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Abstract
In this paper, we evaluate the strength, toughness and stiffness of
super-nanotubes, just recently discovered, and of the related fibre-reinforced
composites. The prediction of huge toughening mechanisms suggests the
feasibility of ‘super-composites’. We found the optimum for super-nanotubes
with a number of ∼2 hierarchal levels, similar to the optimization done by
Nature in nacre.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Carbon ‘super-nanotubes’ (STs) have very recently been
proposed, at the beginning of 2006 [1]; these structures
are built from carbon nanotubes connected by Y-junctions
forming a super-graphene that is then rolled to form a
carbon ST. Such a procedure can be repeated several times,
generating a hierarchical macroscopic tube. Nanojunctions
among nanotubes can be produced by introducing defects,
e.g. a pentagon–heptagon pair, into the hexagonal network
of carbon [2]. Thus, two nanotubes can be welded by
electron beam irradiation at high temperature, producing X-,
Y- or T-junctions [3, 4]. Such junctions open up the
possibility of creating new nanotube-based networks [5, 6]:
the ST is a relevant example [1]. Furthermore, a significant
advance towards ST realization has recently been proved
with the fabrication of hierarchically branched nanotubes [7],
suggesting that such complex supertubes could in the future be
realized.

The paper is organized as follows. In section 2
we derive the strength, stiffness and toughness of filled
super-nanotubes, as a function of their hierarchical level,
proposing a new optimization procedure; in section 3, the
same analysis is extended to super-composites reinforced by
the previously investigated super-nanotubes, including the
nonlinear toughening mechanism (fibre pull-out). Finally,
some conclusions are consistently drawn.

2. Mechanics and optimization of super-nanotubes

To build an ST a (single-walled) nanotube is considered
as the fundamental unit (ST(0)); a super-nanotube ST(1) is

topologically generated by substituting the nanotube atomic
bonds by entire nanotubes. Generalizing, an ST(k) will present
ST(k−1) ‘bonds’, and after N iterations an ST(N) is generated;
see figure 1 (adapted from [1]). The ST(N) is thus hierarchical
in nature and accordingly its strength is expected to be
strongly dependent on the size-index N [8]. For generality
we consider the ST(N) filled by a matrix. With σ0 being the
nanotube strength, ideal or effective, i.e. taking into account
the unavoidable presence of atomistic defects [9] that can play
a dramatic role, as recently discussed for the nanotube-based
megacable of the space elevator [10] (see also the related news
in Nature, 22 May 2006 and by J Palmer), and σM the matrix
strength, plausibly σ0 � σM.

In a plane cross-section of an ST(k+1), nkST(k) are present,
each of them with a cross-sectional area Ak (see figure 1,
k = 0–3, nk = n = 6). Thus, the total number of ST(k)

in an ST(N>k) is Nk = �N−k
j=1 n j . We here provide for an

ST(N) composed by N different materials and generating a
hierarchical rather than a fractal (i.e. self-similar) structure,
whereas for classical carbon STs nk = n = 6 ∀k [1].

For the sake of simplicity we start by considering a
zig-zag supertube. The failure is expected to take place in
the longitudinal supertubes belonging to the same fractured
plane cross-section surface (see [9], appendix III, ‘Zig-zag and
armchair fracture’). Accordingly, for such a stretched filled
zig-zag ST(N) the hierarchical equilibrium of the forces must
be formulated ∀k as

F ≡ AN σN = FST + FM = Nk Akσk + (AN − Nk Ak) σM

= N0 A0σ0 + (AN − N0 A0) σM, (1)

where F is the breaking force, FST, FM are the forces carried
by the longitudinal STs and matrix respectively belonging to
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Figure 1. Generation of STs (adapted from [1]). A nanotube (ST(0)) is considered as the fundamental unit (a); an ST(1) is generated by
substituting the carbon bonds by entire nanotubes (see the schematic view on the right) (b); thus an ST(2) will present ST(1) bonds (c), and an
ST(3) will present ST(2) bonds (d), and so on. After N iterations the hierarchical ST(N ) is generated.

the hypothetical fractured plane cross-section surface (e.g.,
as depicted in figure 1 for k = 1) and σk is the strength
of the ST(k). Note that ϕk = nk−1 Ak−1/Ak represents the
cross-sectional fraction of ST(k−1) in the ST(k) and thus φk =
�N−k

j=1 ϕ j is the ST(k) cross-sectional fraction in the ST(N>k);
consequently φ ≡ φ0 is the nanotube cross-sectional fraction
in the ST(N).

