction of interphase 
while for v0

p = 0.8 it is the opposite. The reason is that for low initial 
volume fractions of inclusion the main part of interphase growth is due 
to the diffusion but for high initial fractions the most part of the 
development of interphase corresponds to the dissolution of inclusions 
which is higher when n increases based on the trend observed in Fig. 4 
(b). An example of an over-critical condition is presented in Fig. 5(c) by 
setting the dimensionless matrix fading time as ̃tm = 2. Since ̃tm > 1, the 
mixing process continues after closing the time window (inclusion 
fading) by diffusion of interphase until the interphase covers whole the 
composite (̃t = 2). The effect of the dissolution dimension, n, on the 
volume fraction of interphase is the same as the critical condition 
explained in Fig. 5(b). One can notice that increasing the initial volume 
fraction increases the volume fraction of interphase since the inclusion is 
fully converted to the interphase at the end of the time window (̃t = 2). 

The composition ends when both the inclusion and the matrix are 
faded and whole the mixture turns to the interphase and the composite 
converts to a 1-phase material at ̃t = t̃e. From Fig. 5 it is seen that this 
ending time is, 

t̃e =

⎧
⎨

⎩

1 Under − Critical
1 Critical
t̃m Over − Critical.

(15)  

It is concluded that for formulating the dissolution and diffusion pro-
cesses it is essential to know the fading time of the inclusion, tp, and the 
matrix, tm. Given the inclusion fading time, t̂ p, and the matrix fading 
time, t̂m, for a specific initial volume fraction of the inclusion, v̂0

p , and 

initial thickness, D̂
0
p , measured experimentally or estimated through 

molecular simulations, it is possible to find the dissolution and diffusion 
rates and their ratio using Eqs. (5), (6), and (9) which are constant for all 
the initial volume fractions and thicknesses of the same matrix and in-
clusion as, 

q̄ =
D̂

0
p

2̂tp
, (16a)  

p̄ =
D̂

0
p

2 t̂m

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
/

v̂0
p

)
n

√

− 1, (16b)  

q̄
p̄
=

(
t̂m
/

t̂ p
)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
/

v̂0
p

)
n

√

− 1
. (16c)  

Having the ratio of dissolution to diffusion rate by Eq. (16c) and 
calculating the critical ratio using Eq. (10), the condition (under-critical, 
critical, and over-critical) is determined for every initial volume fraction 
of inclusion (see Fig. 4(a)). Then, from Eqs. (5) and (6) one can obtain 
the inclusion and the matrix fading time corresponds to an arbitrary 
initial volume fraction v0

p and initial thickness of D0
p as, 

tp = t̂p

(
D0

p

/
D̂

0
p

)
, (17a)  

tm = t̂m

(
D0

p

/
D̂

0
p

)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
1
/

v0
p

)
n

√

− 1
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

1
/

v̂0
p

)
n

√

− 1
. (17b) 

As the final part of this section, the composition of the interphase is 
under focus. The interphase consists of the dissolute part of the inclusion 

and the part of the matrix engaged by the diffusion. Hence, the dimen-
sionless volume fraction of interphase, ṽi (̃t), can be divided into these 
two parts as, 

ṽip (̃t) = v0
p − ṽp (̃t), (18a)  

ṽim (̃t) = ṽi − ṽip (̃t), (18b)  

where ̃vip (̃t), and ̃vim (̃t) are the parts that corresponds to the dissolution 
of the inclusion and the diffusion in the matrix, respectively. It is useful 
to define the partial volume fraction of the inclusion, f̃ ip (̃t), and the 
matrix, ̃f im (̃t), within the interphase as, 

f̃ ip (̃t) = ṽip (̃t)
/

ṽi (̃t), t̃ > 0, (18c)  

f̃ im (̃t) + f̃ ip (̃t) = 1→f̃ im (̃t) = 1 − f̃ ip (̃t), t̃ > 0. (18d)  

3. Establishing the Micromechanics Model for Dissolvable 
Composites 

In this section, the focus turns to the construction of a micro-
mechanics model tailored for dissolvable composites. The steps of the 
proposed analytical framework are navigated, commencing with a 
definition of the required inputs. Moving forward, the properties of the 
interphase are estimated based on the properties of both the matrix and 
the inclusion from which the interphase originates. Subsequently, the 
estimation of the elastic constants of the dissolvable composites will 
then be expounded upon. Lastly, the examination of strength is dis-
cussed. It is crucial to acknowledge that the presented model lacks the 
capability to predict specific behaviors, such as potential failures in the 
interface zone, characterized by a weakened bond or debonding be-
tween the inclusion and the matrix. This limitation arises from funda-
mental simplifications rooted in the selected classical model as its basis. 
While these simplifications may not markedly influence the determi-
nation of elastic properties, they can affect strength estimation. How-
ever, it is essential to distinguish between the phase transformation in 
the form of dissolution, which typically occurs due to an increase in 
temperature, and gradual degradation, which results from an unfavor-
able environment, such as corrosion. In the former, dissolution may even 
lead to improved bonding between the inclusion and the matrix, 
whereas in the latter, the effect is often the opposite. 

3.1. Inputs of the Proposed Model 

All micromechanics models are constructed based on the properties 
of components and the parameters determining how they are combined. 
Unlike classical (undissolvable and time-independent) micromechanics 
models, the proposed time-dependent dissolvable model also needs the 
parameters that formulate the dissolution and diffusion processes. The 
required inputs of the model are:  

• The initial volume fraction, v0
p , and the initial thickness, D0

p , of the 
inclusion. 

• The geometrical parameters (aspect ratio) and the dispersion con-
dition of inclusion within the matrix.  

• The fading time of the inclusion, ̂tp, the fading time of the matrix, ̂tm, 
and the properties in the final 1-phase condition (fully interphase) at 

ending time for a typical sample with initial values of v̂0
p and D̂

0
p .  

• The properties of the inclusion: It is assumed that the undissolved 
part of the inclusion keeps its initial properties during the composi-
tion process. Hence, the properties of the inclusion are time- 
independent: Pp (̃t) = Pp(0) = P0

p . However, for more compliance 
with the reality, it is suggested to measure the properties of the 
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inclusion after applying the condition of the composition (for 
composition in high temperature the properties of annealed 
inclusion).  

• The properties of the matrix: As the matrix may contain the additives 
(catalyzers, initiators, activators, etc.) to control the solidification 
time, ts, its properties are generally time-dependent. It is suggested to 
measure the properties of the matrix at different times to approxi-
mate its properties as a function of composition time: Pm (̃t). A linear 
approximation can be assumed as, 

Pm (̃t) = βP̃t + P0
m. (19a)  

Given the properties of the matrix, P0
m at the begging, ̃t = 0, and Pe

m at 
the ending time, ̃t = t̃e, the slope, βP, can be calculated as follows, 

βP =
Pe

m − P0
m

t̃e
. (19b)   

As a conclusive point, it is crucial to recognize that the initial 
properties of the components and their alterations during the dissolution 
process may be temperature-dependent. Hence, if the temperature- 
dependent behavior or changes in these properties are known, the 
model can effectively account for the temperature’s impact on predict-
ing the transformed properties of the composite. 

