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Abstract: The paper analyses the problem of torsion in an adhesive bonded tubular joint. The constitutive,
equilibrium and compatibility equations were used to obtain the stress field in the adhesive. The analysis
confirms that the maximum stresses are attained at the ends of the adhesive and that the peak of maximum
stress is reached at the end of the stiffer tube and does not tend to zero as the adhesive length approaches
infinity.

A special type of tubular joint can be produced by modifying the joint profile, thus ensuring that the
stress field in the adhesive is constant and thereby optimizing the tubular joint for uniform torsional
strength. This result is of considerable practical utility and makes it possible to produce adhesive bonded
joints which are both lighter and stronger under torsion. Finally, some suggestions for the joint design are
presented.
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NOTATION

A, Z auxiliary constants

ˆ
���������������������������������������������������
K¤(I p1 ‡ I p2)=(GI p1 I p2)

q
and

I p1=(I p1 ‡ I p2) respectively
c adhesive half-length
c x value of the point in the adhesive of the

maximum shearing stress
C1, C2 integration constants ˆ e¡Ac=(e¡2Ac ¡ e2Ac)

‡Z(eAc ¡ e¡Ac)=(e¡2Ac ¡ e2Ac) and eAc=
(e2Ac ¡ e¡2Ac) ‡ Z(e¡Ac ¡ eAc)=
(e2Ac ¡ e¡2Ac) respectively

f function of torsional moment transmission
G shear modulus of the tube material
Ga shear modulus of the adhesive material
h adhesive thickness
Ip polar moment of inertia of the two

optimized tubes, outside the overlap zone
Ipi polar moment of inertia of tube i
K¤ adhesive stiffness per unit length
Mf applied torsional moment of failure
Mf ,UTS applied torsional moment of failure for the

optimized joint

Mt applied torsional moment
Mtui torsional moment at a given cross-section

through tube i
R radius of the adhesive surface
R1 external radius of the external tube
R1o external radius of the external optimized

tube, outside the overlap zone
R2 internal radius of the internal tube
R2o internal radius of the internal optimized

tube, outside the overlap zone
x, y, z axis coordinates

á, â auxiliary constants ˆ R1o/R and R2o/R
respectively

ç shearing strain field in the adhesive
¢ è relative angular displacement through the

adhesive thickness
õi rotation at a given cross-section through

tube i
õ0

i rotation at the initial cross-section of tube i
ì stress concentration factor in the adhesive
ì¤ gain parameter for adhesive’s stress levelling

ˆ ômin,max=ômax
ô shearing stress field in the adhesive
ôadm admissible value of the shearing stress for

the adhesive’s material
ôadm tube admissible value of the shearing stress for

the tubes’ material
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ôf failure value of the shearing stress for the
adhesive’s material

ômax maximum value of the shearing stress field
in the adhesive

ômax tube maximum value of the shearing stress field
in the tubes

ômean mean value of the shearing stress field in the
adhesive

ômin,max minimum value of the maximum values of
the shearing stress field in the adhesive,
varying c

1 INTRODUCTION

Bonded joints are very useful in structural elements.
Indeed adhesives make it possible to join dissimilar and
non-metallic components with savings also in terms of the
weight of the resulting building structure. These advan-
tages encourage the use of adhesive bonding for structures
which until recently were joined using conventional
techniques such as riveting, welding or threaded connec-
tions.

Considerable research in this area has been conducted
regarding tubular structures [1–25], with the specific
aspect of a non-tubular bonded joint under torsion
having been analysed relatively recently [21–32]. Since
the two pioneer papers [1, 2], tubular joints subject to
torsion have been studied from many different points of
view. Theoretical approaches have been validated both
experimentally [3–6] and numerically [6–8] and the
importance of bonded joints in composite structures has
been widely emphasized [3, 7, 9, 10]. Fracture mechanics
have been used to solve the problem of the joint’s
strength in the case of brittle collapse with static
[3, 5, 11] or fatigue loading [3, 5, 6, 10]. The non-linear
and viscoelastic adhesive’s behaviour has been consid-
ered in references [6] and [11] to [15] and recently also
a dynamic analysis has been performed [8, 16]. Specifi-
cally, in references [7] and [17], emphasis has been
placed on the positive influence of tapering at the
adherends’ end on the stress peaks in the adhesive layer
from numerical and theoretical points of view respec-
tively; if the adherends are partially tapered, the stress
peaks become lower.

