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A B S T R A C T   

Understanding the local fracture resistance of microstructural features, such as brittle inclusions, 
coatings, and interfaces, at the microscale is critical for microstructure-informed design of ma-
terials. In this study, a novel approach has been formulated to decompose the J-integral evalu-
ation of the elastic energy release rate to the three-dimensional stress intensity factors directly 
from experimental measurements of the elastic deformation gradient tensors of the crack field by 
in situ high (angular) resolution electron backscatter diffraction (HR-EBSD). An exemplar study is 
presented of a quasi-static crack, inclined to the observed surface, propagating on low index {hkl}
planes in a (001) single crystal silicon wafer.   

1. Introduction 

Since the earliest work of Griffith (Griffith, 1921), it has been known that a sharp crack can propagate when the available global 
energy is sufficient to provide the necessary surface and dissipated energy (i.e., thermodynamic energy balance). This criterion is 
described by the critical strain energy release rate, Gc, and in linear elastic materials, it is represented by the critical stress intensity 
factor (SIF), KIC (Irwin, 1961). Non-local energy-based methods – based on the Noether theorem – subsequently evolved this isotropic 
linear elastic fracture mechanics to address anisotropic nonlinear problems. Noether (Noether, 1918) proved that within a Euclidean 
homogenous and isotropic reference frame (i.e., Noether frame) where energy and momentum are conserved, a path-independent 
integral describes the potential energy stored by the force field (i.e., an equivalent descriptor of forces). A mathematical formula-
tion of the conservation laws, which originated from Günther (Günther, 1962), was applied to elastostatics in the form of 
path-independent integrals of some functionals of the elastic field over the bounding surface of a closed region. Some years earlier, 
Eshelby (Eshelby, 1951, Eshelby, 1956) represented the ‘force on an elastic singularity or inhomogeneity’ in the form of a surface 
integral that, in the absence of other defects, led to an elastostatic conservation law. The two-dimensional analogue of this conser-
vation law was introduced by James Rice (Rice, 1968) as a path-independent line integral that could be applied to a stress concen-
tration. However, earlier investigations by Sanders (Sanders, 1960) and Cherepanov (Cherepanov, 1967) were closely related. Rice’s 
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integral has, subsequently, become known as the J-integral and is widely adopted in fracture mechanics. 
Hutchinson (Hutchinson, 1968) and Rice and Rosengren (Rice & Rosengren, 1968) were the first to apply the J-integral as a 

criterion to describe the strain energy release rate for crack growth in linear elastic or elastic-plastic materials. Its application was 
limited to loaded cracks with no internal stress/strains or edge tractions (Brocks & Olschewski, 1986) and no significant plasticity (Shi 
et al., 2004), as these are the necessary conditions for the integral to be path-independent. Nevertheless, with modifications, the 
J-integral can be applied to other conditions, including significant plasticity (Kuang & Chen, 1996). The numerical character of the 
J-integral facilitates its evaluation with finite element (FE) methods, typically by application of the divergence theorem and equivalent 
domain integration (EDI) (Li et al., 1985). 

Application of the J-integral to mixed-mode crack problems (e.g., where crack kinking or deflection occurs, and the crack tip is not 
loaded purely by opening) is complex since the J-integral does not distinguish between the strain energy contributions from crack 
opening (mode I) and shearing (modes II and III). Thus, decomposition is needed to evaluate the two- or three- dimensional stress 
intensity factors that describe the equivalent elastic field. In the early 1970s, Bueckner (Cotterell & Rice, 1980) and Rice (Shih & 
Asaro, 1988) used a weight function concept for 3D stress analysis of anisotropic linear elastic materials under combined mode I and II 
loading. Further investigation by Cottrell and Rice (Cotterell & Rice, 1980) showed that the total elastic strain energy release rate is the 
sum of the energy release rates of the independent modes in mixed mode loading, if the crack tip retains the same configuration (i.e., no 
change in direction) and there is small-scale yielding. Shih and Asaro (Shih & Asaro, 1988) introduced the interaction integral method 
to separate the deformation fields by superimposing an auxiliary field onto the actual tensor field, thus decomposing the field in terms 
of its symmetric (mode I), in-plane antisymmetric (mode II), and out-of-plane antisymmetric (mode III) parts. 

