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Abstract In this paper new quantized failure cri-
teria are proposed, also for nanoscale applications.
The main theories in the context of the strength
of solids, i.e., of brittle fracture, dynamic fracture,
fatigue and Weibull Statistics are reconsidered
according to the proposed “quantization rules”.
The “corresponding principle” is verified and thus
the classical theories are found to be the limit cases
of the quantized counterparts. As an example, our
treatment is applied to very recent experimental
results on carbon or WS2 nanotubes and to futur-
ist ultra-nanocrystalline diamond nanowires, for
which the tensile, bending and ideal strength are
estimated.

Keywords Quantized fracture mechanics ·
Size-effects · Nanoscale strength · Nanotubes ·
Nanowires · Ultra nano crystalline diamond

1 Introduction: a review

According to continuum based fracture mechan-
ics (Griffith 1921), the strength of a structure can
be computed by an energy balance during crack
propagation, or equivalently by setting the stress-

N. Pugno (B)
Department of Structural Engineering,
Politecnico di Torino,
Corso Duca degli Abruzzi 24, 10129 Torino, Italy
e-mail: nicola.pugno@polito.it

intensity factor K equal to its critical value, the
fracture toughness of the material KC, i.e., K = KC.
The stress-intensity factor K, for crack propagation
modes I, II or III, is a function of the geometry and
applied load. On the other hand, if the hypothesis
of the continuous crack advancement is relaxed,
and thus a quantized energy balance is assumed
(Pugno 2002), a more general Quantized Fracture
Mechanics (QFM; Pugno and Ruoff 2004) is for-
mulated:

K∗ =
√〈

K2
〉l+�l
l = KC, Modes I–III, (1)

where K∗ is the square root of the mean value
of the square of the stress-intensity factor along a
fracture quantum �l, for a crack of length l. The
effectiveness of this approach has been demon-
strated at the nanoscale (Pugno and Ruoff 2004)
but also by fitting experimental results at larger size
scales (Pugno and Ruoff 2004; Taylor et al. 2005);
at macroscale the theory was called finite fracture
mechanics. An application of Eq. 1 is reported in
Sect. 3. Note that the integral in Eq. 1 has to be
evaluated properly, that is, the calculation must be
equivalent to evaluate the difference in the energy
release rates between the finale (l + �l) and initial
(l) states. For example, the external loads directly
applied at the crack faces have not to be considered
acting on �l; or for mixed mode crack propagation,
the advancement �l is in general not collinear with
the crack, and so on.
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For dynamic loads the “mean” value of the
stress-intensity factor must be considered also
along the time quantum �t, connected to the time
�l

/
c—with c crack speed—to generate a fracture

quantum (i.e. dynamic QFM; Pugno 2006, sub-
mitted):

K∗
d =

√〈〈
K2

〉l+�l
l

〉t

t−�t
= KC, Modes I–III. (2)

Note that Eq. 2, in analogy to Quantum Mechanics
that is erected on the Planck’s constant –h, is based
on the existence of the action quantum GC�l�t,
where GC is the fracture energy of the material.
Classical dynamic fracture mechanics would imply
K = KdC with KdC an a priory unknown dynamic
fracture initiation toughness, different from KC,
especially for severe loading rates, e.g., impacts.
On the other hand, Eq. 2 reproduces very well the
experimental observations on times to failure also
for severe loading rates (see Pugno 2006, submit-
ted). An application is reported in Sect. 4.

For taking into account also negative stress-
intensity factor regimes, i.e., crack closure, in addi-
tion to the crack opening assumed by Griffith, K2

should have to be considered with the algebraic
sign of K (Petrov, private communication): frac-
ture does not occur if negative and positive stages
compensate each other during the fracture and
time quanta. In fact note that, according to Griffith
K2 = K2

C whereas in general, K = KC, where K
can be positive or—for crack closure—negative.

Classical fracture mechanics, that corresponds
to the limit case of Eq. 1 for �l = 0, can be
applied only to “large” and sharp cracks, i.e., to
cracks having length larger than the fracture quan-
tum and vanishing tip radius. In contrast, QFM
has no restriction in treating defects with any size
and shape (Pugno and Ruoff 2004). Furthermore,
dynamic QFM can treat also severe loading rates,
e.g., impacts, in contrast to classical dynamic frac-
ture mechanics. It corresponds to the limit case of
Eq. 2 for �t = 0, and becomes not predictive for
severe impacts, requiring an ad hoc dynamic frac-
ture initiation toughness. In the dynamic QFM
treatment the dynamic fracture initiation tough-
ness is identical to its static value, as must physi-
cally be.