The aim of this work is to determine theoretically a new
kind of joint tapered profile, thus ensuring that the stress
field is without stress peaks and perfectly constant, starting
from the research documented in reference [22]. After a
simple approach to determine the stress field in the
adhesive, an ad hoc optimization for uniform torsional
strength is presented. The same result, which would be of
considerable practical utility since it could be used to
produce joints which would be both lighter and stronger,
has been developed recently also for non-tubular joints [25,
28].

2 THEORETICAL ANALYSIS: ASSUMPTIONS
AND VALIDITY

It is assumed that all three of the materials making up the
joint (tubes and adhesive) are governed by an isotropic
linear elastic law. While this is intuitive for tubes (which
are typically metallic), this is not the case for the adhesive,
which is more likely to exhibit typically non-linear behav-
iour. However, if the adhesive’s film is considered to be
under torsion and not subject to tension, according to the
statistical theory of the rubber [23], its behaviour can be
considered to be substantially linear elastic. The tubular
bonded joint, consisting of two tubes perfectly circular and
coaxial and the interposed adhesive’s film (of very small
thickness h), is considered to be subject to torque as shown
in Fig. 1.

The tubes can be analysed using the ‘technical theory of
the beam’ [30]. The results obtained for the Saint Venant
solid on the basis of restrictive hypotheses, as regards both
the geometry of the solid (rectilinear axis and constant
cross-section) and the external loads (lateral surface not
loaded and zero body forces), are usually extended in
technical applications to cases in which these hypotheses
are not satisfied. In any case it is required that the radius of
curvature of the geometrical axis of the beam should be
much greater than the characteristic dimensions of the
cross-section, and that the cross-section should be only
slightly variable.

It can also be assumed that only the shearing stress field
ô rõ in the adhesive (considered constant over the film
thickness) and ôxõ in the tubes are taken into account. The
remaining components of the stress tensor in the adhesive
layer and in the tubes are supposed to have negligible
effects on joint deformations, if compared with ô rõ and ôxõ

respectively, when a torque is applied to the tubes. The
suitability of this assumption (i.e. the inaccuracy that it
causes) is linked to the ratio of the overlap length to the
tube thickness. It can be roughly evaluated by comparing
the values of ôxõ in the tubes with the values of ô rõ in the
adhesive [14].

The validity of the analysis proposed depends on
correspondence with the assumptions above, which are
relatively common in work of this kind. Under these
conditions, it is possible to isolate an element of infinitesi-
mal length dx(¡c < x < ‡c) belonging to the outer tube

Fig. 1 Tubular joint under torsion
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and impose rotational equilibrium around the axis of the
centroid of the cross-sections parallel to the x axis (Fig. 2).
The predominant stress field, equivalent to the applied
torsional moment, in the adhesive can be obtained:

ô(x) ˆ ¡ 1
2ðR2

dM tu1(x)
dx

(1)

where R is the adhesive surface’s radius and Mtu1(x) the
torsional moment in the outer tube in a generic x section.
Equation (1) shows that the increase in torsional moment in
the tube is balanced by the shearing stresses ô applied on
the internal lateral surface of the external tube by the
adhesive. The strain field ç in the adhesive can be obtained
from the corresponding stress field [equation (1)]:

ç(x) ˆ
ô(x)
Ga

ˆ ¡ 1
2ðGa R2

dM tu1(x)
dx

(2)

where Ga is the shear modulus of the adhesive.
The torsional moment Mtui(x) in a generic section x of

tube i can be written as

M tu1(x) ˆ M t f (x) (3a)

M tu2(x) ˆ M t[1 ¡ f (x)] (3b)

as the sum of the moments absorbed by the two elements
must be equivalent to the applied torsional moment Mt for
every cross-section x. The function f (x) has as its domain
the real range [¡c, ‡c] and, in order for the boundary
conditions for the torsional moments

M tu1(¡c) ˆ M t, M tu1(‡c) ˆ 0 (4a)

M tu2(¡c) ˆ 0, M tu2(‡c) ˆ M t (4b)

to be satisfied, must be unity at the extreme left and zero at
the extreme right of the domain. The function f (x), and
thus the torsional moment absorbed by the two elements at
the joint, can be found because of the compatibility
established for the rotations of the two tube cross-sections.
These rotations are expressed as follows:

õ1(x) ˆ
… x

¡c

M tu1(t)
GIp1

d t ‡ õ0
1 (5a)

õ2(x) ˆ
… x

¡c

M tu2(t)
GIp2

d t ‡ õ0
2 (5b)

as G is the shear elastic modulus of the tubes, Ipi are their
polar moments of inertia and õ0

i is the absolute rotation of
the initial section (x ˆ ¡c) of the tube i. Through an
appropriate choice of reference system, õ0

1 ˆ 0 always
holds (rotations calculated starting from the strained
configuration of the first tube’s initial section).