The critical J-integral (JIC) – at the condition of quasi-static crack propagation – is widely used as a fracture criterion for different 
materials (Singh & Parihar, 1986, Lee & Donovan, 1987) and test configurations (Rice et al., 1973, Yoda, 1980), where it is coupled 
with analytical or finite element analyses that use knowledge of remote applied boundary conditions and specimen geometry to 
perform structural integrity assessments. Recently, methods have been developed that use experimental data for the displacement 
fields around cracks as local boundary conditions in finite-element models to solve the elastic strain field and calculate the J-integral. 
These analyses demonstrated that the potential elastic strain energy release rate could be quantified by such local measurements 
without knowledge of the external boundary conditions (i.e., load, crack length) (Becker et al., 2012, Jin et al., 2021). Such local 
analyses are valuable when the external conditions are unknown or uncertain. 

This local analysis has also been extended to use experimental data for elastic strain fields that were mapped by synchrotron X-ray 
diffraction (Barhli et al., 2016, Koko et al., 2020); the elastic strains were integrated to find the equivalent elastic displacement field 
that provides the missing derivatives (i.e., u2,1) required for J-integral analysis (Koko et al., 2021). The diffraction strain mapping in 
these studies was done at a relatively large scale (cm-size specimens with mm-size cracks) and with low spatial resolution. To study the 
criteria for crack growth at the micron scale within the microstructure, for instance, in local investigations of the toughness of brittle 
phases or coatings, we need high-resolution data. It is also necessary to characterise the stress and strain fields in situ at, or 
approaching, the critical state for crack propagation. Furthermore, the analysis needs to be appropriate to inclined crack planes that 
are not necessarily well-oriented for surface observations. Such an approach could replace or complement existing micro-mechanical 
test methods that rely on analytical solutions; these require knowledge of the applied loads and displacements, sample geometry, crack 
length, etc., (Lord et al., 2010, Lauener et al., 2018) that can be difficult to obtain accurately. Micro-mechanical tests, which are 
primarily focused on mode I loading, may also be dependent on size and affected by focused ion beam (FIB) -milling damage (Lauener 
et al., 2018, Hofmann et al., 2017), and can be influenced by non-symmetrical loading (Sernicola et al., 2017) and user-bias (Morrell 
BREBLL, 2008). 

High-resolution electron backscatter diffraction (HR-EBSD) is used to study deformation states in crystalline materials. It is a non- 
destructive surface analysis method that can quantify elastic strains and lattice rotations at a sensitivity of ±10–4 (Wilkinson et al., 
2006, Britton & Wilkinson, 2012) with high-resolution mapping of cross-correlated electron backscatter diffraction patterns (EBSPs). 
Recent studies have shown that the J-integral can be used to parameterise (in situ) the two-dimensional strain fields, measured by 
HR-EBSD, of the singularities of deformation twins (Koko et al., 2021) and sip bands (Koko et al., 2022). However, these analyses did 
not consider the three-dimensional nature of the stress concentrator, such as its inclined plane or the effect of out-of-surface dis-
placements on the near-surface strain field. 

This study presents a novel approach to calculating and decomposing the J-integral elastic strain energy release rate to the three- 
dimensional stress intensity factors directly from the elastic deformation gradient tensors obtained from the near-surface membrane by 
HR-EBSD. As a demonstration, we parametrise the fields ahead of a crack, observed in situ while propagating under quasi-static, 
mixed-mode conditions on an inclined plane within a (001) silicon single crystal wafer. 

2. Method 

2.1. Materials and Experimental Details 

The exemplar sample (Fig. 3 and Table 1), measuring 9.7 × 8.9 × 0.5 mm3, was cleaved from a single crystal silicon wafer with a 
thickness of 0.5 mm. Its pre-polished surface was parallel to (001) (Fig. 1a). The loaded edges of the sample, parallel to [110], were 
abraded manually. The sample was positioned between the jaws of a 2 kN Deben® 70◦ pre-tilted loading stage inside a Carl Zeiss 
Merlin field emission gun scanning electron microscope (FEG-SEM). The SEM chamber and loading stage were plasma cleaned and 
purged for 1 hour before the sample was loaded by compression in the [110] direction in displacement-control by the movement of one 
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jaw. The loading speed, initially 0.1 mm min− 1, was increased to 0.2 mm min− 1 after some initial damage occurred (the red line in 
Fig. 1b indicates the change). Once a stable propagating crack was established, the loading was arrested at fixed displacements to allow 
the acquisition of electron backscatter patterns (EBSPs) to map the vicinity of the crack tip whilst under load. 