Strictly speaking, the hierarchical ST(N) is a fractal
(i.e. self-similar at all the size scales [8]) if nk = n and
ϕk = ϕ ∀k; for such a case Nk = nN−k and φ = ϕN .
Accordingly we expect FST ∝ RD

N (as we will verify by
deducing a constant D-value) where RN = √

AN /π is the
radius of the ST(N) and D is the fractal dimension of the ST(∞)

set. The constant of proportionality can be deduced by noting
that FST(AN = A0) = A0σ0, and thus FST = πσ0 R2−D

0 RD
N .

Comparing this result with the equilibrium of equation (1)
(i.e. from FST = πσ0 R2−D

0 RD
N = πσ0nN R2

0 ) we derive

N = D
ln RN /R0

ln n
, (2)

which defines the number N of hierarchical levels needed to
generate a ST(N) of radius RN .

The fractal dimension D can be determined noting that
AN − N0 A0 = AN (1 − φ), thus RN /R0 = (n/ϕ)N/2.
Introducing this result into equation (2) yields the fractal
dimension of the ST(∞) set:

D = 2 ln n

ln n − ln ϕ
. (3)

Since n > 1 and ϕ < 1, 0 < D < 2, and the ST(∞) is found
to have a lacunar two-dimensional cross-section, measurable
in a length raised to D. For example, for ϕ ≈ 3/4 (i.e., the
maximum value, corresponding to a hexagonal close-packing
factor) in carbon (n = 6) STs, D ≈ 1.72. Equation (2) shows
that only few hierarchical levels are required for spanning
several orders of magnitude in size: for example, to design
a macro ST(N) of radius RN = 1 cm, composed of nanotubes
with R0 = 1 nm, we only need N = 15 hierarchical levels
(ϕ ≈ 3/4, n = 6).

Equivalently to equations (2) and (3), the radius of the
ST(N) will be

RN = R0ϕ
N

D−2 . (4)

Similarly to the force equilibrium, the hierarchical energy
balance during fracture can be written as equation (1) with the
substitution F = AN σN → W = AN G N , where G N is the
energy dissipated per unit area created of the ST(N) and GM is
the fracture energy of the matrix.

Furthermore, the hierarchical compatibility of the
displacements during the stretching of the ST(N) would again
lead to equation (1) in which the force F = AN σN is
substituted by the force K = AN EN , where EN denotes the
Young’s modulus of the ST(N) and EM that of the matrix.

Thus, we predict the following ‘universal’ scaling:

PN = P∞ + (P0 − P∞) ϕN

= P∞ + (P0 − P∞) (RN /R0)
D−2 , P = σ, G, E (5)

for strength (P = σ ), toughness (P = G) or stiffness (P =
E ), in which P∞ = PM.

Note that for chiral nanotubes described by a chiral angle
ϑ (for the zig-zag configuration ϑ = 0, whereas for the
armchair ϑ = π/6), we roughly expect σ0 → σ0/cosα ϑ

in which α = 1–2 (see [9], appendix III); α = 1 would
correspond to a lattice composed of pure axial bonds, and
α = 2 to a continuum. Accordingly, chiral supertubes (and
nanotubes) are expected to be moderately stronger.

From equation (5) it is clear that the fractional physical
dimensions of the fractal ST(∞) set represents the cause of
the strength scaling, whereas for a Euclidean cross-section
(D = 2) no scaling is expected [8, 11]. For example, for an
empty carbon ST(16) with ϕ ≈ 3/4 (σ0 ≈ 100 GPa; see [9])
we deduce a theoretical strength σ16 ≈ 1 GPa. Note that for
P = σ, σ0/σ∞ → ∞ and D = 1.5 the strength scaling is
identical to the well-known Carpinteri scaling law [12].

However, note that if σ0 � σM we expect E0 � EM but
G0 < GM, since in classical materials strength (or stiffness)
and toughness are competing parameters (e.g. diamond is
hard but brittle), i.e. usually it is the softer matrix that is
capable of dissipating the energy W during fracture: thus,
smaller is stronger but less tough (0 < D < 2). According
to these scalings the nanotube properties (P0) prevail at
the nanoscale, whereas the matrix properties prevail at the
macroscale (P∞ = PM). Evidently the optimal solution
would correspond to very strong, stiff and tough materials.
These competing requirements are usually optimized by
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Figure 2. Strength, stiffness, toughness and radius versus
hierarchical level N for a filled or empty ST(N ). The dimensionless
values are referred to those of the nanotube. Numerical (plausible)
parameters used are n = 6, ϕ = 3/4, σ0/σM = 100, GM/G0 = 10.

