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A B S T R A C T   

The capability of complex micro-texturing technique for tuning the transition from static to kinetic friction is 
investigated based on a two-dimensional (2D) lattice spring block model. Results reveal that implementation of 
micro-texturing remarkably decreases the static friction coefficient even for a small amount of covering per-
centage, however this effect gets slight after covering percentage of about 10%. It is observed that elongation of 
micro-texturing cavities perpendicular to the sliding direction can improve its reducing effect on static friction 
coefficient. Furthermore, as simulations prove, using complex shapes of micro-texturing cavities with sharp 
vertexes slightly modifies the frictional response.   

1. Introduction 

Friction is the resistance to motion experienced when one body is 
moving over another. As a subdomain of tribology, it is known as one of 
the oldest practical topics in science and technology due to its central 
importance in determining the efficiency and functionality of many 
manmade devices for everyday life applications dealing with surface 
contacts. Despite intensive studies since ancient times by outstanding 
scientists, e.g., Leonardo da Vinci, Amontons and Coulomb (AC), sum-
marized as “Amontons-Coulomb constitutive laws of friction” [1–3], 
various aspects are still open as a result of multiscale complex nature of 
interface between bodies in relative motion. In spite of the simplicity of 
classical AC laws of friction, they can predict the transition from stick to 
slip in a sharp sense, stating that no sliding occurs as long as the ratio of 
the shear force to the normal load remains below a threshold known as 
the static friction coefficient. This assumption divides the sliding friction 
timeline into two regimes, i.e., the static (pre-sliding) friction and the 
kinetic (dynamic) friction regime. Transferring from the former to the 
latter demands for formation and propagation of micro-sliding at the 
interface which precedes the macro-sliding of the bodies in contact. The 
classic AC friction formulation has the limitation of constants friction 
coefficients, although has been proved to be valid under certain condi-
tions for many couples of materials in contact, however, the modified 

formulations like rate-and-state friction law [4,5] are suggested to 
consider the dependency of friction coefficients to sliding velocity and 
sliding duration. 

In many realistic contacting surfaces, in addition to the micro-scaled 
surface roughness, presence of intrinsic or artificial meso- and/or macro- 
scaled patterning significantly affects the characteristics of the contact 
offering an extra degree of freedom for tunability. This phenomenon has 
been widely observed in biological contacting systems commonly in the 
form of hierarchical patterning, e.g., gecko paw [6,7], insect legs [8], 
and human skin [9]. This supports the idea of bioinspired surface 
patterning for optimal designs considering the fact that both maximizing 
and minimizing the friction coefficients are demanded, as the friction is 
not always a nuisance like tires and brakes of cars. Experimental in-
vestigations [10–12] and numerical simulations at molecular levels [13] 
have confirmed the successful manipulation of friction by the imple-
mentation of different geometries of artificial surface patternings in both 
dry and wet slidings. On the other hand, recent developments in modern 
chemical [14] and physical [15] techniques for pattern implementation, 
from nano to macro scales in combination with multi-material 3D 
printing facilities [16,17], have provided a unique platform for reali-
zation of these optimal designs. 

Among different choices for simulating the phenomenon of transi-
tion from static to kinetic friction regimes and predicting the effect of 
surface patterning on the frictional response in both local and global 
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points of view, the lattice spring-block model has been cited as an effi-
cient approach thanks to its simplicity and flexibility for overcoming the 
inherent complexities of simulating rough patterned surfaces as well as 
considering dependencies of the applied sliding velocity and normal 
pressure. Capozza and Urbakh [18] established a 1D spring-block model 
for understanding how and why the values of static friction coefficient 
can vary within wide limits and proposed a relationship between 
measured values of static friction and pre-slip stress profiles at the 
frictional interface and predict how the range of variation of the static 
friction depends on material properties and on the size of the slider. 
Amundsen et al. [19] suggested a 1D spring-block model to develop an 
analytical prediction for the length of precursors as a function of the 
applied tangential load and correlated the microscopic and macroscopic 
friction coefficients in the model. It allowed for robust comparison with 
experimental observation of stick-slip motion. An elastic 2D 
spring-block vertical model, where the bottom layer of blocks is in 
frictional interaction with the substrate, was proposed in [20] and a 
mechanism for slow slip was revisited and it was demonstrated that fast 
slip and fast fronts have a different inertial origin; it was also revealed 
how both the local shear to normal stress ratio and the local stiffness are 
involved in the selection of front type and front speed. Costagliola et al. 
[21] proposed a 2D lattice spring-block model to evaluate the effect of 
surface patterning in form of arrays of cavities and pillars on the fric-
tional properties of elastic sliding surfaces and it was shown how friction 
can be effectively tuned by appropriate design of such surface features. 
In addition, using the same model they investigated the correlation 