The EBSPs were collected using a Bruker eFlash CCD camera using conditions of a 20 kV/10 nA beam, 18 mm working distance, and 
200 milli-second exposure time per pattern. The step size was 0.25 µm, so the 800 × 600-pixel area mapped was about 20 × 15 µm2. 
Load relaxation during the EBSD mapping was negligible (<2.8%). For the exemplar sample, the crack was propagated incrementally 
in 12 intervals (indicated by the dotted blue lines in Fig. 1b). No correction was done for the frame compliance; thus, the plotted 
uniaxial stress and strain should be taken only as an indicator of stress increment. 

Focused Ion Beam (FIB) milling was used to investigate the sub-surface orientation of the crack. This was done using a Zeiss Auriga 
dual-beam SEM-FIB system that has a Schottky field emission Gemini electron column coupled with an Orsay Physics “Cobra” Ga+ ion 
FIB. The sample was tilted to 54◦ and positioned at a working distance of 5 mm. At each point of investigation, platinum and carbon 
protective layers were deposited with individual thicknesses of ~1.5 µm (240 pA/ 30 kV beam). A 35 µm deep trench was cut by rough 
(16 nA/ 30 kV) and then fine milling (600 pA/ 30 kV). The crack trace on the trench wall, which is parallel to [001] was measured with 
in-lens secondary electron (SE) imaging conditions at 36◦ tilt correction (i.e., an effective 90◦ view) over a depth of 15 µm. All angles 
and distances were measured using ImageJ (Schneider et al., 2012), and the uncertainties in angle and crack increment measurement 
were less than ±0.5◦ and ±0.5 µm, respectively. 

The elastic deformation field was calculated by iterative cross-correlation of the EBSPs with a reference pattern (EBSP0) (Britton & 
Wilkinson, 2012, Britton & Wilkinson, 2011), acquired remotely from the crack and assumed to be stress-free (Koko et al., 2022) and 
minimising errors from pattern centre (PC) shift due to beam movement during acquisition (Britton et al., 2018). The interplanar 
spacing and zone axes changes were measured in 30 independent regions of interest in each EBSP, with bicubic interpolation to obtain 
the best-fit solution. The difference from the reference EBSP0 was related to the elastic deformation gradient tensor (Fij), which was 
polarly decomposed with an average sensitivity of 1.6 × 10–4 to deviatoric strains, εij, (symmetric part, where ij = ji) and lattice 
rotations ωij (asymmetric part, where ii = jj = 0) (Wilkinson et al., 2006, Britton & Wilkinson, 2012). Conditions of a traction-free 
surface (σ33 = 0) was assumed (Hardin et al., 2015), and anisotropic elastic properties were obtained using (001) silicon ortho-
tropic stiffness tensor (C11 = 165.7, C44 = 79.6, C12 = 63.9 in GPa (Hopcroft et al., 2010)). The full deviatoric-strain and elastic stress 
components represent the surface membrane sampled by the backscattered electrons. The geometrically necessary dislocation (GND) 
distribution was estimated as detailed in (Wilkinson & Randman, 2010). 

2.2. Numerical Evaluation of the J-Integral 

To simplify the analysis of the J-integral energy release rate, the elastic deformation gradient tensor, Fij, was transformed to resolve 
the field to axes relative to the plane of the crack that was defined by its trace on the FIB section and its propagation direction, q1; the 
latter obtained from its trace on the pre-polished surface. The transformed elastic deformation gradient tensor, F′

ij, was obtained by Qz 

transformation and then Qx transformation of Eqs. (3) to (5), thus, x3⊥q1‖x1, where θ is the angle between the crack plane and the 
z-axis and ∅ is the angle between the surface crack trace and the x axis (Fig. 1a). For convenience, the superscript F′

ij will be omitted in 

Fig. 1. (a) Schematic of pre-polished silicon (001) wafer with the 9.7 × 8.9 × 0.5 mm3 cleaved specimen that was loaded in compression parallel to 
[110]. The crack trace angles, ϕ, measured with respect to the x-axis and θ, measured with respect to the z-axis are shown. (b) Nominal uniaxial 
stress and strain (crosshead displacement/sample dimension). Loading started at a low speed of 0.1 mm min− 1, and the minor load dip near the red 
line in Fig. 1b is due to the detachment of a small fragment at the loading contact. The speed was then increased to 0.2 mm min− 1 (at the red line in 
b). The blue lines mark the collection of EBSD data when loading was suspended at fixed displacement. 
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the subsequent discussion, such that Fij refers to the elastic deformation gradient tensor after transformation to the frame of reference 
of the crack. The same transformations were also applied to the stiffness tensor (Lekhnitskii, 1981). 