Nature, producing bio-composites with hard N -hierarchical
inclusions embedded in a softer matrix, as for dentine or
bone (N = 7, [13]), and nacre (N = 2, [14]). Thus,
we suggest the possibility of using STs as hierarchical fibre-
reinforcements embedded in a soft matrix for producing bio-
inspired synthetic ‘super-composites’. Note that materials
are classically reinforced by fibres, platelets or grains (as
reinforcements with very different surface to volume ratios).
As STs can be used in fibre-reinforced super-composites or
super-graphene sheets as platelet-reinforcements (as in bone,
dentine and nacre [13–15]), ‘super-fullerenes’, which we
define as the fullerene structure with ST ‘bonds’, could be
useful for producing grain-reinforced super-composites.

For providing the material optimization we define the
following functional:

εN =
∑

P=σ,G,E

wP

(
PN − Pmax

Pmax

)2

,
∑

P=σ,G,E

wP = 1,

(6)

in which the wP are weight functions. Thus 0 � εN �
1 represents the quadratic ‘error’ that must be minimized
to have an ST(N) optimized according to the weights wP

associated to each property (fixed by the material application);
complementarily we define ηN = 1 − εN as the material
efficiency. Introducing the scalings of equation (5) into (6) we
obtain (σmax = σ0, Gmax = G∞, Emax = E0):

εN = aϕ2N + bϕN + c,

a = wG (G0/G∞ − 1)2 + c

b = −2c

c = wσ (1 − σ∞/σ0)
2 + wE (1 − E∞/E0)

2 . (7)

The optimum is achieved for

∂εN

∂N
= 0 ⇒ Nopt = ln (−b/2a)

ln ϕ
. (8)

For G0/G∞ ≈ σ∞/σ0 ≈ E∞/E0 ≈ 0, Nopt ≈
ln(1 − wG)/ln ϕ, which for ϕ = 3/4 and wG = 1/3
corresponds to Nopt ≈ 1.4, whereas wG = 1/2 yields Nopt ≈
2.4; thus ∼2 hierarchical levels would be required in this
example for having an ST, optimized with respect to strength,
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Figure 3. Relative efficiency versus hierarchical level N for an ST(N )

or an SC(N ). Numerical (plausible) parameters used are
n = 6, ϕ = ϕST = 3/4, λ = 100, σ0/σM = 100, GM/G0 = 10,
GM/G I = 1, wG = 1/3. Note the maximum of the efficiency for
Nopt ≈ 2, as in the optimization done by Nature in nacre.

stiffness and toughness or strength and toughness (with equal
weights). Note that smaller values of ϕ would slightly reduce
Nopt. For classical (empty) STs Nopt = 0; thus nanotubes are
better than classical super-nanotubes, suggesting the important
role of our proposal, i.e. of filling the ST with a soft matrix.

The strength, stiffness, toughness and radius of an ST(N)

are depicted in figure 2, as a function of N . The material
efficiency is reported in figure 3: note its maximum for Nopt ≈
2 for filled STs, as for nacre [13] (the cross-section of an
ST(2) is depicted in figure 1), whereas for classical STs the
optimum would trivially be represented by classical nanotubes
(Nopt = 0).

3. Mechanics and optimization of super-composites

Equation (1) is derived assuming nanotube fracture; on the
other hand, during the breakage of an ST(N) fibre-reinforced
super-composite (SC(N)), the ST(N), which is stronger than the
softer matrix, will be pulled out from it rather than broken.
The force FPN needed for pulling out an ST(N) from the matrix
can be derived according to fracture mechanics [16]. The
energy balance during fibre pull-out is dN + G I dSN =
0, where dN is the variation of the total potential energy
(elastic energy minus external work) related to an ST(N)

delamination of length dL N or surface dSN = 2π RN dL N ; G I

is the fracture energy of the interface (ST(N)-matrix, twice the
surface energy). According to Clapeyron’s theorem for linear
elasticity (and force control) dN = −d�N , where �N is
the elastic energy stored in the ST(N). Considering the matrix
as a surrounding elastic half-space (non-interacting nanotubes)
d�N = F2

PN/(2EN AN ) dL N . Thus, we derive the following
ST(N) pull-out stress:

σPN = FPN

AN
= 2

√
EN G I

RN
. (9)

Accordingly, the ST(N) pull-out will be activated in the SC(N)

if s ≡ σPN/σN is smaller than unity. For example, considering
plausible values (see [9]) of E0 ≈ 1 TPa, G I = gGM ≈
100 N m−1, σ0 ≈ 100 GPa, we deduce R0 > 40 nm (imposing
s < 1). Let us define f (s < 1) = 1, f (s > 1) = 0 as an
on/off index for pull-out activation, or in general as the fraction
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of ST(N) pulled out from the matrix. Including in the force
balance of equation (1) the described pull-out mechanism, for
an SC(N) with a fraction ϕST of filled ST(N) (thus the total
nanotube fraction is ϕSTϕN ) we deduce again the ‘universal’
scaling of equation (5) with P → σ SC and

σ SC
0 = ϕST

[
1 + f s − f

]
σ0 + (1 − ϕST) σ∞

σ SC
∞ = ϕST

[
1 + f s − f

]
σ∞ + (1 − ϕST) σ∞,

(10)

as can be derived from the force equilibrium; but note that here
f and s are functions of N .