between slip precursors and topological length scales at the onset of 
frictional sliding in [22] and it was found that different types of 
detachment sequences are triggered by specific surface structures, 
depending on their scales and relation to sliding direction, leading to a 
macroscopically smooth transition to sliding in the case of hierarchical 
and/or anisotropic features. Berardo et al. [23] experimentally and 
numerically investigated the effect of surface patterning on the adhesive 
friction properties of polymer surfaces. They introduced a modified 2D 
spring-block which considers the local adhesion, and the effect of sliding 
velocity is implemented and a good agreement between the experiment 
and the numerical simulation was observed. The numerical prediction of 
frictional coefficients of composite hierarchical surfaces was carried out 
in [24] applying a 1D spring-block model with a heterogenous network 
of springs and it was shown that a remarkable reduction of static friction 
can be achieved by introducing hierarchical arrangements of varying 
local roughness values, or by introducing controlled material stiffness 
variations. Using numerical simulations based on a graded version of 2D 
spring-block model, Guarino et al. [25] investigated how graded mate-
rial properties affect the macroscopic frictional behavior, in particular, 
static friction values and the transition from static to dynamic friction, 
and the results suggested that the graded material properties can reduce 
static friction, opening possibilities for the design of bioinspired surfaces 
with tailor-made tribological properties. Implementing the 1D 
spring-block model presented in [26] for surfaces with grooves, Cos-
tagliola et al. [27] studied the effect of hierarchical surface patterning on 
the static and dynamic friction coefficients of an elastic material and 

Nomenclature 

l Dimension of discretizing block 
Atot Total sliding area 
Atex Micro-textured area 
Γ Micro-textured zone 
(x,y) Coordinate of sliding plan 
(x0,yo) Origin of micro-textured zone 
(xΓ ,yΓ) Boundary of micro-textured zone 
λ Size parameter of micro-textured zone 
φ Angle parameter of micro-textured zone 
s Edge parameter of micro-textured zone 
w Sharpness parameter of micro-textured zone 
Nx Number of discretizing blocks along x 
Ny Number of discretizing blocks along y 
N Total number of discretizing blocks 
E Young’s modulus of the slider 
ρ Density of the slider 
ν Poisson’s ratio of the slider 
V Sliding velocity vector 
Vx Velocity component along x 
Vy Velocity component along y 
P Total pressure on the slider 
Ω Damping parameter 
Ωc Critical damping parameter 
k1 Spring constant of straight neighbors 
k2 Spring constant of diagonal neighbors 
ks Spring constant of applying velocity 
Fni Normal force on block i 
mi Mass of block i 
Ns Number of sliding blocks 
dij Initial distance between blocks i and j 
u0 Initial location of blocks 
u Location of blocks 
u̇ Velocity of blocks 
Fsi Sliding force on block i 

Ffi Friction force on block i 
Fci Internal force on block i 
Fdi Damping force on block i 
a Acceleration of blocks 
τc Contacting stress 
τmax

c Maximum contacting stress 
t Time 
Δt Time step 
tT Total sliding time 
ts Transition time 
μ Friction coefficient 
μs Static friction coefficient (c.) 
μk Kinetic friction c. 
μs Local static friction c. (mean) 
μk Local kinetic friction c. (mean) 
σs Local static friction c. (standard deviation) 
σk Local kinetic friction c. (standard deviation) 
μsi Local static friction c. of block i 
μki Local kinetic friction c. of block i 
t∗ Dimensionless time 
Δt∗ Dimensionless time step 
t∗T Dimensionless total sliding time 
t∗s Dimensionless transition time 
V∗ Dimensionless velocity 
R∗ Dimensionless kinetic to static friction ratio 
Ω∗ Dimensionless damping 
τ∗c Dimensionless contacting stress 
μ∗ Dimensionless friction coefficient 
μ∗

s Dimensionless static friction coefficient 
μ∗

k Dimensionless kinetic friction coefficient 
σ∗

s Dimensionless static deviation 
σ∗

k Dimensionless kinetic deviation 
N∗ Percentage of sliding blocks 
A∗ Percentage of micro-texturing area  
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some possible mechanisms that explain how hierarchical structures can 
significantly modify the friction coefficients of materials were high-
lighted, providing a means to achieve tunability. Since the contact of 
two surfaces in relative rotating motion occurs in many practical ap-
plications, from mechanical devices to human joints, recently, a rotating 
version of 2D spring-block model was extended to study friction be-
tween surfaces in torsional contact in [28] and it was investigated how 
the model describes the behavior of an elastic surface slowly rotating 
over a rigid substrate, comparing results with an analytical calculation 
based on energy balance. 

The present work first presents a comprehensive parametric study on 
the 2D spring-block model developed for simulation of transition from 
static to kinetic friction in [21] to explain the effect of both internal 
parameters including the properties of mass-damper-spring network and 
the statistical parameters of local friction coefficients and external pa-
rameters, i.e., sliding velocity, normal pressure, and the correlation 
between them through a dimensionless form. Then, the capability of 
complex-micro-texturing for tuning the transition behavior from static 
to kinetic friction is discussed in detail considering the effect of size, 
orientation, and shape of micro cavity patterns. The finding of this study 
along with recent developments in the technologies of micro-texturing, 
such as engraving by Femto-lasers, offers a guidance for designing and 
optimizing real-world applications from macro-scale mechanical com-
ponents to MEMS devices. It can lead to tuning friction coefficient and 
improving overall performance of the parts on the contact. 

2. Problem definition 

2.1. Lattice spring-block model 

Emerging from conventional computational approaches, including 
frame network methods, molecular dynamics, and discrete element 
methods, the lattice-spring model stands as one of the pioneering 
simulation techniques successfully employed in solid mechanics. Due to 
its distinct physical representation, it has found widespread application 
across diverse domains, however, for specific fields, the model is tailored 
through necessary adjustments. The version of lattice-spring model 
employed in the study of friction is more known as block-spring model. 
The dynamic nature of sliding necessitates the inclusion of lumped 
masses which are represented as sliding blocks in the model. It enables 
the transmission of contact-induced loads through localized frictional 
interactions of the blocks. 