Instead of a classical maximum stress criterion,
i.e., σmax=σC, where σC is the strength of the mate-

rial, the stress analog of the energy-based criterion
(1) must be written as (Neuber 1958; Novozhilov
1969):

σ ∗ = 〈
σtip

〉�l
0 = σC

Mode I, for Modes II and III: σ → τ (3)

where σtip is the opening—for mode I—stress at
the tip of a defect, where is located the origin of
the reference system; for mode II or III the normal
stress and strength must be evidently replaced by
the corresponding shear stress τ and strength τC.
This criterion, the first “quantized” one, was intro-
duced by Neuber (1958) and Novozhilov (1969). In
particular Novozhilov introduced the term “frac-
ture quantum”, that he assumed coincident with
the interatomic spacing; however, his school and
his apprentices widely applied this method dur-
ing 1970–1980 years removing such an hypothesis,
thus assuming the fracture quantum not restricted
to the atomic spacing (Morozov 1984). Only later
other authors applied this modified criterion (e.g.,
Seweryn 1998; Taylor, 1999; Carpinteri and Pu-
gno 2005a). For a quantum analogy on Eq. 3 (see
Petrov 1996; Petrov et al. 2003).

For dynamic loads this stress criterion has to be
rewritten as (Morozov et al. 1990):

σ ∗
d =

〈〈
σtip

〉�l
0

〉t

t−�t
= σC

Mode I, for Modes II and III: σ → τ , (4)

representing the stress analog of the action-based
Eq. 2 (see also Petrov 1996).

Equations 1 and 2 are based on stress-intensity
factors, whereas Eqs. 3 and 4 on stress. However
note that considering, for example QFM, the free-
parameter �l can be fixed to reproduce for l → 0
the classical criterion σmax = σC (where σmax is the
maximum stress in the structure): thus, the QFM
criterion implies a smooth transition between
σmax = σC for vanishing crack length to K = KC for
large cracks (where K∗ ≈ K). On the other hand
at the question “strength or toughness?” Leguillon
(2002) replied suggesting to consider both the crite-
ria simultaneously. Accordingly, imposing that the
criteria of Eqs. 1 and 3 have to predict the same
failure for each value of l corresponds to a mixed
criterion (Cornetti, private communication; Cor-
netti et al. 2005). The corresponding fracture quan-
tum capable of ensuring such an equality for each
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value of l can be derived consequently: in this case,
the fracture quantum �l (l) becomes, more than a
material constant, a well-defined structural param-
eter. In formulae:

K∗ = KC and σ ∗ = σC �l : same predictions

Model I, for Modes II and III: σ → τ . (5)

We finally note that Eqs. 1 and 3 have been suc-
cessfully applied also for fatigue limit predictions
by Taylor et al. (2005) and Taylor (1999), respec-
tively. The corresponding fatigue limit criteria can
be formally written considering the variations �

of in front of the symbols, interpreting �K∗, �σ ∗
as the amplitude ranges of K∗, σ ∗ in a cycle, �KC
as the threshold value of the stress-intensity factor
and �σC as the plain-specimen fatigue limit.

2 New quantized criteria: towards a complete
picture

In this section we briefly introduce new quantized
failure criteria (Pugno 2004a) towards the realiza-
tion of a complete picture. The details and appli-
cations will be reported in future publications.

Fracture. As suggested by Eq. 5, imposing the
same strength and/or time to failure predictions
from Eqs. 2 and 4 a new dynamic mixed criterion,
in which both the fracture and time quanta are
derived to ensure the equality of such predictions,
is formulated:

K∗
d = KC and σ ∗

d = σC �l, �t : same predictions

Mode I, for Modes II and III : σ → τ . (6)

In addition, substituting the stress with the cor-
responding strain in Eqs. 3 and 4, normal, ε, for
modes I, or shear, γ , for mode II and III, a strain
static:

ε∗ = 〈
εtip

〉�l
0 = εC

Mode I, for Modes II and III: ε → γ (7)

and dynamic criteria:

ε∗
d =

〈〈
εtip

〉�l
0

〉t

t−�t
= εC

Mode I, for Modes II and III: ε → γ (8)

are derived. Thus, the picture on stress, strain and
energy (or toughness) based criteria for static and
dynamic fracture seems to be rather complete.

Obviously, the strain criteria themselves could be
“mixed” with the other ones, as done for strength
and toughness.