3.2. Properties of the Interphase 

To completely define the inputs of the model, the properties of the 
interphase, Pi (̃t), should be estimated based on the properties of the 
matrix and the inclusion from which it is formed. Three different for-
mulations including direct rule-of-mixture (the Voigt model), inverse 
rule-of-mixture (the Reuss model), and the Halpin-Tsai semiempirical 
equation (H-T model) can be employed as, 

Pi (̃t) = f̃ ip (̃t)
(

P0
p

)

eff
+ f̃ im (̃t)(Pm (̃t))eff , (Voigt Model), (20a)  

Pi (̃t) =

(
P0

p

)

eff
(Pm (̃t))eff

f̃ im (̃t)
(

P0
p

)

eff
+ f̃ ip (̃t)(Pm (̃t))eff

, (Reuss Model), (20b)  

Pi (̃t) = (Pm (̃t))eff
1 + ξηi (̃t)f̃ ip (̃t)
1 − ηi (̃t)f̃ ip (̃t)

, (H − T model), (20c)  

ηi (̃t) =

((
P0

p

)

eff

/

(Pm (̃t))eff

)

− 1
((

P0
p

)

eff

/

(Pm(̃t))eff

)

+ ξ
, (20d)  

where ξ is the curve-fitting parameter of the H-T model, and the partial 
volume fractions, f̃ ip (̃t), and f̃ im (̃t) are defined in Eqs. (18c) and (18d). 
The “effective property” of the inclusion and the matrix within the 
interphase are defined by introducing the concept of efficiency param-
eter to account for the influence of mixing condition (effect of additives, 
chemical, and physical modifications) on their original properties 
outside the interphase zone as, 
(

P0
p

)

eff
= (1+ γP)P0

p, (The effective property of inclusion), (21a)  

(Pm (̃t))eff =
(
1+ γ′

P

)
Pm (̃t), (The effective property of matrix). (21b) 

The case of γP = γ′
P = 0, turns Eqs. (20 a-d) to their standard form 

meaning that the properties of the inclusion and the matrix do not 
change in the interphase, while negative and positive efficiencies sup-
port diminishing and enhancing effects, respectively. In general, the 
efficiency parameter of the inclusion is time-dependent, however, it is 
possible to estimate it by evaluating Eq. (20) for the property of 1-phase 
composite (fully interphase) measured at the ending time for a specific 
initial volume fraction of the inclusion, v̂0

p to have an insight about an 
average value for the efficiency parameters. Note that the choice among 
Eqs. (20 a-c) should be consistent with the dissolvable micromechanics 
model used for predicting the properties of the composite which is 
introduced in the following subsections. 

3.3. Elastic Constants of the Dissolvable Composites 

Reviewing the literature of the micromechanics model, three main 
formulations for prediction of the elastic constants of composites 
including elastic modulus, shear modulus, and Poisson’s ratio are the 
Voigt, (direct rule-of-mixture), the Reuss (inverse rule-of-mixture), and 
the semi-empirical Halpin-Tsai models, as used in the previous section 
for the properties of the interphase. Here, their 3-phase versions are 
developed based on the assumptions of the proposed dissolvable 
micromechanics model where time-dependent volume fractions of the 
components are defined in Eqs. (13) and (18). 

3.3.1. The 3-phase Voigt model for dissolvable composites 
The properties of the dissolvable composite as a function of dimen-

sionless time, Pc (̃t), can be predicted via a 3-phase direct rule-of-mixture 
as, 

Pc (̃t) = P0
pṽp (̃t) + Pm (̃t)̃vm (̃t) + Pi (̃t)̃vi (̃t). (22a)  

By substituting the properties of the matrix and the interphase from Eqs. 
(19), and (20a) and some simplifications: 

Pc (̃t) = P0
p

(
v0

p(1+ γP) − γPṽp (̃t)
)

+
(
βP̃t+P0

m

)((
1 − v0

p

)
+ γ′

P

(
ṽp (̃t)+ ṽi (̃t) − v0

p

))
. (22b)  

It is seen that for the case of γP = γ′
P = 0, and constant properties of the 

matrix, βP = 0, Eq. (22b) turns to the standard 2-phase time- 
independent rule-of-mixture because γP = γ′

P = 0 means that the 
engaged parts of the inclusion, and the matrix within the interphase, 
keep their properties and it is not the matter where these parts exist in 
the composite. In other words, for this special case, the dissolution and 
diffusion processes do not affect the properties of the composite. If the 
property of matrix within the interphase remains unchanged, γ′

P = 0, 
and only the property of the dissolved part of the inclusion be modified 
in the interphase, Eq. (22b) is rewritten as, 

Pc (̃t) = P0
p

(
v0

p(1+ γP) − γPṽp (̃t)
)
+
(
βP̃t+P0

m

)(
1 − v0

p

)
. (22c)  

3.3.2. The 3-phase Reuss model for dissolvable composites 
The 3-phase version of inverse rule-of-mixture known as the Reuss 

model is employed to develop the time-dependent dissolvable micro-
mechanics model for predicting the properties of composite as, 

Pc (̃t) =
P0

pPm(̃t)Pi (̃t)
ṽp(̃t)Pm (̃t)Pi (̃t) + ṽm (̃t)P0

pPi (̃t) + ṽi (̃t)P0
pPm (̃t)

. (23a)  

Replacing the properties of the matrix and the interphase by Eqs. (19), 
and (20b), one can rewrite Eq. (23a) as, 
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Note that for the case of γP = γ′
P = βP = 0, Eq. (23b) is simplified to 

standard undissolvable, time-independent form. If γP ∕= 0, while γ′
P = 0, 

Eq. (23b) is more simplified as: 

Pc (̃t) =
P0

p(1 + γP)
(
βP̃t + P0

m

)

P0
p(1 + γP)

(
1 − v0

p

)
+
(
βP̃t + P0

m

)(
v0

p + γPṽp (̃t)
). (23c)  

3.3.3. The 3-phase Halpin-Tsai (H-T) equation for dissolvable composites 
The construction of the 3-phase model based on the original 2-phase 

H-T equation needs to look at the dissolvable composite as a 2-step 
nested mixture: The first step is the composition of the inclusion with 
the interphase, and the second step is the composition of the composite 
of the first step with the matrix. The time-dependent properties of the 
inclusion-interphase mixture, Pip

c (̃t), is obtained as, 

Pi+p
c (̃t) = Pi (̃t)

1 + ξηi+p (̃t)ṽi+p (̃t)
1 − ηi+p (̃t)ṽi+p (̃t)

, (24a)  

where 

ηi+p (̃t) =

(
P0

p

/
Pi (̃t)

)
− 1

(
P0

p

/
Pi (̃t)

)
+ ξ

, (24b)  

ṽi+p (̃t) =
ṽp (̃t)

ṽp(̃t) + ṽi (̃t)
. (24c)  

The final properties of composites, Pc (̃t), is obtained by a combination of 
the properties of the first step, Pi+p

c (̃t), and the properties of the matrix 
as, 

Pc (̃t) = Pm (̃t)
1 + ξηi+p+m(̃t)̃vi+p+m (̃t)
1 − ηi+p+m(̃t)̃vi+p+m (̃t)

, (24d)  

where 

ηi+p+m (̃t) =
(
Pi+p

c (̃t)
/

Pm (̃t)
)
− 1

(
Pi+p

c (̃t)
/

Pm (̃t)
)
+ ξ

, (24e)  

ṽi+p+m (̃t) = ṽp (̃t) + ṽi (̃t). (24f) 

In Eqs. (24), ξ is the curve-fitting parameter of the H-T model, and 
the properties of the matrix and the interphase are obtained from Eqs. 
(19), and (20 c-d), respectively. 

3.3.4. The parametric study of the elastic constants 
In this subsection, a comprehensive parametric study on the elastic 

properties of dissolvable composites is performed based on the three 
developed models. Regarding the literature of composite materials, two 
main categories of composites correspond to continuous (long) and 
discontinuous (short) inclusions. For the continuous composites the 
length of inclusion is long enough (much larger enough than a critical 
length), and the inclusion is able to carry the part of applied stress 
corresponds to its volume fraction, while for the discontinuous one 
interfacial shear strength between the components has the main rule for 
the load transformation between adjacent components. For the intro-
duced plate- and fiber-like inclusion both continuous and discontinuous 
conditions are reachable by adjusting the aspect ratio, however, adding 

the sphere-like inclusion in a matrix only results in a discontinuous 
composite. Table 1 summarizes which model is the best choice for the 
prediction of the elastic property of continuous and discontinuous 
composites according to the literature of the micromechanics of com-
posites. For aligned inclusions (plate- and fiber-likes), the longitudinal 
direction refers to the direction of the larger dimension of the inclusions 
and the transverse direction is perpendicular to it. Note that for the case 
of randomly oriented inclusions, the elastic constants can be calculated 
by averaging the elastic constants of aligned ones over all possible ori-
entations by integration [79,80]. 