In present work, the two-dimensional (2D) lattice spring-block 
model [21,29] is used to investigate the effect of micro-texturing on 
the dry frictional behavior of elastic sliders based on the classical AC 

friction force assumptions [30] applying on discretized local contacting 
subareas. One can find a detail description of the model in [21]. 
Consider an elastic slider of Young’s modulus E and density ρ in contact 
to a rigid substrate under uniform total pressure P distributed on the 
total sliding area Atot and driven by a constant velocity V parallel to the 
contacting surface. The plane x-y is laid on the contacting surface while 
the z axis is perpendicular to the sliding plane. Being a multiscale fractal 
phenomenon, the asperity size of contacting surfaces can be considered 
from nano- to meso-scale [31,32] aligning with the scale we have 
investigated. Regarding the size of asperities of a mesoscale contacting 
area is in the order of microns [33] and keeping in mind that the applied 
textures for tuning the tribological properties of surfaces using current 
techniques like femto-lasers are in the range of microns, the contact 
surface is uniformly meshed by a square element of size l equals to 1 μm 
to guaranty the suitable mesh resolution. In fact, the continuous con-
tacting surface is replaced by a finite number of contact points. Here, the 
number of contacting points in both in-plane direction i.e., Nx, and Ny 

are chosen identical and hence their total number in the mesh, N, is N2
x =

N2
y . Since the problem is modeled in two dimensions, the thickness of 

the slider is an arbitrary parameter setting equals to l i.e., 1 μm to form a 
mesh of cubes for discretizing the whole slider. 

In the lattice spring model, the total mass of slider is distributed on 
the lumped masses, mi, located at the center of subareas. A network of 
linear springs, consisting of two kinds of linear springs k1 (aligned with 
the x and y axes), and k2 (diagonal), connects every block to its eight 
adjacent blocks. It is noted that, limiting the connections to the adjacent 
blocks, the long-range interactions that may arise from wave propaga-
tion are neglected; however, many researchers have reported the 
effective implementation of such lattice spring-block model for studying 
the transition from static to kinetic friction at least for low sliding ve-
locities [34–36]. Besides, diagonal springs are adopted in the model for 
bringing the Poisson’s effect in the simulation. It is shown that by setting 
the spring constants k1 = 0.75El, and k2 = 0.375El = 0.5k1, this spring 
network can mimic accurately the Young’s modulus of the slider but 
accepting the limitation of a non-adjustable Poisson’s ratio of ν = 1/3 
[37]. To consider the shear rigidity of the slider, the sliding velocity is 
applied to blocks through an elastic connection of stiffness ks = k2 [21]. 
Furthermore, to control the artificial oscillations of the mass-spring 
network, a damper is also inserted [26]. The schematic of lattice 
spring model is depicted in Fig. 1. 

The final step to establish the model is to define the contacting 
interaction between the slider and the rigid substrate. Every block has a 
local contact point and behaves individually based on classical AC force. 
It means block i needs a local static, μsi, and a local kinetic, μki, friction 
coefficients. These friction coefficients are chosen statistically using a 

Fig. 1. : The Schematic of the lattice spring-block model of the discretized contacting surface.  
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random Gaussian distribution as follows: 

g(μsi) =
exp(− (μsi − μs)

2/2σ2
s )̅̅̅̅̅

2π
√

σs
(1a)  

g(μki) =
exp(− (μki − μk)

2/2σ2
k)̅̅̅̅̅

2π
√

σk
(1b)  

where μs, μk, σs and σk are the mean values and standard deviations, 
respectively. Fig. 2 represents an example of random distribution of 
local static and kinetic friction coefficients. It is supposed that the zone 
exposed to micro-texturing are not in contact with the substrate. Hence, 
this surface modification is considered in the simulation by setting to 
zero the local friction coefficients of the blocks located on the zones 
removed by micro-texturing. 

2.2. Resultant forces 

During the simulation, the block i, with initial rest position u0 and the 
current position u(t), experiences different forces in the plane of sliding 
i.e., x-y plane. First, the sliding force, Fsi(t), from the shearing spring is: 

Fsi(t) = ks(u0 +Vt − u(t)) (2) 

Second, the resultant of internal forces, Fci(t), from the springs 
connected to the adjacent blocks is: 

Fci(t) =
∑na

j=1
kc
(
uij − dij

)
eij(t), c = 1 or 2 (3)  

where na is the number of adjacent blocks, kc is the stiffness of con-
necting spring between blocks i and j (k1 or k2), uij is the current distance 
of blocks i and j, dij is the rest distance of blocks i and j (l or 

̅̅̅
2

√
l), and 

eij(t) = (uj(t) − ui(t))/uij is the unit vector oriented from block i to block j. 
Third, the friction force, Ffi(t), from the contact point of the substrate 

obeys the classical AC friction force. The total normal force acting on the 
slider, Fn, is given by multiplying the applied normal pressure, P, by the 
apparent total area, Atot. Then, the normal force acting on the block i, Fni,

is obtained by uniform distribution of Fn on the blocks which are in 
contact to the substrate. Note that the blocks located within the surface 
textured zone are not in contact with the substrate and therefore do not 
carry the normal load. The normal force on the blocks, Fni, is assumed to 
be constant during the simulation. As long as the block i is at rest, i.e., 
static friction phase, the friction force balances the total applied load up 
to the threshold value defined by multiplying the normal force acting on 
the block, Fni, by the local static friction coefficient, μsi. After exceeding 
the threshold, a constant kinetic friction force in the opposite direction 
of movement of block i is applied, whose magnitude is obtained by 
multiplying Fni by μdi: 