The quantized criteria of Eqs. 3–8 require in
general the expression of the complete—and not
only asymptotic—stress field around the tip of the
defect, well-known only for the simplest cases. On
the other hand, the criteria of Eqs. 1 and 2 can be
applied in a very simple way, by starting from the
well-known solutions for the stress-intensity fac-
tors; for example, hundreds of static and dynamic
solutions are reported in the classical Murakami’s
Handbook (1986). Obviously, the predictions of
the different criteria are not coincident, but similar;
a comparison between Eqs. 1 and 3 for predicting
the strength of defective nanotubes was reported
by Pugno and Ruoff (2004).

Fatigue. Here we note that not only Eqs. 1 and
3 but all the criteria (1–8) can be rewritten for
fatigue limit predictions, formally introducing the
variations � in front of the symbols. However,
such criteria estimate the beginning of the fatigue
crack growth but not its evolution. On the other
hand, regarding the evolution of the fatigue crack,
substituting the stress-intensity factor K with its
“quantized” version K∗ in the Paris’ law—or in
its classical extensions—we formulate a quantized
Paris’ law, to be applied also to short cracks (Pugno
2004a; Pugno et al. 2005):

dl
dN

≈ A
(
�K∗) α (9)

where N is the number of cycles, A, α are the Paris’
constants and �K∗ is the amplitude range of the
“quantized” stress-intensity factor in a cycle.

For very short cracks K∗ ∝ σ (see next section)
and Eq. 9 resembles the classical Whöler’s law, i.e.,
Nf (�σ) β = B, with B, β constants and Nf life time.
Note that, similarly to brittle fracture, the fracture
quantum itself could be fixed in fatigue to derive
from Eq. 9 and in the limit case of crack length
tending to zero, the same Whöler’s prediction for
the life time Nf. On the other hand, for very large
cracks (K∗ ≈ K) Eq. 9 becomes the classical Paris’
law. Equation 9 is a stress-intensity factor based
quantized criterion for fatigue crack growth. The
stress analog can be formulated substituting �σ

with �σ ∗ in the classical Whöler’s law, i.e.:

Nf
(
�σ ∗)β = B. (10)
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Equations 9 and 10 corresponds in fatigue crack
growth to Eqs. 1 and 3 or 2 and 4 in static or dy-
namic fracture. Accordingly, starting from these
two analogs, it is clear that all the analogs of Eqs.
1–8 can be easily formulated also for fatigue crack
growth; for example the mixed criterion of Eq. 5,
ensuring the same fatigue life prediction Nf , has to
be written as:

dl
dN

≈ A
(
�K∗) α and Nf

(
�σ ∗) β = B

�l : same predictions. (11)

Weibull’s statistics. Weibull (1939) formulated
the most popular statistical theory for the strength
of solids. According to Weibull the probability of
failure F of a specimen of volume V under uniaxial
stress σ is given by F= 1−exp(− 1

V0

∫
V

(
σ
/
σ0

)mdV),
where V0 is a reference volume and σ0, m are two
constants. If stress-intensifications are present, as
in cracked structures, the Weibull’s integral does
not converge: this represents a limit of the clas-
sical Weibull’s statistics and can automatically be
removed if instead of σ its “quantized” version σ ∗
(or σ ∗

d ) is considered:

F = 1 − exp

⎛
⎝− 1

V0

∫

V

(
σ ∗/σ0

) m dV

⎞
⎠ . (12)

Thus the quantized crack advancement removes a
paradox and a new statistics is generated.

Quantization rules. In general, we conclude emp-
hasizing that our definition of K∗ and σ ∗ (also in
dynamics) allow one to “quantize” classical well-
known criteria based on stress and/or on stress-
intensity factor. More powerful quantized
approaches will result and the classical ones will be
automatically recovered for the limit case of van-
ishing quanta, as required by the “corresponding
principle”.

3 Nano-fracture and nano-fatigue for nanotubes

By applying Eq. 1 to an infinite plate with a “pre-
dominant” symmetric crack of half-length l and
blunt tip radius ρ, subjected to a remote axial stress
σ perpendicular to the crack, we derive the failure
load σf corresponding to the crack propagation in

the form of (Pugno and Ruoff, 2004):

σf (l, ρ) = KIC

√
1 + ρ

/
(2�l)

π
(
l + �l

/
2
)

= σC

√
1 + ρ

/
(2�l)

1 + 2l
/
�l

, (13)

where KIC is the fracture toughness for mode I and
σf (l = ρ = 0) = σC is by definition the strength of
the material for the plain structure; in general, it
differs from the ideal strength since other minor
defects could exist in the plate.