In the following, first, the parametric study is performed based on the 
3-phase Voigt model proposed in Eq. (22) and then this model is 
compared to the Reuss and the H-T models. Besides, note that the time- 
dependent properties of the dissolvable composite arise from two 
sources: changes in the properties of the engaging parts of the inclusion, 
and the matrix within the interphase, and the time-dependent properties 
of the matrix which are represented in the proposed models by intro-
ducing γP, γ′

P, and βP parameters, respectively. The presented parametric 
study assumes that the properties of the matrix inside and outside the 
interphase zone is the same, γ′

P = 0, to limit the degree of freedom. 
Derived from Eq. (22c) over dimensionless time for the Voigt model, and 
substituting from Eq. (14a), the rate of change in the properties of the 
composite can be found as, 

d(Pc (̃t))
d̃t

= γP

(
nP0

pv0
p

)
(1 − t̃)n− 1

+ βP

(
1 − v0

p

)
, 0 < t̃ < 1(All conditions),

(25a)  

d(Pc (̃t))
d̃t

= βP

(
1 − v0

p

)
, 1 < t̃ < t̃m(Only over − critical). (25b) 

Remember from Eq. (15) that the ending time for under-critical, and 
critical conditions is ̃te = 1 while for the over-critical condition is ̃te =

t̃m. From Eq. (25a) it is seen that within the time window, 0 < t̃ < 1, 
both γP, and βP parameters are engaged. If they have the same sign, the 
properties of the composite are strictly ascending or strictly descending 
for positive and negative signs, respectively, while different signs of γP, 
and βP may result in an extremum when, 

d(Pc (̃t))
d̃t

= 0→t̃ext = 1 −

⎛

⎝ −
βP

(
1 − v0

p

)

γP

(
nP0

pv0
p

)

⎞

⎠

n− 1

. (25c) 

This extremum exists if ̃text < 1. Over the time window, 1 < t̃ < t̃m, 
which only happens for over-critical conditions, only βP can play a role 

Table 1 
The suggested micromechanics models based on the literature of composites 
[78,11].   

Inclusion Types Property Model 

Continuous Plate-like 
Fiber-like 

Longitudinal Modulus, EL Voigt 
In-plane Poisson’s ratio, ν Voigt 
Transverse Modulus, ET *Reuss, H-T 
In-Plane Shear Modulus, G *Reuss, H-T 

Discontinuous Plate-like 
Fiber-like 
Sphere-like 

Longitudinal Modulus, EL H-T 
In-plane Poisson’s ratio, ν Voigt 
Transverse Modulus, ET H-T 
In-Plane Shear Modulus, G H-T 

* The Reuss model is not accurate enough. 

Pc (̃t) =
P0

p(1 + γP)
(
1 + γ′

P

)(
βP̃t + P0

m

)

P0
p(1 + γP)

(
(1 + γ′

P)ṽm (̃t) + ṽp (̃t) + ṽi (̃t) − v0
p

)
+
(
βP̃t + P0

m

)
(1 + γ′

P)
(
(1 + γP)ṽp(̃t) + v0

p − ṽp (̃t)
). (23b)   
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since the dissolution process of the inclusion has finished at ̃t = 1. For 
the special case where the properties of the matrix are time- 
independent, Pm (̃t) = P0

m, corresponds to βP = 0, as the term (nP0
pv0

p)

in Eq. (25a) is always positive, the variation of Pc (̃t) with respect to ̃t has 
the same sign of γP, and for the plate-like inclusions, n = 1, it is constant 
while for the fiber- and sphere-like inclusions, n = 2, and 3, it decreases 
gradually to zero at t̃ = 1. According to Eq. (25b), the properties of 
composite remain constant for the over-critical conditions since βP = 0. 

To increase the clarity of parametric study, in the following, first, the 
properties of the matrix are assumed time-independent, βP = 0, to focus 
on the effect of γP, and then the combined effect is investigated. Besides, 
the following dimensionless ratios of properties are defined as, 

R0
pm =

P0
p

P0
m
,The ratio of the initial properties of the inclusion to the matrix,

(26a)  

Rcm (̃t) =
Pc (̃t)
P0

m
,The reinforcing parameter of the composite, (26b)  

R̄cm (̃t) =
Rcm (̃t)
Rcm(0)

,The normalized reinforcing parameter of the composite.

(26c) 

The normalized dimensionless reinforcing parameter, R̄cm (̃t), is ob-
tained by dividing the reinforcing parameter, Rcm (̃t), by its initial value 
at ̃t = 0. Hence, its variation with respect to ̃t represents the effect of 
dissolution and diffusion processes compared to its undissolvable, time- 
independent counterpart. The percent of changes in this normalized 
parameter at the end of the time window, ̃t = 1, is defined as, 

ΔR̄cm(%) =
R̄cm(1) − R̄cm(0)

R̄cm(0)
× 100 = (R̄cm(1) − 1) × 100. (26d) 

Fig. 6(a) shows the variation of normalized dimensionless reinforc-
ing parameter, R̄cm (̃t), through the normalized time window, 0 ≤ t̃ ≤ 1 
for different types of inclusions, n=1, 2, and 3. It is assumed that the 
properties of the matrix are time-independent, Pm(̃t) = P0

m, (βP = 0), and 
the effect of the efficiency parameter of the inclusion in the interphase, 
γP, is investigated. It is seen that for γP = 0 the properties of the com-
posite are time-independent as dissolution of the inclusion does not 
change its properties and its total amount in the composite. However, 

positive, and negative values of γP increases and decreases the properties 
of composite with respect to ̃t, respectively (see Eq. (25a)). It is seen that 
the 3D dissolution, n = 3, experiences the highest variation and the 1D 
shows the lowest, nevertheless, for a specific value of γP, all types of 
inclusions result in the same properties of a composite at the end of the 
time window, ̃t = 1, when the inclusions completely fade, and it will be 
constant for ̃t > 1 for the over-critical conditions as the properties of the 
matrix is assumed time-independent (diffusion of interphase through the 
matrix does not change the properties and the total amount of the matrix 
within the composite, see Eq. (25b)). Since β = 0, according to Eq. (25c), 
the extremum happens at ̃t = 1. As the effect of negative and positive 
values of γP are symmetric with respect to R̄cm (̃t) = 1, in the upcoming 
parametric studies, only its negative values are chosen. 

Fig. 6 (b) and (c) respectively prob the influence of the initial volume 
fraction of the inclusion, v0

p , and the relative properties of the inclusion 
to the matrix, R0

pm, on the percent of changes in the normalized 
parameter, ΔR̄cm, assuming constant properties for the matrix, βP = 0. 
Note that ΔR̄cm is not affected by dissolution dimension, n, as R̄cm(1) is 
the same for all types of the inclusions (see Fig. 6(a)). From Fig. 6(b) one 
can observe that increasing γP linearly increases the changes in the 
properties of composite with respect to time and for all values of γP 
increasing the initial volume fraction of the inclusion, v0

p , causes higher 
changes in the properties of the composite, ΔR̄cm, because the only 
reason for time-dependent properties is the changes in the properties of 
the dissolved inclusion (the higher v0

p , the higher changes). In Fig. 6(a-b) 
the properties of the inclusion are considered 10 times of the matrix, 
R0

pm = 10. The effect of this parameter, on ΔR̄cm is investigated in Fig. 6 
(c) for different initial volume fractions of the inclusion. A high value of 
γP = 0.9 corresponds to a 90% reduction in the properties of the inclu-
sion due to dissolution is chosen to represent a case with high time- 
dependency. It is seen that increasing R0

pm from 10 to a high value of 
100 increases the changes in the properties of the composite at the end of 
the time window, however, the changes are slight for high initial volume 
fractions. In other words, when the properties of the inclusion increase 
with respect to the matrix, the time dependency of the properties of the 
composite increases, however, it tends to be almost constant after a high 
enough R0

pm. For instance, from the case presented in Fig. 6(c), for a low 
value of v0

p = 0.1 the variation of R0
pm affects ΔR̄cm even for high values 

like R0
pm = 100, while for v0

p = 0.5 and 0.9, the value of ΔR̄cm is almost 

Fig. 6. The parametric study of the normalized reinforcing parameters introduced in Eqs. (26c) and (26d)through the normalized time window, 0 ≤ ̃t ≤1 
based on the Voigt model in Eq. (22c). (a) The variation of normalized dimensionless reinforcing parameter, R̄cm (̃t), for different types of inclusions, n=1, 2, and 3. 
Note that for (a) it is assumed that βP = 0, v0

p = 0.5, γ′
P = 0, and R0

pm = 10. (b) The effect of the efficiency parameter of the inclusion in the interphase, γP, and (c) the 
effect of ratio of properties of the inclusion to the matrix, Rpm, on the percent of changes in the normalized parameter at the end of the time window, ΔR̄cm. Note that 
for (b) and (c) it is assumed that βP = 0, γ′