Ffi(t) = − (Fsi(t) + Fci(t)) if |Fsi + Fci| ≤ μsiFni (4a)  

Ffi(t) = μkiFniėi(t) if |Fsi + Fci|〉μsiFni (4b)  

where ėi(t) = u̇i(t)/|u̇i(t)| is the unit vector of the velocity of block i. The 
fourth one is the damping force, Fdi(t), from the damper of damping 
parameter Ω. 

Fdi(t) = − Ωmiu̇i(t) (5)  

The resultant force acting on block i can be calculated as: 

ΣFi(t) = Fsi(t)+Fci(t)+Ffi(t)+Fdi(t) (6)  

2.3. Solution procedure 

From the numerical solution point of view, the present study is 
classified as a discontinues simulation, a sub-discipline of Computa-
tional Mechanics. For performing such a simulation, there is a variety of 
approaches like discrete element methods [38], molecular dynamics 
methods [39], etc., however, the main idea is time discretization of the 
governing equations of the system followed by explicit time integration 
schemes. These methods discretize the system to a network of inter-
acting lumped masses and implement the Newton’s law of motion to 
obtain the velocity and displacement of the ith particle from the un-
balanced forces applied to it. In Sections 2.1 and 2.2, discretization 
procedure and definition of interacting forces for the present study of 
elastic slider is explained in detail. The main goal of simulation is to 
solve the governing equation of motion, i.e., Newton’s law, for all 
consisting blocks of the elastic slider on the time period of t ∈ [0, tT ]
divided by the time step Δt. The acceleration of every particle, ai(t), can 
simply be calculated by dividing the resultant force in Eq. (6) by the 
mass of particle: 

ai(t) = ΣFi(t)/mi (7)  

The time integration is performed based on a finite-difference scheme, 
called the ‘velocity-Verlet’ algorithm [39] to update the position, ui, and 
the velocity, u̇i, of every individual block i as follows: 

ui(t+Δt) = 2ui(t) − ui(t − Δt)+ ai(t)(Δt)2 (8a)  

u̇i(t+Δt) = u̇i(t) + ai(t)Δt (8b)  

Considering the updated positions and velocities, the components of 
acting forces on blocks is updated through Eqs. (2–5). Having these, one 
can investigate the frictional behavior of the contacting surface e.g., for 
studying the transition from static to kinetic phase. 

Fig. 2. : A schematic of the variation of local friction coefficients distributed on the contact surface based on a random Gaussian function.  
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3. Results and discussion 

In this section, a comprehensive parametric study on tribological 
properties of the elastic slider based on lattice spring model is presented. 
To demonstrate the results, first some parameters need to be defined as 
the outputs. The friction coefficient, μ, is a global output that is the ratio 
of resultant sliding force to the total normal force, P, acting on the slider 
in every moment of simulation, namely: 

μ = (
∑i=N

i=1
Fsi)

/
(PAtot) (9)  

The static friction coefficient, μs, is the maximum value of μ at the 
transition time, t=ts. The kinetic friction coefficient, μk, is estimated by 
averaging the friction coefficient μ after fully transition to kinetic phase. 
The number of sliding blocks, having non-zero velocity, is named Ns. 
The contact stress, τci , is defined as a local output for every individual 
block to study the propagation of sliding through the contact surface: 

τci =
⃒
⃒Ffi +Fci

⃒
⃒
/

l2 (10)  

where || denotes the magnitude of the corresponding vector. Further-
more, some dimensionless parameters are introduced to generalize the 
results: 

V∗ =

̅̅̅̅̅̅
Eρ

√

Pμs
|V|,Ω∗ = Ω

̅̅̅̅̅̅̅̅̅̅̅̅
mi/k1

√
,N∗ = 100(Ns

/
N) (11a)  

(
t∗,Δt∗, t∗s , t

∗
T

)
=

̅̅̅̅̅̅̅̅
E/ρ

√
(t,Δt, ts, tT) (11b)  

R∗ = μk/μs,

(μ∗, μ∗

s , μ∗
k , σ∗

s ) = (μ, μs, μk, σs)
/

μs,

σ∗
k = σk/μk,

τ∗c = τc
/

τmax
c

(11c) 

τmax
c is the maximum value of contact stress during the simulation, 

then 0 ≤ τ∗c ≤ 1. At the next subsections, the results for non-micro- 
textured and micro-textured surfaces are discussed in detail. 