Particularizing to the case of a sharp crack,
K = σ

√
π l and by a simple integration K∗ =

σ

√
π

(
l + �l

/
2
)
, from which the prediction of the

strength is derived as the corresponding particular
case of Eq. 13. K∗ ≈ K only for very large cracks
whereas K∗ ∝ σ for very short cracks. The identical
strength prediction is obtained—but with a more
tedious calculation—by applying Eq. 3
(Taylor et al. 2005) and thus also by applying Eq.
5. On the other hand, classical fracture mechan-
ics would yield Eq. (13) with �l → 0, and ρ = 0,
predicting an infinite strength for the plain struc-
ture, i.e., σf (l = 0) = ∞, clearly a paradox; in
addition, the classical maximum stress criterion
simply would imply a vanishing strength, i.e., again
a paradox. In contrast, eq. (13) does not pres-
ent paradoxes. It unifies stress-concentration and-
intensification factors. It suggests that for 2l � �l,
i.e., very short cracks, materials become insensitive
to flaws, as deduced by Carpinteri (1982) by ana-
lyzing the competition between ductile and brittle
collapses; such “flaw tolerance concept” seems to
become nowadays crucial in the design of inno-
vative nano-biocomposites (Gao et al. 2003). For
short cracks the fundamental critical parameter is
σC, whereas for very large cracks it becomes KIC.
Making an analogy, this explains why similar phe-
nomena, but arising at different size scales, are
governed by different competing parameters: for
example for fracture and wear—that is fracture at
a smaller size scale—by KIC and hardness H ∝ σC,
respectively.

More importantly, the fracture quantum is
itself a size dependent parameter, that increases
by increasing the size scale as suggested by its
prediction in brittle fracture (for the considered
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structure), i.e., �l ≈ 2K2
IC

πσ 2
C

(see Eq. 13), in which we

must remember that σC is the strength of the plain
structure; it increases by decreasing the size scale
as a consequence of approaching the defect-free
condition, for which σC becomes coincident with
the ideal material strength.

Applying Eq. 1 for fatigue limit and denoting
with �KC the threshold value of the stress-intensity
factor, for very large cracks �KC ≈ �K∗

C, whereas
for very short cracks �σC ≈ �KC/

√
π�l/2), where

�σC is the plain-specimen fatigue limit. This yields
an estimation of the fracture quantum during fa-
tigue crack propagation (for the considered struc-

ture) as �l ≈ 2�K2
C

π�σ 2
C

. Thus, in general the fatigue

limit �σf for a cracked large plate is predicted
as �σf ≈ �KC/

√
π(l + �l/2), exactly as experi-

mentally observed (see Taylor 1999; Taylor et al.
2005).

At macroscale the fracture quanta for brittle and
fatigue crack propagation are different; since usu-
ally KC

�KC
>

σC
�σC

, the fracture quantum in fatigue
is smaller than in brittle fracture. But at nanoscale
we conjecture that they could become coincident
to the distance between adjacent chemical bonds,
as well as the time quantum is expected to be the
time needed to break a bond, finite as a conse-
quence of the finite crack speed. For example, for
nanotubes the fracture quantum for brittle fracture
truly becomes identical to the distance between
adjacent chemical bonds, as demonstrated by com-
paring Eq. 13 with atomistic simulations of various
types (Pugno and Ruoff 2004). For example, con-
sidering defects like n adjacent vacancies implies
2l = n�l in Eq. 13. In Table 1 the complete exper-
imental data set by Yu et al. (2000) is rationalized
according to QFM. We have assumed n = 2 (1)

related to the highest measured value of 63 GPa,
to get a reasonable ideal strength of 97.6 GPa;
the case of n = 3 (2), corresponding to an ideal
strength of 112.7 GPa is also considered. In Table
1 the very recent experimental results by Kaplan-
Ashiri et al. (2005, submitted) on WS2 nanotubes
and by Barber et al. (2005a, submitted) on carbon
nanotubes (see Barber et al. 2005b), are similarly
rationalized. For WS2 nanotubes (Kaplan-Ashir-
i et al. 2005, submitted), the authors presumed
to have observed the ideal material strength, i.e.,

assumed n = 0 (1) for the highest measure value of
16.3 GPa (see Barber et al. 2005b). An alternative
plausible scenario is also considering for the high-
est measured value n = 1 (2) finding out an ideal
strength of 20.6 GPa; the case of n = 3 would cor-
respond to an ideal strength of 25.3 GPa, probably
too high, since a 10% of the Young modulus would
give ∼16 GPa. For carbon nanotubes (Barber et
al. 2005a, submitted) the highest measured value
cannot be considered the ideal material strength.
As emphasized by the same authors (Barber et al.
2005b) sites of interactions between the two exter-
nal layers have to be postulated. Thus, the case
reported in Table 1 of n = 0 (1) for the high-
est measure value of 259.7 GPa (ideal strength)
is unrealistic. A more plausible scenario assumes
the ideal strength coincident with the measured
value of 109.5 GPa (2), as suggested by our previ-
ous considerations on the experiments by Yu et al.
(2000). Thus, in this last case and for the higher val-
ues of strengths, the number of sites of interaction
(treated as “negative” vacancies) between the two
external layers can be deduced: roughly speaking
the number of interaction sites can be estimated as
the differences between the previous two cases, as
described in Table 1.