The compatibility equation can be written noting as,
after the joint’s deformation, the relative angular displace-
ment ¢è between two points of interfaces, internal tube–
adhesive and adhesive–external tube, aligned on a same
radial direction, must be the same if the tubes’ relative
rotation or the shearing adhesive’s strain is considered (Fig.
3):

¢è ˆ R[õ2(x) ¡ õ1(x)] ˆ R ¢õ(x) ˆ hç(x) (6)

Substituting equation (2) into equation (6), the compat-
ibility equation can be rewritten as

dM tu1(x)
dx

ˆ ¡K¤¢õ(x), K¤ ˆ 2ðR3Ga

h
(7)

where K¤ is the adhesive’s stiffness per unit length.
Inserting the rotation expressions (5) into the compat-

ibility equation (7) gives the integro-differential relation

dM tu1

dx
(x) ˆ K¤

… x

¡c

M tu1(t)
GIp1

¡ M tu2(t)
GIp2

µ ¶
dt ¡ K¤õ0

2 (8)

This relation can be expressed by a single unknown f (x);
remembering equations (3), derivation gives the following
second-order differential equation in f (x):

d2 f (x)
dx2

¡
K¤(Ip1 ‡ Ip2)

GIp1 Ip2
f (x) ˆ ¡ K¤

GIp2
,

f (¡c) ˆ 1, f (c) ˆ 0 (9)

Fig. 2 Element of infinitesimal length
Fig. 3 Adhesive’s cross-section; compatibility between adhesive

and tubes
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This differential equation, together with the boundary
conditions shown below, make it possible to determine the
torsional moment section by section at the overlap. The
solution of equation (9) is

f (x) ˆ C1e
Ax ‡ C2e¡ Ax ‡ Z (10)

with

A ˆ

����������������������������
K¤(Ip1 ‡ Ip2)

GIp1 Ip2

s

, Z ˆ Ip1

Ip1 ‡ Ip2
(11)

The constants C1 and C2 can be obtained from the
boundary conditions as

C1 ˆ e¡Ac

e¡2Ac ¡ e2Ac
‡ Z

eAc ¡ e¡Ac

e¡2Ac ¡ e2Ac (12a)

C2 ˆ eAc

e2Ac ¡ e¡2Ac ‡ Z
e¡Ac ¡ eAc

e2Ac ¡ e¡2Ac (12b)

The function (10) governs the torsional moments [equation
(3)], its derivative

d f (x)
dx

ˆ A(C1eAx ¡ C2 e¡Ax) (13)

the stress [equation (1)] and strain [equation (2)] field in
the adhesive and its integral

…x

¡c
f (t) d t ˆZ(x ‡ c) ‡ 1

A

3 (C1e
Ax ¡ C2 e¡Ax ¡ C1e¡Ac ‡ C2 eAc)

(14)

the absolute rotations of the two tubes [equation (5)]. The
joint elastic strain as relative rotations can be obtained
directly from the compatibility equation (7). Comparing the
differences between equations (5b) and (5a) with the same
obtained by equation (7) makes it possible to determine
constant õ0

2, once the reference system has been established
with õ0

1 ˆ 0:

õ0
2 ˆ M t A

K¤ (C2e
Ac ¡ C1e

¡Ac) (15)

Figure 4 shows the curves for the function f (x) governing
torsional moment transmission in the joint, while Fig. 5
illustrates its derivative, which governs relative rotations or
stresses and strains varying the two constants represented
by equation (11). The maximum stresses are reached at the
ends of the adhesive and the higher stress peak appears at
the end of the stiffer tube. When the stiffnesses of the two
tubes are equal (Z ˆ 1

2), the stress field becomes lower and
symmetric.