3.1. Non-micro-textured contact surface 

In order to make a basic insight into the influence of effective pa-
rameters, the dimensionless friction coefficient, μ∗, versus dimensionless 
time t∗ for R∗= 0.5, N= 625 (Nx=25), Ω∗= 0.1, and σ∗

s=σ∗
k= 0.05 is 

depicted in Fig. (3a). Eight cases, listed in Table 1, having different 
values of V, P, E, ρ, and μs but all resulting in the same value of 
dimensionless velocity, V∗= 0.03, are plotted. The velocity direction is 
parallel to the axis x. It is seen that for the same value of V∗, the μ∗-t∗

plots are identical in the static and the transition phases. Although the 
plots in the kinetic phase are not exactly coincident point by point, 
however, they fluctuate around the almost same average value. In 
Fig. (3b) one can see the same behavior for the percentage of sliding 
blocks. It is concluded that dimensionless velocity can be considered as 
an effective generalizing parameter in the forthcoming parametric 
study. However, it should be noted that in the upcoming presented re-
sults the values of P, E, ρ, and μs parameters are chosen equal to the case 
no. 8 in Table 1 and different values of V∗ achieved only by changing |V|. 
One should pay attention to μ∗

k, μ∗
s , t∗s , and N∗

max on the graphs. 
In Fig. 4, the dimensionless contact stress, τ∗c , is visualized for the six 

instants of simulations highlighted by the points from A to F in Fig. (3a). 
Placing this stress under close scrutiny provides significant information 
about the reasons for transitional behavior from static to kinetic phase: 
as soon as the simulation starts, obeying Eq. (2), the sliding force is 
applied to all the blocks resting at their initial location. The internal and 
damping forces are zero and the local friction force of every block stands 
against micro sliding. Therefore, the contact stress of all blocks linearly 
and equally increases. When micro sliding happens, this contact stress 
reduces suddenly which makes it an evidence for visualizing the 
microslip phenomenon. This linear increase continues until point B, 
where the sliding force exceeds the local friction threshhold for the 
blocks having the lowest values of local static friction coefficient, μsi, and 
first micro slidings bring up. The movements of these blocks from their 
initial rest position apply the internal forces through Eq. (3) to the 
adjacent blocks near to their threshhold. Consecuently, precursory 

Fig. 3. : Transition from static to kinetic phase with respect to dimensionless time, t∗, for V∗= 0.03, N= 625, R∗= 0.5, Ω∗= 0.1, and σ∗
s=σ∗

k= 0.05. a) dimensionless 
static coefficient, b) percentage of sliding blocks. 

Table 1 
Parameters of eight samples presented in Fig. 3 resulting in V∗= 0.03 (R∗=0.5).  

Cases |V| [mm/s] P [kPa] E [MPa] ρ [g/cm3] μs [-] 

1 0.0949 0.1 1 1 1 
2 0.9490 1 10 0.1 1 
3 1.8980 2 0.1 10 2 
4 0.9490 0.1 1 0.01 1 
5 4.7450 103 104 4 1 
6 0.1898 2 103 0.1 3 
7 0.9490 10 102 1 2 
8 0.0949 102 105 10 1  
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micro slip fronts are formed and start to propagate. It is in agreement 
with Fig. (3b) where the percentage of sliding blocks experiences a 
sudden increasing peak. It is interesting that at the point C, where the 
maximum global static friction coefficient is obtained, the micro slip 
fronts have not covered the whole contact surface yet. Passing point C, 
the micro slip fronts are fully and quickly propagated on the surface. 
Regarding point D, a second front of reduction in the contact stress is 
observed, which is propagated on the whole contact area at point E and 
corresponds to the lowest value of global friction coefficient. The tran-
sition step is followed by the kinetic phase, where the stick-slip phe-
nomenon governs the dynamics of blocks. The contact stresses of blocks 
at point F is demonstrated as a sample instant of this phase. 

Keeping in mind that the size of discretizing blocks are fixed to one 
micron, a convergence study on the size effect of simulated contacting 
area is performed to find a proper minimum area (number of blocks) that 
can realisticly represent a large contacting area. The μ∗-t∗ and N∗-t∗ plots 
for three different number of blocks i.e. N= 25, 625, and 5625 corre-
sponding to the total sliding area of Atot= 5 × 5, 25 × 25, and 75 × 75 
square microns are depicted in Fig. 5. It is observed that by increasing 
the contact area, the plots converge rapidly. Although a very small 
contacting area of 25 square microns seems to show reasonable results, 
the minimum contacting area of 625 square microns is here considered 
as a reliable sample to avoid undesired edge effects. Increasing the 
simulated area directly increases the simulation time, thus the only 
reason for simulating larger areas is the need of higher resolution for 
adopting complicated micro-texturing patterns. The distribution of 
dimensionless contact stress, τ∗c , is reported in Fig. (5c). 

Fig. 6 focuses on the effect of dimensionless velocity on the sliding 

time as well as simulation time. It is observed that the dimensionless 
sliding time, t∗s , is inversly proportional to the dimensionless velocity, 
V∗: 

t∗s ≅ (5/2)V∗− 1 (12) 

Regarding definition of V∗ in Eq. (11a) it means that for a certain 
values of Young’s modulud E and density ρ, increasing either P or μs 
makes a delay in the sliding time, ts, while increasing |V| speeds it up. 
Although increasing the term 

̅̅̅̅̅̅̅̅
E/ρ

√
decreases dimensionless sliding 

time, t∗s , from combining Eq. (11a) and Eq. (11b) one can concluded that 
the Young’s modulus does not have any effect on the sliding time, ts, 
while increasing density, this increses the inertia of the system and 
makes a delay in the starting of micro-slidings. 