These examples clearly show that “materials
become insensitive to flaws at nanoscale” (Gao et
al. 2003), is an interesting finding on nano-biocom-
posites but not of absolute validity. As previously
emphasized the reason is that a “crack insensitive-
ness zone” exists but only for flaws smaller than

the fracture quantum �l ≈ 2K2
C

πσ 2
C

, and for nanotubes

�l = √
3a ≈ 2.5 Å.

Similarly, Eq. 9 could in the future play an inter-
esting role for nano-fatigue. Incidentally, note that
we have extended the concept of flaw tolerance

also for fatigue limits, by defining �l ≈ 2�K2
C

π�σ 2
C

: it

is the analog of �l ≈ 2K2
C

πσ 2
C

, the parameter regu-

lating the competition between ductile and brittle
collapses. Thus, also in dynamic fracture an intrin-
sic characteristic time �t ∝ �l

/
c emerges. And for

fatigue crack growth the same concept could be
discussed by considering the competition between
the Whöler and Paris regimes, or simply the unified
law of Eq. 9.
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Table 1 The QFM applied to multi-walled carbon nano-
tubes, grown by arc-discharge method (Yu et al. 2000), by
chemical vapor deposition (Barber et al. 2005a, submitted)
and WS2 nanotubes (Kaplan-Ashiri et al. 2005, submit-

ted). Note that if the highest measured strength for WS2
nanotubes corresponds to a single vacancy defect, the ideal
strength for WS2 nanotubes is estimated to be ∼21 GPa

Case Strength Number of Strength Number of Strength Number of atomic
(GPa) atomic (GPa) atomic (GPa) vacancies
Yu et al. vacancies Kaplan-Ashiri vacancies Barber et (if negative correspond
(2000) QFM et al. (2005, QFM al. (2005a, to “interactions

submitted) submitted) between layers”)QFM

1 11 97 130 3.8 22 36 17.4 277 49
2 12 82 109 6.7 6 11 22.3 169 29
3 18 36 48 7.7 5 8 23.7 149 26
4 18 36 48 8.4 4 7 30.0 93 16
5 19 32 43 8.7 3 6 44.2 42 7
6 20 29 39 9.8 2 5 49.3 34 5
7 20 29 39 11.1 2 3 52.7 29 4
8 21 26 35 12.5 1 2 54.8 27 4
9 24 20 27 13.3 1 2 62.1 21 3
10 24 20 27 13.6 1 2 66.2 18 2
11 26 17 22 15.0 0 1 84.9 11 1
12 28 14 19 15.1 0 1 90.1 9 1
13 34 9 13 15.1 0 1 90.3 9 1
14 35 9 12 15.8 0 1 91.1 9 1
15 37 8 11 16.1 0 1 99.5 8 1
16 37 8 11 16.3 0 1 101.6 7 0
17 39 7 9 108.5 6 0
18 43 5 8 109.5 6 0
19 63 2 3 119.1 5 −1
20 127.0 4 −2
21 132.9 4 −2
22 140.8 3 −3
23 141.0 3 −3
24 175.0 2 −4
25 231.8 1 −5
26 259.7 0 −6
Predicted
ideal 259.7
strength 97.6 112.7 16.3 20.6 (Unrealistic) 109.5
(GPa)

4 “Doubling” of the impact strength

Let us consider as a simple example a semi-infinite
crack in an otherwise unbounded body. The body is
initially stress free and at rest. At time t = 0 a pres-
sure σ begins to act on the crack faces. In this case,

as it is well-known, KI (t) = 2σ

√
cDt(1−2ν)/π

(1−ν)
(see

Freund 1990), where cD is the dilatational wave
speed of the material and ν is its Poisson’s ratio.
Applying Eq. 2 we find the failure for a given time
tf > �t, satisfying:

KI (t) = KIC√
1 − �t

/
(2tf)

≡ KdIC. (14)

Thus, if classical dynamic fracture mechanics is ap-
plied, i.e., KI (t) = KdIC, the “measured” fracture
initiation toughness KdIC will be observed, accord-
ing to dynamic QFM, time to failure dependent.
In addition, note that, according to our time quan-
tization, a minimum time to failure exists and it
must be of the order of tfmin ≈ �t. Considering
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very severe impacts (tf → tfmin ≈ �t), the dynamic
strength (∝ KdIC) is expected for this scheme