P = 0, and γP = 0.9 and that ΔR̄cm is not affected by dissolution dimension, n. 
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constant for R0
pm > 50, and R0

pm > 20, respectively. 
In Fig. 7(a-c), a matrix with time-dependent properties, βP ∕= 0, is 

considered (combined effect of γP, and βP). The initial volume fraction of 
the inclusion is v0

p = 0.5, and the efficiency parameter of the inclusion in 
the interphase is γP = − 0.25. It is seen that for negative values of βP the 
variation of composite properties with respect to time is strictly 
descending and there is no extremum, while for βP > 0, where γP, and βP 
behaves opposite, an extremum is observed for all types of inclusions, n. 
From Eq. (25c), for the plate-like inclusion, extremum happens at ̃text =

1, while for both fiber- and sphere-likes the extremum is located 
somewhen t̃ext < 1. For the under-critical, and critical conditions the 
curves are valid only until t̃ = 1, while the over-critical condition is 
valid until ̃t = t̃m = 2. It is seen that for all types of inclusions over the 
time window, ̃t > 1, the variation in the properties of the composite is 
linear since only the time-dependent matrix is in charge which is 
assumed to vary linearly (see Eq. 19a). This descending-ascending 
behavior suggests a possibility for optimizing the properties of the 
composite by proper tuning of the solidification time, however, note that 
it needs opposite signs for βP, and γP, which is an intrinsic characteristic 
of the mixture. 

The final part of this section compares three different proposed 
models. From the literature of composite materials, it is proved that the 
actual elastic constants of composites lie somewhere in the interval 
between the Voigt and Reuss predictions. Thus, they are respectively the 
upper and lower bounds of the true value and all the other micro-
mechanics models like H-T locate between them. Unlike the Voigt model 
which provides a reasonable estimation for some special cases (the 
longitudinal modulus and the Poisson’s ratio of continuous composites), 
the Reuss model is an inaccurate underestimation. In the meanwhile, the 

H-T model as a semiempirical equation containing a fitting parameter 
can fill the gap for predicting the properties of composites. According to 
the classical 2-phase H-T model, the curve fitting parameter, ξ, is equal 
to 1, 2, and 2αp, for the transverse modulus (continuous inclusions on a 
square array and discontinuous aligned inclusions), the shear modulus 
(continuous inclusions on a square array and discontinuous aligned in-
clusions), and the longitudinal modulus of aligned discontinuous in-
clusions of the aspect ratio of αp, respectively [78,11]. It can be shown 
that ξ = 0, converts the H-T model to the Reuss, while with a very large 
curve fitting parameter, ξ = ∞, it reaches the Voigt. 

Fig. 7 (d-f) depict the variation of normalized dimensionless rein-
forcing parameter, R̄cm (̃t), through the normalized time window, 0 ≤ t̃ ≤
1 for different types of inclusions, n=1, 2, and 3, and the effect of the 
curve fitting parameter of the H-T model, ξ, is investigated. As the effect 
of all the parameters is studied in detail, to focus on ξ it is assumed that: 
βP = 0, γP = − 0.5, R0

pm = 10, and v0
p = 0.5. It is seen that the direct and 

inverse rules-of-mixture present far apart graphs and as expected, by 
increasing ξ the H-T moves from the Reuss to the Voigt. Since increasing 
ξ is equivalent to higher aspect ratios for the case of discontinuous in-
clusions, it is concluded that increasing the aspect ratio of inclusions 
results in higher changes in the properties of the composite with respect 
to time for all types of inclusions, n. 

3.4. Strength of Dissolvable Composites 

3.4.1. The 3-phase micromechanics model for strength of composites 
Micromechanics models for predicting the strength of composites are 

more complicated since they should account for different failure 
mechanisms. The strength of composites is defined as the maximum 

Fig. 7. The variation of normalized dimensionless reinforcing parameter, R̄cm (̃t), with respect to the dimensionless time, ̃t. (a) to (c), for a matrix with time- 
dependent properties based on the Voigt model presented in Eq. (22c) for 1D, 2D, and 3D dissolutions, respectively. Note that for (a) to (c) it is assumed that v0

p = 0.5, 

γP = − 0.25, γ′
P = 0, and R0

pm = 10. (d) to (e), the comparison of the three proposed dissolvable micromechanics models (Voigt, Reuss, and H-T) for 1D, 2D, and 3D 

dissolutions, respectively. Note that for (d) to (e) it is assumed that v0
p = 0.5, γP = − 0.5, βP = 0, γ′

P = 0, and R0
pm = 10.
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stress that can be tolerated at its failure strain. The different load 
transformation scenarios for continuous and discontinuous composites 
result in different approaches for the evaluation of the strength. In this 
section, the study of strength is limited to the case of ultimate tensile 
strength of dissolvable composites containing continuous inclusions 
and, therefore sphere-like inclusions, n = 1, are not considered. Before 
establishing the model, it is required to evaluate the strength, Si (̃t), and 
the failure strain, ei (̃t), of the interphase as a function of ̃t from Eqs. (20a) 
as, 

Si (̃t) = f̃ ip (̃t)(1+ γS)S
0
p + f̃ im (̃t)

(
1+ γ′

S

)
Sm (̃t), (27a)  

ei (̃t) = f̃ ip (̃t)(1+ γe)e
0
p + f̃ im (̃t)

(
1+ γ′

S

)
em (̃t). (27b)  

Having the strength and the failure strain of the interphase from Eqs. (27 
a-b), a linear approximation for its stress-strain curve with a slope of 
Si (̃t)/ei (̃t) can be assumed. 

Unlike the micromechanics models for prediction of the elastic 
constants presented in Section 3.3, where the properties of all the 
components contribute completely, in the case of strength prediction, 
the main question that needs to be answered first is: in which strain does 
the composite fail? In the classical micromechanics models for contin-
uous inclusions, it is acceptable to assume that the failure strain of 
composite equals the inclusion, because failing in lower strains results in 
losing the main part of the reinforcing effect of the inclusion. In other 
words, it is assumed that the matrix in the composite can elongate 
enough to receive the whole reinforcing potential of the inclusion. This 
assumption can be inherited by the dissolvable model only for the initial 
moment, ̃t = 0, since the failure strain of a dissolvable composite, ec (̃t), 
is generally time-dependent. Here, a linear approximation is assumed as, 

ec (̃t) = κ̃t + e0
p, (28a)  

κ =
ee

c − e0
p

t̃e
. (28b)  