Simulation time is correlated to the time step, Δt. On the other hand, 
selecting a proper time step supports the stability and convergene of the 
simulation. From simulations, it is observed that increasing dimen-
sionless velocity, V∗, demands for bigger values of Δt∗ to keep the 
simulation stable. Nevertheless, for high values of V∗ it is not possible to 
find a proper value for Δt∗ and the results are fluctuating. Fig. 7 presents 
the μ∗-t∗ and N∗-t∗ plots for V∗ = 0.2 as an example of instability 
appearance that cannot be fixed by tuning Δt∗. In all upcoming simu-
lations where 0.01 < V∗ < 0.2, the value of Δt∗ is set as follow to make a 
balance between speed and stability of simulation: 

Δt∗ = (2/3)V∗ (13) 

One may pay attention that for a slider with a certain number of 
blocks, the simulation time is explicitly related to the number of time 
steps needed before the micro-sliding starts, n∗

s , which is obtained by 

Fig. 4. : Visualization of dimensionless contact stress, τ∗c , for the six instants of simulations demonstrated by the points from A to F on Fig. (3a). Note: □τ∗c= 0, 
■ τ∗c= 1. 
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dividing Eq. (12) by Eq. (13): 

n∗
s = t∗s

/
Δt∗ = (15

/
4)V∗− 2 (14)  

where n∗
s increases dramatically by decreasing the dimensionless ve-

locity, V∗, see Fig. 6 again. For instance, decreseing V∗ from 0.05 to 0.01 
increases 25 times the simulation duration. 

The variation of dimensionless static friction coefficient, μ∗
s , with 

respect to dimensionless velocity, V∗ is denomstrated in Fig. 8. A slight 

increase is observed tending to μ∗
s= 1. Paying attention to the definition 

of μ∗
s in Eq. (11c) it means that for high values of V∗ the static friction of 

whole slider is getting closer to the mean value of local static friction of 
individual blocks, μ. 

Influence of damping parameter on the transition from static to ki-
netic phase with respect to dimensionless time, t∗, for V∗= 0.03, 
N= 625, R∗= 0.5, and σ∗

s=σ∗
k= 0.05 is presented in Fig. 9. It is observed 

that damping parameter does not affect the static phase unlike the 
transition and dynamic phases. Increasing damping parameter causes an 
increase in dynamic friction coefficient, however, for the damping 
value, Ω, comparable to the frequency of the mass-spring network, 
̅̅̅̅̅̅̅̅̅̅̅̅
k1/mi

√
, i.e. Ω∗ around 1 and higher, the stick-slip behavior vanishes 

and all the blocks move toghether, N∗= 100. All the upcoming results 
use Ω∗= 0.1. 

In Fig. 10, the μ∗-t∗ is depicted for four different values of dimen-
sionless kinetic to static friction coefficient ratio, R∗. It is seen that this 
ratio dictates how maximum value in static phase and the mean value in 
the dynamic phase are close; for R∗= 1 the transition phase has almost 
vanished. Besides, for R∗= 0.5 and 0.75 the dimensionless kinetic fric-
tion coefficient, μ∗

k, is around the mean value of local kinetic coefficient, 
μk, while for the low value of R∗= 0.25, μ∗

k is lower than μk. 
Fig. 11 compares the distribution of local static friction coefficient, 

μsi, for starting the propagation of micro-sliding fronts. As it is expected 
the local minimums of μsi, marked by circles on Fig. (11a), are the 
starting points of micro-sliding. It is concluded that these local mini-
mums lead the transition from static to kinetic phase. Two determinative 
factors affect the local minimums of μsi: random distribution and 
dimensionless static standard deviation, σ∗

s , which are related to the 
topology of real contact surface. The former determines the location of 

Fig. 5. : Effect of the size of simulated contacting area for V∗= 0.03, R∗= 0.5, Ω∗= 0.1, and σ∗
s=σ∗

k= 0.05. a) dimensionless friction coefficient, b) percentage of 
sliding blocks, c) dimensionless contact stress by varying the discretization: □τ∗c= 0, ■ τ∗c= 1. 

Fig. 6. : The effect of dimensionless velocity on sliding time and simulation 
time (N=625, R∗=0.5, Ω∗=0.1, and σ∗

s=σ∗
k=0.05). 
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minimums and the latter specifies the value of these local minimums 
relative to the mean value, μs. In order to make a better insight, variation 
of dimensionless static friction, μ∗

s , versus dimensionless static standard 
deviation, σ∗

s , for different values of V∗ is plotted in Fig. 12. Every 

simulation is done for five different random distributions of local friction 
coefficients and the mean value is presented and it is noted that the 
maximum of deviation observed in the obtained values of μ∗

s is less than 
0.015. Nevertheless, increasing σ∗

s shows a remarkable reduction in μ∗
s , 

regardless of the value of V∗. The reason is that reduction in the value of 

Fig. 7. : Transition from static to kinetic phase with respect to dimensionless time, t∗, for a high value of dimensionless velocity, V∗= 0.2, N= 625, R∗= 0.5, Ω∗= 0.1, 
and σ∗

s=σ∗
k= 0.05. a) dimensionless static coefficient, b) percentage of sliding blocks. 

Fig. 8. : The effect of dimensionless velocity, V∗, on the dimensionless static 
friction coefficient, μ∗

s (N=625, R∗=0.5, Ω∗=0.1, and σ∗
s=σ∗

k=0.05). Note: 
□τ∗c= 0, ■ τ∗c= 1. 