3 JOINT DESIGN: CONSTANT-HEIGHT
PROFILE

Considering equation (1) it is possible to define a stress
concentration factor which indicates the extent to which
maximum stress departs from the mean. The higher stress
peak appears at the end of the stiffer tube:

ômax ˆ ô(x ˆ c) ˆ M t A

2ðR2
(¡C1eAc ‡ C2 e¡Ac),

c ˆ ¡c, 0 , Z , 1
2

c, 1
2 < Z , 1

»
(16)

The mean value of the stress field is

Fig. 4 Qualitative curves for f (x) (a) by varying Z with A ˆ constant and (b) by varying A with Z ˆ constant
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ômean ˆ 1
2c

…‡c

¡c

ô(x) dx ˆ M t

4ðR2c
(17)

Consequently, the stress concentration factor is given by

ì ˆ
ômax

ômean
ˆ 2Ac(¡C1e

Ac ‡ C2 e¡Ac) (18)

Of importance is the gain parameter ì¤, i.e. the index of
the gain in maximum stress levelling, which can be
obtained by increasing the bond length. In this context, it
should be noted that, as the bond length tends to infinity,
the maximum stress tends asymptotically to a minimum
non-zero value:

ômin,max ˆ lim
c!1

ômax ˆ M t ZA
2ðR2 (19)

The gain parameter can thus be defined as

ì¤(Ac) ˆ
ômin,max

ômax
ˆ Z

(¡C1eAc ‡ C2 e¡Ac)
(20)

and must be as close to unity as is compatible with the need
for a compact joint. Under this assumption the stress
concentration factor, prudently overestimated, is detailed as
follows:

ì º 2ZAc for ì¤ º 1 (21)

Figure 6 shows that the gain parameter ì¤ presents little
variation after a certain value of the non-dimensional
parameter Ac (º 3); consequently, further increases in bond
length are pointless for the torsional strength. Furthermore
Z must be equal to 1

2 (same polar moment of inertia for the
two tubes) to have a symmetric stress field. Under these

assumptions the stress concentration factor appears to be
close to 3, an often-used value in elastic problems.

4 OPTIMIZATION FOR THE UNIFORM
TORSIONAL STRENGTH (UTS)

In order to obtain a unit value for the stress concentration
factor given by equation (18) it is possible to modify the
joint profile. This is achieved by chamfering the edges,
which are in any case not involved in an eventual stress
flow induced by a tensile load. The procedure used is the
reverse of that employed for a joint of known geometry:
rather than starting from the geometry in order to determine
the stress field, the procedure starts with the stress field
and determines the geometry capable of ensuring it.

In order to make the stress field constant, it must be
independent of the x coordinate. In other words, as shown

Fig. 5 Qualitative curves for ¡ d f (x)=dx (a) by varying Z with A ˆ constant and (b) by varying A with Z ˆ
constant

Fig. 6 Gain parameter ì¤(Ac)
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by equation (1), the torsional moment must be linear along
the joint x axis:

f (x) ˆ 1
2

¡ x

2c
(22)

Inserting equation (22) in equation (9) yields the following
relation, which defines the geometry of a uniform torsional
strength (UTS) adhesive bonded joint:

Ip2(x)
Ip1(x)

ˆ c ‡ x
c ¡ x

(23)

Substituting into equation (23) the expressions for the polar
moment of inertia of circular tubes gives

R4 ¡ R4
2(x)

R4
1(x) ¡ R4

ˆ
c ‡ x
c ¡ x

(24)

From equation (24), it can be seen that the height of the
terminal portion of the tubes must be zero; in fact,

R1(x ˆ c) ˆ R, R2(x ˆ ¡c) ˆ R (25)

In order to identify families of optimized bonded joint
profiles, it is necessary to introduce a function of some
kind, R1(x) for example, which respects the previous
condition [equation (25)]. Then, through equation (24), the
function R2(x) (which must be real in all its domain)
whereby the joint has uniform torsional strength can be
determined.

Although the number of possible shapes which satisfy
the relations indicated above is infinite, the following

additional condition must be considered in order to obtain
the solution entailing tubes with a symmetric polar moment
of inertia section by section:

Ip1(x) ˆ Ip2(¡x) (26)

which permits there to be identical polar moments of
inertia, Ip, for the two tubes out of the bonded area.
Equations (23) and (26) are satisfied by the following
expressions for the profiles of the two tubes which define
the geometry of the joint optimized for UTS:

R1(x) ˆ
��������������������������������������������
R4 ‡ c ¡ x

2c
(R4

1o ¡ R4)4

r
ˆ

���������������������������������
R4 ‡ 1 ¡ x=c

ð
I p

4

r

(27a)

R2(x) ˆ
���������������������������������������������
R4 ¡

c ‡ x

2c
(R4 ¡ R4

2o)
4

r
ˆ

���������������������������������
R4 ¡ 1 ‡ x=c

ð
I p

4

r

(27b)

where

R1o ˆ R1(x ˆ ¡c), R2o ˆ R2(x ˆ c) (28)

and

R4 ¡ R4
2o ˆ R4

1o ¡ R4 ˆ 2Ip

ð
,

0 < R2o , R ) R , R1o <
���
24

p
R (29)

Equation (29) shows also the limits for the two radii Rio.