It is seen that at the initial moment, ̃t = 0, consisting with the classical 
(undissolvable and time-independent) models, failure strain of com-
posite is identical to the inclusion, ec (̃t) = e0

p , and at the ending time, ̃t =
t̃e, it is equal to the failure strain of a fully interphase composite, ec (̃te) =

ee
c. The failure strain parameter of the composite, κ, leads the variation 

of ec (̃t) through the dissolution time. Negative values mean that the 
failure strain of the composite reduces over time, which is not desirable, 
while positive values enhance the elongation of the composite even 
higher than the inclusion. Note that, ee

c, which is required for calculation 
of κ parameter in Eq. (28b), is in fact the failure strain of the interphase 
at ending time as composite is fully converted to the interphase. Hence, 
it can be obtained from Eq. (27b) at ̃t = t̃e as, 

ee
c = v0

p(1+ γe)e0
p +

(
1 − v0

p

)
ee

m. (28c) 

The stress equilibrium equation for the dissolvable composites with 
continuous inclusions is constructed as: 

σc (̃t) = σp(̃t)ṽp (̃t) + σm (̃t)ṽm (̃t) + σi (̃t)ṽi (̃t). (29a)  

Then, the strength of the dissolvable composite, Sc (̃t), can be obtained as 
the tolerated stress at its failure strain, ec (̃t) as, 

Sc (̃t) = Spṽp (̃t) + Smṽm (̃t) + Siṽi (̃t). (29b) 

The parameters Sp, Sm, and Si represent the contribution of the in-
clusion, the matrix, and the interphase in the strength of composite at its 
failure strain, ec (̃t). If the failure strain of the composite, ec (̃t), is lower 

than the failure strain of a component, its contribution in the strength 
can be evaluated from its stress-strain curve: 

Sp = σ0
p(ec (̃t)), if ec (̃t) < e0

p, (κ < 0), (30a)  

Sm = σm(ec (̃t), t̃), if ec (̃t) < em (̃t), (30b)  

Si = σi(ec (̃t), t̃), if ec (̃t) < ei (̃t). (30c) 

Fig. 8(a) schematically shows the case that all the components have 
the failure strain lower than the composite failure strain. Note that, 
unlike the inclusion, the properties of the matrix and the interphase are 
generally time-dependent, and therefore, the stress-strain behavior and 
the strength of the matrix should be evaluated corresponding to the 
investigated time. 

Another scenario is that the failure strain of the composite is higher 
than that of a component. In this case, it is possible to assume that the 
component continues its elongation with constant stress equal to its 
ultimate strength. In other words, it means its original stress-strain 
curves are modified by adding a horizontal yielding plateau to elon-
gate beyond its failure strain measured individually (see Fig. 8(b)). In 
this case, the contribution of components in the strength of the com-
posite is simply equal to their strength, and Eq. (30) is replaced by, 

Sp = S0
p, if ec (̃t) ≥ e0

p, (κ ≥ 0), (31a)  

Sm = Sm(̃t), if ec (̃t) ≥ ei (̃t), (31b)  

Si = Si (̃t), if ec (̃t) ≥ em(̃t). (31c) 

Eqs. (31 a-c) impose that a component within a dissolvable com-
posite can stands the strains even higher than the ones that could 
tolerate individually. This assumption supports the idea that the prop-
erties of components tend to be more uniform during the dissolution and 
diffusion processes. 

To simplify the model, it is assumed that the inclusion is linearly 
elastic, and the matrix and the interphase obey the ideal elastic-plastic 
behavior and the yielding strain of them is always lower than the fail-
ure strain of the composite which is shown graphically in Fig. 8(c). As 
seen the contribution of the matrix and the interphase is always equal to 
their strength regardless of the value of the failure strain of composite, 
however, the inclusion contributes, Sp, treats based on the κ parameter in 
such a way that for κ ≥ 0 it is identical to the strength of inclusion and for 
κ < 0 it linearly decreases. The conclusion for the ideal model is, 

Sp = S0
p, if κ ≥ 0, (32a)  

Sp = S0
p

(

1+
κ
e0

p
t̃

)

, if κ < 0, (32b)  

Sm = Sm(̃t), (32c)  

Si = Si (̃t). (32d) 

Substituting the contributions of the components defined in Eq. (32), 
the partial volume fractions of the inclusion and the matrix within the 
interphase from Eq. (18), and the properties of the interphase from Eq. 
(27a), all into Eq. (29b), the final expression for the strength of the 
dissolvable composite emerges as, 

Sc (̃t) = S0
p

(
v0

p(1+ γs) − γsṽp (̃t)
)

+
(
βs̃t+ S0

m

)((
1 − v0

p

)
+ γ′

P

(
ṽp(̃t) + ṽi (̃t) − v0

p

))
, if κ ≥ 0, (33a)    
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where κ̄ = (k /e0
p ). 

3.4.2. The parametric study on the strength of continuous composites 
It is worth mentioning that in the case of κ ≥ 0, the formulation for 

the strength of the dissolvable composite in Eq. (33a) is essentially the 
same as the general expression for the properties of the composite in Eq. 
(22b) based on the Voigt model, and consequently, all the parametric 
studies and the conclusions on v0

p , γP, βP, and R0
pm = S0

p/S0
m parameters 

presented in the Section 3.3.4 (Figs. 6 and 7) are applicable for the 

strength. Hence, to prevent duplication, in the following the parametric 
study is carried out only for the case of κ < 0 formulated in Eq. (33b). 
Besides, as the proposed model for prediction strength is developed 
based on the assumption of continuous inclusions, the sphere-like in-
clusion, n = 3, is set aside, and to be concise, the parametric study is only 
performed for the fiber-like inclusions, n = 2, which are more popular as 
continuous reinforcements. In Eq. (33b) there are three parameters 
affecting the strength of the dissolvable composite over time: ̄κ tunes the 
contribution of the inclusion in the strength, γs reflects the strength ef-
ficiency of the dissolved part of the inclusion within the interphase, and 

Fig. 8. The schematic of the stress-strain curves of dissolvable composites and their components. the failure strain of the composite is (a) lower, (b) higher 
than all the components. (c) The schematic of the idealized model. 

Fig. 9. The effect of contribution parameter of the inclusion in the strength, κ̄, for the matrix with time-independent strength. (a) and (b), the strength 
efficiency parameter of inclusion within the interphase, γs, is assumed to be negative (-0.5) or positive (+0.5) respectively. (c) and (d), the strength of matrix, in-
creases or decreases over time for βs = +0.5 and -0.45, respectively. Note that for (a) to (d) is assumed that v0

p = 0.5, γ′
s = 0, βs = 0, and n = 2. 

Sc (̃t) = S0
p(1+ κ̄̃t)

(
v0

p(1+ γs) − γsṽp (̃t)
)
+
(
βs̃t+ S0

m

)((
1 − v0

p

)
+ γ′

P

(
ṽp (̃t) + ṽi (̃t) − v0

p

))
, if κ < 0, (33b)   

S.K. Jalali and N.M. Pugno                                                                                                                                                                                                                   



International Journal of Mechanical Sciences 266 (2024) 108913

15

βs represents the time-dependent strength of the matrix. The dimen-
sionless parameters of the strength are rewritten as: 

R0
pm =

S0
p

S0
m
,The ratio of strength of the inclusion to the matrix, (34a)  

Rcm (̃t) =
Sc (̃t)
S0

m
,The strength reinforcing parameter of the composite, (34b)  

R̄cm (̃t) =
Rcm (̃t)
Rcm(0)

,The normalized strength reinforcing parameter. (34c) 

First, in Fig. 9(a) and (b) it is assumed that the strength of the matrix 
is constant and time-independent (βs = 0) and the variation of normal-
ized dimensionless strength reinforcing parameter, R̄cm (̃t), through the 
normalized time window, 0 ≤ t̃ ≤ 1 for different contribution parameter 
of the inclusion, κ̄, is investigated. The initial volume fraction of the 
fiber-like inclusion, n = 2, is assumed v0

p = 0.5, and two different 
strength ratios of inclusion to the matrix, R0

pm = 10, and 100 are 
considered. From Fig. 9(a) it is seen that when the efficiency parameter 
of inclusion in the interphase, γs, is negative, the normalized strength of 
the composite reduces over time, and for higher κ̄ parameter this 
reduction is higher. It is obvious since γs < 0 means the dissolved part of 
inclusion presents lower strength compares to the strength of the un-
dissolved part and increasing the values of κ̄ negatively (remember κ̄ 
< 0) results in a lower contribution of inclusion in the strength of 
composite as the failure strain of composite becomes lower than the 
inclusion. One can see that increasing the inclusion to matrix strength 
ratio, R0

pm, from 10 to a high ratio of 100 (dash lines), slightly raise the 
observed reduction in the normalized dimensionless strength, R̄cm (̃t). It 
means for stronger inclusions dissolution more affects the strength of 
composite with respect to its initial condition at ̃t = 0, and it should not 
be wrongly concluded that the composites with stronger inclusions have 
lower strength. 