Fig. 9. : Effect of damping parameter on the transition from static to kinetic phase with respect to dimensionless time, t∗ for V∗= 0.03, N= 625, R∗= 0.5, and 
σ∗

s=σ∗
k= 0.05. a) dimensionless static coefficient, b) percentage of sliding blocks. 

Fig. 10. : Effect of dimensionless kinetic to static friction coefficient ratio, R∗, 
on the transition from static to kinetic phase with respect to dimensionless time, 
t∗, for V∗= 0.03, N= 625, Ω∗= 0.1, and σ∗

s=σ∗
k= 0.05. 
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local minumums μsi facilates the start of micro-slidings. It is also notable 
that for low values of σ∗

s , (μsi→μs), the μ∗
s approaches one, which means 

the global static coefficient of slider tends to mean value of local static 
friction coefficient, (μ∗

s →μs). For the lowest limit of σ∗
s →0, all the blocks 

slide simultaneously and the concept of micro-sliding fronts does not 
apply. The standard deviation of local kinetic friction coefficient, σ∗

k, is 
not responsible for the static and transition phases and only affects the 
random fluctuations around μ∗

k in the kinetic phase due to stick-slip 

phenomenon. Finally, it is worth nothing that the standard deviations 
σ∗

s and σ∗
k are the main parameters that reflect the micro-roughness of the 

surface and can be implemented advisedly to calibrate simulations to 
experiments. Here, the values of σ∗

s=σ∗
k= 0.05 are adopted for all the 

presented results, unless otherwise stated. 

3.2. Micro-textured contact surface 

In the following, we put forth the effect of micro-texturing on the 
transition from static to kinetic friction. The micro-texturing is imple-
mented to the model by setting to zero the local static and kinetic fric-
tion coefficients for the blocks located in the textured zone (μsi=μki=0). 
To gain a desirable resolution for modeling complex texturing geome-
tries, a network of 50 × 50 blocks, resulting in a sliding area of 2500 
square microns, is selected. The percentage of micro-texturing, A∗, the 
main characteristic parameter of micro-texturing, is defined as the ratio 
of micro-textured area, Atex, to the total sliding area, Atot : 

A∗(%) = 100(Atex/Atot) (15)  

The percent of reduction in μ∗
s is calculated as follows: 

Reduction in μ∗
s (%) = 100

(
μ∗

s

)

nontex −
(
μ∗

s

)

tex(
μ∗

s

)

nontex

(16)  

Here, the boundary of a micro-textured single cavity, Γ, is defined as: 

xΓ = xO + λ(cosφ + wcos(sφ) ) (17a)  

yΓ = yO + λ(sinφ − wsin(sφ) ) (17b)  

where (xO, yO) is the location of the orgin of single cavity, and λ controls 
its size. One can apply a surface texturing with a dimensionless texturing 

Fig. 11. : Propagation of micro-slip fronts on the contacting surface. a) distribution of local static friction coefficient, μsi, the blue zones (in colored version) marked 
by circles are the local minimums of μsi, b) the starting zones of micro-sliding, c) and d) propagation of micro-sliding. Note: □τ∗c= 0, ■ τ∗c= 1. 

Fig. 12. : Variation of dimensionless static friction coefficient, μ∗
s , versus 

dimensionless static standard deviation, σ∗
s , for different values of V∗ (N=625, 

Ω∗=0.1, and R∗=0.5). 
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percentage, A∗, on a contact surface which is discritized by N blocks of 
length l, by setting the controlling papameter, λ, to a corresponding 
values, λ∗, given by: 

λ∗ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Nl2A∗

100π(1 − sw2)

√

(18)  

For s= 1, the micro-textured cavity has an elliptical shape. When w= 0 it 
is a circle and increasing w elongates it parallel to x axis. By swaping 
definition of xΓ and yΓ , the elongation is along y axis. For s > 1, Eq. (17) 
represents a regular semi-polygons with s+1 curved edges. The curva-
ture of edges is controlled by w and have the capability to alter the 
sharpness of s+1 vertexes. When w= 0 the sharpness is the minimum 
resulting in a circle cavity while for w = 1/s the vortexes have the 
maximum of sharpness (see Fig. 13). 

First, a single circular cavity with s= 1 and w= 0 located at the center 
of sliding area covering five percent of area, A∗ = 5%, is considered to 
find a general idea how micro-texturing may tune the transition from 
static to dynamic friction. Fig. (14a) represents the propagation of 
micro-sliding fronts on a sliding surface with a single circular cavity and 
σ∗

s= 0.05. Although the sliding fronts are influenced by local minimums 
of μsi, however, the micro-texturing plays a significant role. For more 
distinction, in Fig. (14b) the standard deviation of local static friction 
coefficent is set to zero, σ∗

s= 0, to neglect the effect of the local mini-
mums and to focus on the micro-texturing. Keeping in mind that in 
Fig. (14b) the velocity is applied along x axis, it is seen that the micro- 
sliding front begins from the edge of micro-texturing and propagates 
symetrically having a tendency to the direction of sliding velocity. It is 
why the fronts form an elliptical propagating path. A similar bahavior is 
observed in Fig. (14c) where the sliding velocity is applied along the 
orientation of 45◦ with respect to x axis. 