√
2

times larger than its static value (∝ KIC). For an
applied pressure linearly increasing with time, the
factor

√
2 is replaced by the factor 2 (Pugno 2006,

submitted). For different schemes a slightly differ-
ent factor is expected. Roughly speaking we could
call this effect as the “doubling” of the dynamic
strength. This is a well-known experimental phe-
nomenon; recently Owen et al. (1998) have con-
firmed this finding on microsecond range dynamic
failure tests of 2024-T3 aircraft aluminum alloy,
where the dynamic strength was observed increas-
ing by a factor of ∼ 2 by varying the time to fail-
ure by ∼ 8 order of magnitudes. Also, Owen et al.
(1998) reported the observation of a minimum time
to failure. Their results were similarly rationalized
by Petrov and Sitnikova (2004), on the basis of
Eq. 4. However, note that there are some exper-
iments showing a quite different behavior, e.g., a
decreasing and/or a non-monotonic variation of
the fracture toughness versus the time to failure.

As demonstrated for Eq. 1, the dynamic crite-
rion of Eq. 2 could in the future hold an interesting
role also for nanostructures. Regarding this point
it would be very interesting comparing our pre-
diction for the fracture initiation toughness with
the results of molecular dynamics and/or quantum
mechanical atomistic simulations.

5 Correlation between Weibull and fractal
statistics

Statistical failures can be well described by the
widely used Weibull (1939) statistics, as briefly dis-
cussed in Sect. 2. Weibull statistics allow examina-
tion of strength, or time to failure or fatigue life, in
the sense of failure probability at a certain stress
level. The simplest Weibull distribution, is defined
as F = 1 − exp

(− (
R

/
R0

)n (
σf

/
σ0

)m)
, where σf

is the stress at failure, assumed here to be a con-
stant in the specimen volume V = R3; σ0 is the
stress scaling parameter, in other words, the nomi-
nal stress that would result in 63% (i.e.,

(
1 − e−1) ·

100%) of the specimen to fail; m is the Weibull mod-
ulus; R0 is the reference size on which the Weibull
parameters are identified; n = 3 if we classically
assume volume predominant defects. For predom-

inant surface defects n = 2 with A = R2, indicat-
ing with A the specimen surface area. Accordingly,
the size-effect on the strength σf, at a specified
F, is predicted as σf ∝ R−n/m. Even if at smaller
size-scales surface defects should become predom-
inant (higher surface/volume ratio) for nearly de-
fect free-structures no dependence from volume
and surface is expected, as confirmed by experi-
mental results on fracture strength of nanotubes
(see Pugno and Ruoff 2006).

On the other hand, fractal statistics, assumes
energy dissipation in a fractal domain of dimension
n − 1 ≤ D ≤ n, e.g., comprised between Euclidean
surface (D = 2) and volume (D = 3), if a three-
dimensional object (n = 3) is considered (Carpinteri
and Pugno 2002, 2004). Accordingly, if the size-
effect on Young’s modulus is neglected, we have:

σf ∝ R
D−n

2 , n − 1 ≤ D ≤ n. (15)

Thus, we can demonstrate the equivalence between
the size-effects predicted by the Weibull and frac-
tal statistics—if the Young’s modulus scaling is
neglected—in terms of:

m = 2n
n − D

. (16)

Note that Eq. 15 can be applied also to one-
dimensional objects, for which n = 1, and that con-
sidering the force- instead of the energy-balance
would yield the factor of 1 instead of the factor of 2
in Eqs. 15 and 16; the proof of this is left up to the
reader.

The advantage of the fractal statistics, Eq. 15, is
the clear interpretation of D, whereas the physi-
cal meaning of m remains partially unclear. If the
fractal approach is correct, the experimental size-
effect must give good fits with fractal exponents in
the ranges (n − 1, n). On the other hand, Weibull’s
statistics can in principle give information on size-
effects also by testing specimens with the same size.

Note that integrating the Paris’ law in the Grif-
fith’s hypothesis, for the classical case of α>2, con-
sidering the initial crack length to be much larger
than the fracture quantum and proportional to the
structural dimension R would correspond to a size-
effect in the form of σf ∝ R2−α/2α ; it gives the
correlation—based on the previous hypotheses—
α ≈ 2/(D − n + 1) between fatigue and fractals.
For the classical case of fractal exponent equal
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to the corresponding Euclidean dimension, i.e.,
D = n, that corresponds to vanishing size-effects,
we find α = 2, in agreement with the classical mod-
els developed for interpreting the Paris’ law, that
in fact do not consider the size-effect on mate-
rial strength. Since D is expected to slightly in-
crease from n − 1 to n by increasing the size-scale
(Carpinteri and Pugno 2005b), we expect a size-
effect on m and α, according to the previous corre-
lation; i.e., m will increase whereas α will decrease
with the size-scale.