In Fig. 9(b), γs and ̄κ behave the opposite as the efficiency parameter 
is assumed to be positive. It is seen that regarding the values of these two 
parameters the variation of strength may be strictly ascending or 
ascending then descending, presenting a maximum value, and the effect 
of the inclusion to matrix strength ratio, R0

pm, becomes less noticeable 
when κ̄ increases. It should be noted that, apart from the present para-
metric study, in real conditions, the positive efficiency parameter of 
inclusion for the case of strength seems not to be realistic as γs > 0 means 
the dissolved part has higher strength than the original unsolved in-
clusion and consequently the graph presented in Fig. 9(a) may be more 
realistic. 

Finally, Fig. 9(c) and (d) demonstrates the effect of the contribution 
parameter of the inclusion, κ̄, for the matrix with time-dependent 
properties (β ∕= 0). The efficiency parameter of inclusion in the inter-
phase is negative, γs = − 0.25, and the initial volume fraction is 
considered as v0

p = 0.5 and for the over-critical condition, the matrix 
fading time is ̃tm = 2. It is seen that in Fig. 9(c) where the strength of 
matrix increases over time, βs = 0.5, the strength of composite may in-
crease even for negative efficiencies, γs = − 0.25, however, if the 
contribution of the inclusion is reduced by κ̄ parameter, the positive 
effect of the matrix over the time vanishes. In Fig. 9(d) it is seen that 
when all the three affecting parameters, γs, βs, and κ̄ are negative the 
strength of the composite is strictly descanting, as expected. 

4. Implementation of the Dissolvable Micromechanics Model 

In this section, the developed micromechanics model is implemented 
for two case studies of phase transformation due to dissolution. In the 
first case study, the model is calibrated to the long-term dissolution of 
fibers in bio-composites exposed to aqueous environments, approxi-
mating the observed degradation in the Young’s modulus of these 

composites over a six-month period. In the second case study, the model 
is fitted to predict the strength degradation due to fiber dissolution in the 
fabrication process of SPCs. 

4.1. Case Study One: Long-Term Dissolution of Fibers in Biocomposites 

In this case study, a degradable biocomposites material, introduced 
in [60], is chosen as an example of a composite subjected to long-term 
dissolution phase transformation in an aqueous environment. The ma-
trix is composed of degradable polypropylene (PP), which is reinforced 
by degradable phosphate-based glass fibers of initial diameter, D0

p =

47μm, continuously and unidirectionally aligned within the matrix with 
a mass fraction of 10%. The densities of components are needed to 
convert the mass fraction to the volume fraction. Since the densities are 
not reported in [60], a typical density of 2.5 g/cm3 for glass fibers and 
0.9 g/cm3 for the PP matrix is assumed which results in an initial volume 
fraction of fibers equal to v0

P = 0.0385. As a continuous fiber reinforced 
composite (n=2), the time-dependent Young’s modulus, Ec(t), of this 
phase transformed composite under dissolution of fibers can be pre-
dicted by Eq. (22b). Before starting dissolution due to exposure to water, 
at the initial state (t = 0), Eq. (22b) turns to a standard 2-phase 
time-independent Voight equation. Having the initial Young’s 
modulus of matrix, E0

m = 522 MPa, and of the composite, Ec(0) = 1500 
MPa [60], one can calculate the initial Young’s modulus of fiber, E0

p =

25.92 GPa. To proceed through dissolution time frame, it is essential to 
examine the changes in the volume fraction of fibers with respect to 
dissolution time. Fig 10(a) presents the experimental measurements for 
mass loss of the glass fiber over a six-month time interval [60]. Subse-
quently, the comparison of Eq. (4a) with the measured data reveals that 
an optimal fit is achieved with an average dissolution rate of q̄ =

0.344μm/month. 
Dissolved portion of phosphate-based glass fibers disperses into the 

surrounding aqueous environment leading to a partial mass loss of 
composite [60]. Hence, it is logical to consider that the dissolved 
segment does not contribute to load-bearing, implying an effective 
property of zero for the dissolved fiber. Referring to Eq. (21a), this 
condition signifies that the efficiency parameter equals γP = − 1. 

Given that the composite is fully immersed in the aquatic environ-
ment and the dissolved fiber is transferred to the surrounding medium 
right from the beginning of the examined interval, this suggests a high 
diffusion rate. This rapid diffusion rate suggests that the whole matrix 
undergoes the immediate effect of dissolved fiber in a very short initial 
period. Neglecting this diffusion-evolving period in comparison to the 
six-month interval under consideration results in the entire matrix un-
dergoing an instantaneous transition into an interphase. In the context 
of the developed model, the high diffusion rates indicate an exceedingly 
brief matrix fading time. According to Eq. (6), the matrix fading time, tm, 
and the diffusion rate, p̄, are inversely proportional and tm → 0 implies 
that p̄→∞. The experimental observations [60], indicating a low disso-
lution rate and a high diffusion rate, lead to a rate ratio well below its 
critical threshold, (q̄ /p̄)≪(q̄/p̄)crit. This implies that the composite re-
mains in a sunder-critical condition throughout the entire investigated 
interval, exhibiting the characteristics of a two-phase composite 
comprised of the fibers and an interphase zone. Note that in 
under-critical condition, the matrix is faded, and its volume fraction is 
zero. Having the volume fraction of fiber as a function of dissolution 
time, one can obtain the volume fraction of interphase zone from Eq. (8). 
As mentioned in [60], the of PP matrix is affected by the diffused fiber 
products and the aqueous environment. The modification of its Young’s 
modulus over dissolution time takes into account via its efficiency 
parameter, γ′

P, which is generally a function of dissolution time. Note 
that since it is assumed that there is no matrix in the composite, the 
variation of its modulus is also neglected, βP = 0. By substituting the 
experimentally derived parameters into Eq. (22a), one can obtain the 
Young’s modulus of the bio-degradable composite as a function of 
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dissolution time. The only undefined parameter is the efficiency 
parameter, γ′

P, which is used as the calibration parameter for fitting to 
the experiments. Fig. 10(b) depicts the calibrated functionality of as a 
quadratic polynomial γ′

P(t) = − 0.018t2 + 0.24t. Finally, Fig. 10(c) 
compares the calibrated model prediction for Young’s modulus with the 
measured experimental values. It is concluded that the proposed model 
provides a high level of flexibility, enabling precise calibration and 
prediction of the degradation effect on properties resulting from 
dissolution. 

4.2. Case Study Two: Short-Term Dissolution of Fibers in SPCs 
Fabrication 

As a case study of short-term dissolution, the proposed micro-
mechanics model has been applied to the experimental measurements of 
fiber reinforced (n = 2) single-polymer composites (SPC) presented in 
[53] to calibrate the parameters of the model and to demonstrate its 
capability in predicting the properties of a sample dissolvable SPC 
composites. The calibration focuses on the tensile strength estimation as 
the Young’s modulus of the component is in the same order of magni-
tude. Two types of fibers, named T- and W-types with diameters of 0.1 
mm and 0.18 mm are laid within the matrix whose annealed properties 
at the polymerization temperature are listed in Table 2. It is reported 
that increasing the dosage of the activator accelerates the solidification 
time. Four different dosages of activator, dose 1 > dose 2 > dose 3 >
dose 4 that result in four solidification time, ts1 < ts2 < ts3 < ts4, are added 
to the composite to adjust the level of dissolution of fibers. The corre-
sponding properties of the matrix, and the SPCs made by the two types of 
fibers, T, and W of the same initial volume fraction of v0

p = 0.15, are 
presented in Table 3. In addition, the micrographs of the SPCs associated 
with the different solidification times are presented in Fig. 11 from [53]. 
SPCT and SPCW notation corresponds to T- and W-type fibers, 
respectively. 