In Fig. 15, the percentage of reduction in μ∗
s with respect to per-

centage of texturing, A∗, for single circular cavity micro-texturing with 
different values of σ∗

s is presented. It is seen that implementation of 
micro-texturing decreases remarkably the static friction coefficient even 
for the small amount of A∗= 1%. Although increasing A∗ magnifies this 
reducing effect, however, the rate of this effect degrades. In the other 
word, increasing the micro-textured area, does not offer a linear 
reducing effect on the static friction coefficient and it gets slight 

Fig. 13. : The geometrical parameters for definition of complex-micro-textured cavities.  

Fig. 14. : Representation of micro-sliding fronts propagation of a slider with a single circular cavity for V∗= 0.03, A∗= 5%, N= 2500, Ω∗= 0.1, and R∗= 0.5, a) 
σ∗

s= 0.05, and Vy= 0, b) σ∗
s= 0, and Vy= 0, c) σ∗

s= 0, and Vx=Vy. Note: □τ∗c= 0, ■ τ∗c= 1. 

Fig. 15. : Effect of percentage of micro-texturing, A∗, of a single circular cavity 
on the reduction of dimensionless static friction coefficient, μ∗

s , for different 
values of σ∗

s (V∗=0.03, N=2500, Ω∗=0.1, R∗=0.5, and σ∗
s=0). 
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especially after A∗= 10%. Furthermore, it is seen that increasing σ∗
s at-

tenuates the reducing effect of micro-texturing on the static friction 
coefficient. It results in another significant conclusion: the micro- 
texturing is less effective when the base non-textured surface has a to-
pology with high standard deviation of micro-roughness. In fact, the 
micro-textured area behaves like a local minimum of static friction μsi. It 
not only has a relatively large area but also includes many adjacent 
frictionless blocks with μsi= 0. For the surfaces with small standard 
deviations in σ∗

s , micro-texturing leads the propagation of micro-sliding 
fronts and presents a remarkable reduction in μ∗

s even more than 35%. 
However, when σ∗

s get larger, the surface has originally a lot of starting 
points for micro-sliding and consequently there is low aptitude for extra 
reduction in μ∗

s . It means that the micro-texturing technique is more 
efficient for tuning frictional behavior of surfaces with more uniform 
micro/topology. 

Fig. 16 probes the effect of elongation of micro-textured cavity with 
respect to the direction of sliding on dimensionless static friction coef-
ficient, μ∗

s for a constant value of dimensionless texturing percentage, 
A∗= 10%. To put under focus the influence of micro-texturing, the 
standard deviation is set to zero, σ∗

s= 0. For a circular cavity, the 
reduction in μ∗

s is around 31% and it is observed that elongation of cavity 
perpendicular to the sliding direction can improve slightly this reducing 
effect to reach 37% for a groove perpendicular to the sliding direction. 
Nevertheless, elongation parallel to the sliding direction shows an 
inappreciable opposite effect. It is noted that a groove parallel to sliding 
direction behaves similar to a circular cavity of the same A∗. Fig. 17 

Fig. 16. : Effect of elongation of single cavity on the reduction of dimensionless 
static friction coefficient, μ∗

s , (V∗=0.03, A∗=10%, N=2500, Ω∗=0.1, R∗=0.5, 
and σ∗

s=0). 

Fig. 17. : Distribution of dimensionless contact stress, τ∗c , of a micro-textured sliding surface for V∗= 0.03, A∗= 10%, N= 2500, Ω∗= 0.1, R∗= 0.5 and σ∗
s= 0. a) 

cavity elongated perpendicular to the sliding direction, b) cavity elongated parallel to the sliding direction, c) groove elongated perpendicular to the sliding direction, 
d) groove elongated parallel to the sliding direction. Note: □τ∗c= 0, ■ τ∗c= 1. 
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represents the distribution of dimensionless contact stresses corre-
sponding to Fig. 16. 

Fig. 18 draws attention to the shape of micro-textured cavities. Six 
different shapes are modeled to see the effect of number and sharpness 
of the vertexes: semi-triangle (s=2), semi-square (s=3), and semi- 
pentagon (s=4), each has two different sharpness’ named: Sharp 
(w=1/s), and Round (w=1/(5s)). From Fig. (18b) one can conclude that 
neither number nor sharpness of the vertexes does present a notable 
effect on μ∗

s . In the other word, unlike the propagation of cracks through 
an elastic media, propagation of micro-sliding fronts on the contacting 
surface is much less sensitive to the singularity in geometry. Note that 
engraving complex patterns increases the micro-texturing cost, in 
comparison to a simple circular cavity. 

4. Conclusion 

Present work investigates the capability of micro-texturing for tuning 
the transition from static to kinetic friction via a two-dimensional lattice 
spring-block model [21] based on local classical Amontons–Coulomb 
friction force assumptions. The conclusions are listed as follows:  

• Micro-texturing significantly decreases the static friction coefficient 
even for a small amount of covering percentage like 1%. However, 
for covering percentage larger than 10% the rate of this effect 
reduces.  

• It is found that micro-texturing process is more efficient for tuning 
frictional behavior of surfaces with lower standard deviation in local 
static friction coefficients. In other words, surfaces presenting more 
uniformity in micro topologies are better candidates for micro- 
texturing.  

• Selecting micro-texturing patterns which are more elongated 
perpendicular to the sliding direction can improve slightly its 
reducing effect on static friction coefficient. The effect of shape of 
micro-sized semi-polygonal cavities in terms of number of edges and 

sharpness of vertexes are studied and simulations reveal that the 
effect of shape slightly affect the frictional response. 
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