Note that if a statistical fractal nature for the en-
ergy dissipation during a crack advancement �l′ >

�l is assumed in the quantized deterministic crite-
ria, for example due to the formation of a fractal
crack surface (Carpinteri and Chiaia 1996) and/or
due to the emanation of secondary fractal cracks,
the “apparent” fracture energy G′

C, dissipated per
unit area created, will refer to the increasing �l′ of
the nominal crack length. The energy equivalence
GC�L = G′

C�l′ must hold, where GC and �L are
the real fracture energy and the real total crack
length increment. The smallest crack length incre-
ment coincides with the fracture quantum �l, so
that �L = (

�l′/�l
)D−1

�l (Kashtanov and Petrov
2004), where D is the fractal exponent describing
the fractal nature of the crack. Accordingly, we
derive:

G′
C = GC

(
�l′

�l

)D−n+1

, (17)

where usually n, the topologic dimension of the
object, is equal to 3 (or 2) and D belongs to the
range (2, 3) (or (1, 2)). In this case, Eq. 17 predicts
G′

C = GC only if the classical Euclidean crack sur-
face, i.e., D = 2, is considered, whereas for larger
value of D, describing a fractal surface area, we
have G′

C > GC. Fractals and fracture quantum
are embedded into Eq. 17. Larger fracture energy,
or fracture toughness, must thus be considered to
account for fractal cracks.

6 Ultra-nanocrystalline diamond nanowires: a
statistical prediction of their tensile, bending
and ideal strength

Ultra-nanocrystalline diamond (UNCD) material
(Gruen 1999) has been recently developed at

Argonne National Laboratory and possesses
unique properties particularly suitable to the de-
sign of novel micro-electromechanical systems. The
UNCD films can be doped with nitrogen using a
CH4 (1% Ar) gas mixture and nitrogen gas added.
In order to investigate the strength of freestand-
ing UNCD thin films at microscale, the membrane
deflection experiment was considered (Espinosa
et al. 2003; Pugno et al. 2004; Peng and Espinosa
2004).

The strength of UNCD membranes of 1 µm thick
with width/length of 5/100, 10/200, 20/200, and
40/400 µm, also with nitrogen gas added of 5, 10, 15,
and 20% in the atmosphere has been recently mea-
sured (Peng and Espinosa 2004). Thirty tests were
performed for specimens with specified doping and
size, for a total of 480 tests. We apply statistical con-
cepts to these results for predicting the strength of
UNCD at nanoscale (for details see Pugno 2005).
The coefficient of correlations are found basically
identical to 1, showing that such a method can be
applied with confidence to these tests.

In particular we consider Eq. 15 with n = 3; R =
3√WLt, where t, L and W are the thickness, length,

and width of the film. The fits are reported in
Fig. 1: the fractal approach seems to be consistent,
showing a very good fit, the coefficient of correla-
tion is basically identical to 1 for all the fits, with
2 ≤ D ≤ 3. Clearly the doping decreases the fractal
dimension of the domain in which the energy dissi-
pation occurs. In particular for (undoped) UNCD
the fit yields for a nanowire of characteristic size
R a tensile failure stress of σ

(UNCD)

f [MPa] ≈ 8525
(R [µ m])−0.258. For example, considering a UNCD
nanowire with W = t = 10 nm and L = 100 nm, the
formula predicts a tensile failure of ∼23 GPa,
against the maximum value observed at microscale,
of ∼ 5 GPa; from the fractal exponent D = 2.48, the
Weibull modulus, estimated on the basis of the
correlation of Eq. 16, is m = 11.6. For cantilever
nanowires the nanoscale bending strength σfB is
of particular interest. It is expected to be larger
than the corresponding tensile strength σf as a
consequence of the reduced volume undergoing
larger stresses. According to Weibull (1939)
σ=

fBσf (2m + 2)1/m that in ourcase gives σ
(UNCD)

fB /

σ
(UNCD)

f ≈ 1.32 and thus a bending strength for the
previous analysed nanowire of ∼30 GPa. Similarly
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Fig. 1 Comparison between fractal statistics (straight lines)
and experimental size-effects (data points) on UNCD
strength for undoped (fractal exponent D = 2.48) and
nitrogen doped (5%, D = 2.37; 10%, D = 2.25; and 20%,
D = 2.20) specimens at microscale; such specimens are here
treated as three-dimensional structures, i.e., as microbeams

we could treat also doped UNCD nanowires (Fig.
1; for details see Pugno 2005).