From Fig. 11(a-d), it is seen that for SPCT type, the provided 
experimental measurements almost cover whole the dissolution and the 
diffusion processes as the fiber and the matrix are fully faded at the 
minimum dosage of activator when the composite is converted to a 1- 
phase material (see Fig. 11(d)), while it does not happen for SPCW 
type with the fibers of higher diameter. Besides, the micrographs of 

SPCW type are only provided for the minimum and the maximum dos-
ages. Hence, the SPCT type composite is selected for the calibration of 
the dissolvable micromechanics model, and SPCWs measurements 
remain as the reference for testing the calibrated model. As the first step 
of calibration, it is essential to attribute the four available experimental 
measurements of SPCTs to the associated dimensionless times, approx-
imately based on the observation in Fig. 11(a-d): From the end, SPCT-4 
can be assumed as the ending time where both the fiber and the inclu-
sion fade, ̃t = t̃m = t̃e, SPCT-3 is considered as the fiber fading time, ̃t =

1. As the fading of fiber happens before the interphase, the situation is 
over-critical (See Fig. 5(c)). 

The sample SPCT-2 is somewhen enough far from the milestones and 
both dissolution and diffusion processes are clearly visible. Finally, the 
SPCT-1 sample is closest to the initiation of the process, where a narrow 
hardly visible interphase surrounded the fibers, which is assumed as the 
initial moment, ̃t = 0. Looking in detail at Fig. 11(b), the diameter of the 
fiber can be approximated as 0.077 mm for the SPCT-2 sample. Given 
the initial diameter of the T type fiber, D0

p = 0.1 mm, from Eq. (13a), the 
corresponding dimensionless solidification time of the SPCT2 sample is 
calculated as (̃ts2)T = 0.23. Besides, from Fig. 11(b) it is observed that 
the diameter of the interphase for the SPCT-2 sample is 0.119 mm. 
Replacing the initial volume fraction of the fibers, v0

p = 0.15, the so-
lidification time, (̃ts2)T = 0.23, and n = 2, one can calculate the matrix 
fading time, from Eq. (13c) as (̃tm)T = (̃ts4)T = 1.91. It is important to be 
aware that although the dosage of the activator and consequently the 
associated solidification times are the same for T, and W fibers, however, 
the dimensionless solidification times are different because they have 
different fiber fading times, tp, due to different initial diameters. From 

Fig. 10. The calibrated micromechanics model on the long-term dissolution of biocomposites exposed to an aqueous environment. (a) The calibrated 
dissolution rate of q̄ =0.344 μm/month via fitting Eq. (4a) to the measured mass loss of the phosphate-based glass fibers. (b) The calibrated efficiency parameter of 
the matrix within the interphase zone over the investigated six-month dissolution interval. (c) The comparison between the predicted variation of Young’s modulus to 
the experimentally measured variation [60] over the dissolution interval. 

Table 2 
The initial properties of the annealed fibers [53].  

Type Diameter, D0
p (mm) Tensile strength, S0

p (MPa) Failure Strain, e0
p (%) 

T 0.1 574 24.17 
W 0.18 599 25.03  

Table 3 
The properties of the matrix and the SPCs for different solidification times [53].  

Solidification 
Time 

Material 
Composition 

Sample 
Designation 

Tensile 
strength 
(MPa) 

Failure 
Strain (%) 

dose 1 (ts1) Matrix M-1 66.51 21.23 
Matrix + T SPCT-1 94.69 30.03 
Matrix + W SPCW-1 90.88 28.2 

dose 2 (ts2) Matrix M-2 70.30 20.45 
Matrix + T SPCT-2 70.57 34.69 
Matrix + W SPCW-2 76.42 30.59 

dose 3 (ts3) Matrix M-3 74.66 16.70 
Matrix + T SPCT-3 46.82 41.82 
Matrix + W SPCW-3 50.07 39.75 

dose 4 (ts4) Matrix M-4 74.79 17.75 
Matrix + T SPCT-4 32.50 71.64 
Matrix + W SPCW-4 38.10 46.90  
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Eq. (5) one can obtain, 

(
tp
)

W(
tp
)

T

=

(
D0

p

)

W(
D0

p

)

T

= 1.8. (35a)  

And then from the definition of dimensionless time in Eq. (12a), 

(̃t)W

(̃t)T
=

(
tp
)

T(
tp
)

W

=
1

1.8
. (35b) 

From Eq. (12b), the dimensionless matrix fading time is not related 
to the initial dimeter and as the initial volume fraction for T, and W fi-
bers is the same, (̃tm)W = (̃tm)T = 1.91. Table 4 summarizes the cali-
brated dimensionless solidification times for the eight experimental 
measurements reported in [53]. 

Fig. 12(a), depicts the experimental measurements of the strength of 
the matrix, with respect to time. As the actual processing time corre-
sponding to the activator dosages is not reported, the time-dependent 
strength of the matrix is mapped to the dimensionless time of the T 
type fiber, (̃t)T. The bilinear curve fitting for the strength is also pre-
sented and plotted in Fig. 12(a), from which the initial strength of the 
matrix at ̃t = 0 is S0

m = 67.41 MPa, and a positive slope of βs = 7.522 for 
0 < (̃t)T < 1, is fitted followed by a constant strength of 74.91 MPa for 
(̃t)T > 1. Note that the presented bilinear approximation can be simply 
mapped to the dimensionless time of W-type fibers using Eq. (35). 

Having the initial strength of the fiber and the matrix, one can pre-
dict the initial strength of composites, S0

c , before starting the dissolution 
and the diffusion process at t̃ = 0 as a classic composite. Comparing 
Tables 2, and 3, it is seen that all the SPCs have a failure strain higher 
than of the fibers which result in a positive contribution parameter of the 
fiber, κ ≥ 0, which means all the components fully contribute to the 
strength of composite with their ultimate strength. In this case, the three 

proposed models in Section 3.3 for the elastic constants are also valid for 
the strength if the general property of P is replaced by the strength, S. 
Considering ̃t = 0, ̃vp (̃t) = v0

p = 0.15, ̃vi (̃t) = 0, S0
p = 574 MPa, and S0

m =

67.41 MPa, the initial strength, S0
c , of the composite is calculated via 

Eqs. (22b), and (23b) for the Voigt, and the Resus models as 143.4 MPa, 
and 77.7 MPa, respectively. Comparing the calculated initial strength 
with the experimentally measured one for SPCT-1 (94.69 MPa) reveals 
an overestimation of 51% for the Voigt and an underestimation of 18% 
for the Reuss model as the upper and lower bounds. Here, it is mean-
ingful to apply the H-T model and calibrate its fitting parameter, ξ, at ̃t =
0 to the strength of SPCT-1. From Eq. (24), ξ = 2.58 fits the initial 
strength predicted by H-T to the experimentally measured strength of 
SPCT-1. The fitted H-T model is selected for the next steps of calibration 
of the model. Now, Eq. (24) with ξ = 2.58 is evaluated for the rest (̃t)T =

0.22, 1, and 1.91 listed in Table 3 to look for the efficiency parameters 
that match the corresponding measured strengths in Table 3 for SPCT-2, 
SPCT-3, and SPCT-4 samples. Note that the efficiency parameters of the 
fiber, γs, and the matrix, γ′

s, that reflect the quality of them within the 
interphase zone, are implicitly introduced in Eq. (24) as the strength of 
interphase, defined in Eqs. (20 c-d), and (21). Lacking detailed in-
vestigations on the strength of interphase, it is assumed that the effi-
ciency parameter of the fiber and the matrix are the same, γs = γ′

s. The 
calibrated efficiency parameters, with respect to the dimensionless time 
of the T type fiber, (̃t)T, are shown in Fig. 12(b). It is seen that the ef-
ficiency parameter is not constant and for the provided experiments in 
[53], it increases over the dimensionless time. Fitting the efficiency 
parameter, the calibration of the proposed micromechanics model is 
completed. 