Fig. 7 UTS joint’s profile
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The profile thus obtained [equation (27)] is shown in Fig.
7.

The gain of a UTS joint compared with the conventional
type (constant-height profile) can be defined as the ratio of
the maximum torsional moments that can be borne by the
UTS and conventional joints, once a certain collapse
phenomenon has been assumed. If it is supposed that joint
collapse takes place when the maximum shearing stress is
equal to an ultimate value ôf , characteristic of the adhesive,
the following relations show how the UTS joint’s gain over
the conventional type coincides with its stress peak
parameter [equation (13)]:

M t ˆ Mf when ômax ˆ ôf ;
M f ,UTS

Mf
² ì (30)

The ratio of the maximum torsional moment that can be
transmitted by the UTS joint to that transmitted by the joint
with constant height coincides exactly with its ratio of the
maximum value to the mean value in the adhesive’s stress
field.

5 JOINT DESIGN: UTS PROFILE

The maximum shearing stress due to a torsional moment in
a section of the tube is obtained at the external radius of the
external tube, out of the bonded area. This value must be
lower than a characteristic admissible value for the tube’s
material:

ômax, tube ˆ 2
ð

M t

R4
1o ¡ R4

R1o < ôadm, tube (31)

Referring to equation (29) it is found that

R1o ˆ áR, R2o ˆ âR,

0 < â , 1, á ˆ
�������������
2 ¡ â44

p
(32)

and inequality (31) becomes

R >

������������������������������������������
2(2 ¡ â4)1=4

ð(1 ¡ â4)
M t

ôadm, tube

3

s

(33)

Inequalities (32) and (33) are the sufficient and necessary
conditions for existence of the UTS joint. If they are
satisfied, the corresponding UTS joint exists and, if they
are not satisfied, the UTS joint does not exist.

Fixing the torsional moment and the shearing admissible
stress for the tube material, the joint’s radial dimension R1o

can be obtained from equations (33) and (32):

R1o >

�������������������������������������
2(2 ¡ â4)
ð(1 ¡ â4)

M t

ôadm, tube

3

s

(34)

If â ˆ 0, the joint’s radial dimension R1o is a minimum but
the corresponding joint weight (proportional to á2 ¡ â2 ˆ�������������

2 ¡ â4
p

¡ â2) is a maximum; the opposite occurs for â ˆ
1.

The adhesive length can be obtained as a function of the
torsional moment assuming a characteristic value for the
admissible shearing stress of the adhesive [equation (17)]:

c >
M t

4ðR2ôadm
(35)

For the joint design, â must satisfy inequality (32), R
inequality (33), á, R1o and R2o equalities (32) and c
inequality (35). The joint profile can be obtained from
equations (27) or approximately (but the safety coefficients
increase) with a linear tapering of the adherends.

If inequalities (33) and (35) becomes equalities in the
tube and in the adhesive, the shearing stresses equal their
admissible values. In this context, it should be noted that,
as the bond length tends to infinity, the maximum stress
[equal to the mean value expressed by equation (17)] tends
asymptotically to a minimum zero value. This is a very
important behaviour of the UTS joint because theoretically,
differently from a non-tapered joint, the adhesive can
withstand every torsional moment, simply modifying its
length surface. This upper bound of torque, increasing the
adhesive length, for non-tapered adherends and supposing
that Ip1 ˆ Ip2 ˆ Ip, can be obtained from equation (19):

M f (c ! 1) ˆ

�������������������
4ðRhIpG

Gaôf

s

(36)

and is infinity for the optimized joint.
However, it is important to note that adhesive bonded

joints could be susceptible to brittle collapse. In order to
take advantage of the UTS joint geometry it is essential
that appropriate technological measures be introduced to
ensure that joint collapse cannot involve mechanical
fracture phenomena.

6 CONCLUSIONS

The theory developed in this article indicates that the
reported optimal profile for uniform strength, even if
purely theoretical, could give useful guidelines to designers
of tubular bonded joints under torsion. The hypotheses are
substantially of isotropic linear elastic law for tubes, with
only slightly variable cross-sections, and adhesive, with
small thicknesses. This optimal shape would permit both
reduced weight and increased strength (excluding mechani-
cal fracture phenomena). The constant shearing stress field
in the bond would enable the adhesive to withstand every
torsional moment by simply modifying its length surface.
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