The estimated high strength value confirms that
UNCD nanowires can be considered a valid alter-
native to nanotubes for NEMS applications
(Pugno 2004b, c; Ke et al. 2005).

The computed nanoscale UNCD strength is com-
patible with a simple estimation of the UNCD
ideal strength σC, obtained by applying eq. (1).
Assuming the fracture quantum coincident with
the UNCD grain size d (∼3 nm), the ideal strength
is estimated according to Eq. 1 as:

σC ≈
√

2
/
π

χ

KIC√
d

(18)

where KIC ≈ 4 MPa
√

m is the fracture toughness
for mode I of the UNCD and χ is a parame-
ter that takes into account the “edge effect”: it
is equal to 1 for structures “without free surface”,
e.g., the previously treated infinite plate, or to 1.12
for structures “with free surface”, e.g., a finite plate;
thus σ

(UNCD)

C

[
GPa

] ≈ 90
/√

d [nm]. According to
Eq. 18 the surfaces are predicted weaker than the
inner parts of a solid by a factor of ∼ 10%. For
finite structures, we find a reasonable estimation
of the ideal UNCD strength of ∼ 52 GPa. If the
structure is assumed infinite the result would be
∼ 58 GPa. The size R in Eq. 15 corresponding to
a strength equal to the ideal strength of the solid
fixes the limit size that can be treated by the fractal
approach. From Eq. 18 σC ∝ d−1/2, that suggests
nanostructured materials, i.e., small grain size d,
for high strength applications; however, we have

to note that the constant of proportionality is basi-
cally KIC, that we have assumed as a constant, and
could decrease itself by decreasing the grain size,
limiting the fracture toughness and the applica-
bility of nanostructured materials (Carpinteri and
Pugno 2005c). Thus, the fracture toughness more
than the strength could be the real critical point in
designing nanostructured materials. Consequently,
zones with high stress-concentrations and -intensi-
fications, as for example surface steps, re-entrant
corners (see Pugno et al. 2004; Carpinteri and Pu-
gno 2005a), must be avoided, e.g., with high quality
surface polishing.

7 Concluding remarks

Let us summarize our results with an eye to the
reported equations. The quantized failure criteria
of Eqs. 1–12—and especially those based on stress-
intensity factors that are given in Handbooks for
hundred of cases—are useful tools for the predic-
tions of the strength of defective solids, in quasi-
static, dynamic and fatigue fracture, also at the
nanoscale.

We have shown that solids can be sensitive to
flaws also at nanoscale (see Eq. 13), in which, for
example, for nanotubes the fracture quantum �l
becomes of the order of the atomic spacing. Ideal
strength estimations can be accordingly deduced.
The concept of flaw tolerance has been extended to
fatigue limit and crack growth and a characteristic
time in dynamic fracture has been introduced. The
increasing of the dynamic strength has also been
rationalized (see Eq. 14).

From the fractal statistics, Eq. 15, the nanoscale
strength of UNCD material is estimated; thus, it
is demonstrated that the proposed methodology
can be applied in general for estimating the nano-
scale tensile and bending strength of materials,
experimentally investigated at the more accessible
microscale. Weibull statistics would give the same
prediction, on the basis of the correlation derived in
Eq. 16. The role of a fractal secondary crack emana-
tion and/or crack surface formation is also
described, according to Eq. 17.

A simple QFM application is demonstrated to
be able to give estimations for the ideal material
strength, Eq. 18. Accordingly, the surfaces are pre-
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dicted weaker than the inner parts of a solid by a
factor of ∼10%.

The extrapolation of the nanoscale strength from
Eq. 15 is based on the assumption that the dimen-
sion of the fractal domain, related to the exponent
in Eq. 15 or to the slope of the straight lines in
Fig. 1, can be considered as a constant from micro-
to nano-scales. And this could be not fully veri-
fied especially for the more complex case of doped
UNCD films. Similarly, the validity of the simple
approach summarized in Eq. 15, that assumes frac-
ture quantum identical to the grain size for UNCD,
is approximated. Thus, the UNCD predictions here
reported must be considered simple reasonable
estimations. Detailed quantum mechanical calcu-
lations are needed for deriving better predictions.

However, the described quantized criteria and
statistical/experimental procedure are in general
useful tools in the study of the strength of solids,
also at the nanoscale. Since the “corresponding
principle” is automatically verified for vanishing
quanta the classical theories are obtained as limit
cases of the quantized counterparts.
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