Fig. 12(c) and (d) demonstrate the predicted strength by the three 
proposed models for T-type, and W-types SPCs, respectively. The cali-
brated efficiency parameter in Fig. 12(b) is applied to all the models, and 
the fitting parameter of the H-T model is assumed ξ = 2.58. Since the 

Fig. 11. Microscopy surface topography of SPCs [53]: (a) SPCT-1, (b) SPCT-2, (c) SPCT-3, (d) SPCT-4, (e) SPCW-1, (f) SPCW-4.  

Table 4 
The calibrated dimensionless solidification time on the experimental data provided in [53].   

SPCTs SPCWs  
SPCT-1 SPCT-2 SPCT-3 SPCT-4 SPCW-1 SPCW-2 SPCW-3 SPCW-4 

t̃s 0 0.23 1 1.91 0 0.128 0.556 1.06  
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efficiency parameter is calibrated using the experimental data of SPCTs, 
it is seen in Fig. 12(c) that the prediction by the H-T model fits perfectly 
the experiments as expected, and the Voigt and the Reuss models act as 
the upper and lower limits. To test the capability of the proposed cali-
brated model, the prediction of strength for W-type SPCs versus its 
dimensionless time, (̃t)W, are presented in Fig. 12(d) and compared to 
the experimental data in [53]. The strength of matrix presented in 
Fig. 12(a) is mapped to (̃t)W using Eq. 35(b) as, 

Sm (̃t) = 13.54(̃t)W + 67.41. (36a) 

The calibrated efficiency parameter of T-type SPCs, are used for W- 
types as the fiber and the matrix are essentially the same materials, and 
assuming the same dissolution and diffusion processes, the quality of 
portions of matrix and the fiber within the interphase zone is the same 
for T- and W-type SPCs: 

γs (̃t) = 0.109(̃t)W − 0.908. (36b) 

Compared to the experimental data, one can observe that the pro-
posed model is able to predict the decreasing trend of strength through 
the dissolution time with reasonable accuracy for the set of experimental 
data of W-type SPCs. It is noted that for the provided data in [53], the 
strength of both T- and W- SPCs for a low dosage of the activator is 
significantly lower than the pure matrix with the same dosage (from 
Table 3, dose 3 around 35%, and dose 4 around 50%). It means the 
interphase zone is remarkably weaker than the matrix, which is reflected 
to the model as the negative efficiency parameter, γs. 

5. Conclusion 

In conclusion, this study introduces a novel micromechanics model 
tailored to predict the evolving properties of composites experiencing 
the gradual dissolution of reinforcing inclusions as a phase trans-
formation problem, leading to the formation of an interphase zone 
comprising the diffused dissolved portion within the matrix. A thorough 
dimensionless parametric investigation is conducted to elucidate the 
impact of all parameters introduced in the model. The proposed model 
can be used in various situations, including predicting properties during 
the manufacturing of SPCs and dealing with long-term dissolution in 
different conditions, such as industrial or biological settings, as 
demonstrated in the case studies. The key considerations, limitations 
and findings drawn from the developed model can be outlined as 
follows: 

• Effect of inclusion shape in dissolution: As a novelty, by intro-
ducing the dissolution dimension (1D for plate-like, 2D for fiber-like, 
and 3D for spherical-like inclusions), the model is able to consider 
the influence of inclusion shape on the variation of volume fraction 
over the dissolution time. While the presented analytical model 
provides a simple yet effective approach with a sufficient degree of 
freedom for predicting the observed experimental behavior in com-
posites due to phase transformation, the use of the model requires 
having an assessment of the average dissolution and diffusion rates. 

Fig. 12. The calibrated micromechanics model on the short-term dissolution and diffusion of fibers in fabrication of SPCs. (a) The variation of the strength 
of the matrix with respect to dimensionless time of the T-type fibers. Note: The time-dependent properties of the matrix can be mapped to the dimensionless time of 
the W-type fibers via Eq. (35). (b) Calibrated efficiency parameter of the fiber and the matrix within the interphase, γs = γ′

s, versus the dimensionless time of the T- 
type fibers. (c) and (d), the comparison of the strength predicted by the proposed dissolvable micromechanics model with the experiments for T-type and W-type 
fibers, respectively. 
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• Efficiency of properties within the interphase: Two efficiency 
parameters have been introduced for the dissolved portion of in-
clusion and the diffusion-affected portion of the matrix. These two 
parameters reflect the quality of these two components of the 
interphase zone, comparing their virgin properties before dissolution 
and diffusion. As illustrated in case studies, these parameters can be 
effectively utilized as fitting parameters for calibrating the model 
according to experimental results.  

• Semi-Empirical Fitting Parameter: In cases where basic models of 
direct and inverse rule-of-mixture (Voigt and Reuss models) fail to 
accurately predict the observed experimental behavior, the modified 
Halpin-Tsai equation, due to its intrinsic fitting parameter resulting 
from its semi-empirical nature, can serve as a calibration parameter. 
This fitting parameter dependents on the aspect ratio and packing of 
the inclusion and can be utilized as a superior means of adjustment to 
implicitly take into account the shape of inclusions from reinforce-
ment perspective.  

• Effect of temperature: While the effect of temperature on the phase 
transformation process due to dissolution is not explicitly outlined in 
the presented model, this influence can be implicitly considered by 
temperature-dependent dissolution and diffusion rates, or by incor-
porating a temperature-dependent function for the properties and 
efficiencies of the inclusion and matrix within the model.  

• Model Implementation: The numerical implementation of the 
proposed model is straightforward due to its analytical closed-form 
nature. This feature makes it inherently efficient for both calibra-
tion and prediction processes. The simplicity of the model allows for 
low computational costs, especially when the necessary inputs for 
calibration are provided.  

• Limitations: Through the development of the model, we have 
overcome the limitations of classical models by incorporating time- 
dependent variations in volume fractions and considering scenarios 
of interphase growth. Constructing the evolving interphase involves 
the development of a time-dependent three-phase model, rooted in 
three established classical micromechanical approaches, the Voigt, 
the Reuss, and the semiempirical Halpin-Tsai equation. It is imper-
ative to recognize that the model introduced herein is not equipped 
to foresee certain phenomena, including interfacial shear strength, 
weakened bond or debonding between the inclusion and the matrix. 
This limitation stems from fundamental simplifications inherent in 
the chosen classical model as its foundation, however, the estab-
lished model incorporates the failure of the interphase zone by of-
fering an indirect means of controlling the interphase performance 
throughout the phase-transformation process by adjusting the effi-
ciency parameters of dissolved fiber and under-diffusion matrix 
within the interface. Nonetheless, it is crucial to differentiate be-
tween phase transformation in the form of dissolution, usually 
induced by elevated temperatures, and progressive degradation 
resulting from adverse environmental conditions, such as corrosion. 
In dissolution, improved bonding between the inclusion and the 
matrix might occur, whereas, in the case of the latter, the effect is 
often the opposite. In future investigations, the authors have planned 
the ongoing refinement and extension of the proposed model to 
systematically address and overcome the acknowledged limitations. 

In summary, the developed model not only provides a valuable tool 
for predicting the behavior of composites during phase transformation 
but also serves as a foundation for further advancements in under-
standing and optimizing composite materials. Its simplicity, versatility, 
and potential for calibration make it a promising asset for researchers 
and practitioners in the composite community seeking accurate pre-
dictions and insights into the complex interplay of phase 
transformations. 
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