The stiffness is not affected by the pull-out; thus the
Young’s modulus scaling is again expected dictated by the
scaling of equation (5) with P → ESC and

ESC
0 = ϕST E0 + (1 − ϕST) E∞

ESC
∞ = E∞,

(11)

as can be derived from the compatibility of the displacements
before fracture discontinuity.

For s (smaller but) close to one the SC(N) strength is not
affected by the pull-out process, i.e. σ SC

N (s = 1, f = 0) =
σ SC

N (s = 1, f = 1). The presence of nanotubes, with strength
in the gigapascal and Young’s modulus in the terapascal ranges,
will strongly increase the composite strength and stiffness; but
to have a true super-composite we also have to greatly increase
its toughness. The pull-out energy is the key; thus we want
pull-out activation (s < 1). The apparent fracture energy
GPN of an ST(N), statistically pulled out for one-half of its
length, can be derived from the following energy equivalence:
GPNπ R2

N = G I (π R2
N + 2π RN L N /2); thus

GPN = gGM(1 + λ), (12)

where λ = L N /RN is the ST(N) slenderness. Note the huge
toughening mechanism imposed by the pull-out (similarly to
the crack deflection in the collagen-rich protein matrix imposed
by the harder mineral platelets in bone, nacre and dentine [15]),
with a giant gain in the fracture energy by a factor of λ, i.e. by
several orders of magnitude, with respect to that of the matrix
(g = G I /GM ≈ 1). Thus, if a fraction f of the ST(N) will be
pulled out, the energy of an SC(N) will again follow the scaling
of equation (5) with P → GSC and

GSC
0 = ϕST (1 − f ) G0 + [

1 + ϕST f g(1 + λ) − ϕST
]

G∞

GSC
∞ = [

1 + ϕST f g(1 + λ) − ϕST f
]

G∞,
(13)

as can be derived from the energy balance.
Since the same order relation is valid between P0, P∞ and

PSC
0 , PSC∞ , in addition to equations (5) and (6) equation (7)

also remains valid, with the formal substitution P → PSC

and noting that the coefficients a, b and c are here functions
of N (as f and s). Thus, the optimization of the SC(N) can
be numerically performed by minimizing εN . Note that for
a minimal fraction of binder between the ST(N) (ϕST ≈ 1),
having comparable intrinsic and pull-out strengths (s ≈ 1),
for vanishing pull-out ( f = 0) PN ≡ P ST

N ≈ PSC
N ; thus

filled ST(N) and SC(N) are equivalent, whereas the pull-out
activation would basically modify only the fracture energy of
the SC(N), greatly enlarging it according to GSC

N ≈ GPN (see
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Figure 4. Strength, stiffness and toughness versus hierarchical level
N for an SC(N ). The dimensionless values are referred to those of the
matrix. Numerical (plausible) parameters used are
n = 6, ϕ = ϕST = 3/4, λ = 100, σ0/σM = 100, GM/G0 = 10,
GM/G I = 1. Note the discontinuity in the toughness due to the
pull-out activation.

equation (12)), thus by a factor larger than λ with respect to
that of an ST(N).

The strength, stiffness and toughness of an SC(N) are
depicted in figure 4 as a function of N . Its efficiency
is reported in figure 3. Note the fundamental role of the
pull-out, capable of activating giant toughening mechanisms
and abruptly incrementing the material efficiency. It has a
maximum, in this plausible example, again for Nopt ≈ 2 (when
the pull-out takes place), similarly to the optimization done by
Nature in nacre [13].

4. Conclusions

Our finding, i.e. the possibility of optimizing simultaneously
strength, stiffness and toughness, could become crucial for
producing artificial and hierarchical super-composites, as is
done by Nature in bone, dentine and nacre materials (to which
the present analysis is thus straightforwardly applicable).
Thus, the proposed approach could help in the future
bottom-up design of strong, stiff and tough super-composites,
by embedding the recently discovered super-nanotubes in
softer matrices, mimicking the optimization done by Nature,
embedding hard mineral hierarchical platelets in collagen-rich
protein soft matrices.
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