Qz(∅) =

⎡

⎣
cos∅ sin∅ 0
− sin∅ cos∅ 0

0 0 1

⎤

⎦ (1)  

Qx(θ) =

⎡

⎣
1 0 0
0 cosθ sinθ
0 − sinθ cosθ

⎤

⎦ (2)  

F′

ij = QpiQqj Fij (3) 

Evaluating the J-integral required computation of the q1-field and formulation of the equivalent domain integration (EDI) with the 
domain expanding from the crack tip. The q1 vector undergoes a smooth linear spatial variation across the domain (dq1

dx1 
in (4)), with 

magnitude unity inside and zero outside the domain. The virtual crack propagation direction, q1, is assumed to be in the positive x1 

direction and the crack tip is located centrally in a square contour of the mapped strain field, defined by elements (Fig. 2) (Molteno & 
Becker, 2015). These conditions simplify the EDI J-integral analysis to Eq. (4) using a regularised mesh of zero thickness (i.e., surface 
measurement assuming plane stress conditions) where no re-mapping to the element nodes is required. 

J =
∑Nel

el=1

[
(
σ11u1,1 + σ12u2,1 + σ13u3,1 − W

) dq1

dx1
+
(
σ22u2,1 + σ12u1,1 + σ23u3,1

) dq1

dx2

]

dA (4) 

As noted in the introduction, in linear-elastic materials (or with small-scale yielding conditions), the J-integral can be related to the 
three-dimensional elastic stress intensity factors using a mode-decomposition technique that separates the elastic field to symmetric 
(mode I), in-plane skew-symmetric (mode II), and out-of-plane skew-symmetric (mode III) components. This is done by superimposing 
an auxiliary field (i.e., u, F, and ε in Eqs. (8), (9) and (11), relatively) onto the total field, mirrored along the q1 vector (parallel to 
x1-axis) with mesh symmetry due to the equally spaced grid. The stress intensity factors are directly related to the appropriate mode- 
specific J-integrals (i.e., JI, JII, and JIII) as in Eq. (5), using values of Youngs’ modulus (E), shear modulus (μ) and Poisson’s ratio (v) 
estimated from the anisotropic stiffness tensor after being transformed to the crack plane normal (Luan et al., 2018). The effective 
stress intensity factor Keff is directly calculated from the total energy release rate (J) as in Eq. (6) assuming plane stress conditions. 

J = JI + JII + JIII =
K2

I

E
+

K2
II

E
+

K2
III

2μ (5) 

Fig. 2. Schematic of the crack and the equivalent domain integral (EDI) method to calculate the potential elastic strain energy release rate or the J1 

or J-integral (so-named “J” for James Rice) for a monotonically loaded crack extending in q1 direction as shown in Eq. (4), where σij is the stress 
tensors, W is the elastic strain energy density, and ui,j is displacement/distortion gradient. The area increment along the equivalent domain is dA and 
each element node el is at a point on the EBSD acquisition grid (step size 0.25 µm). The axes are defined relative to the crack propagation direction. 
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Keff =
̅̅̅̅̅̅
JE

√
(6) 

We decompose the deformation gradient tensor obtained from HR-EBSD to solve Eq. (4) by following a similar derivation applied to 
displacement and stress fields (Nikishkov & Atluri, 1987, Shivakumar & Raju, 1992, Huber et al., 1993, Rigby & Aliabadi, 1993). The 
displacement derivatives (ui,j) were expressed using Fij and the Kronecker delta (δ) (which equals unity when i = j) as in Eq. (7). These 
derivatives were split into modes I, II and III. The mode decomposition of normal out-of-plane deformation components is debatable, 
where Nikishkov and Atluri (Nikishkov & Atluri, 1987), Shivakumar and Raju (Shivakumar & Raju, 1992), Huber et al. (Huber et al., 
1993), Rigby and Aliabadi (Rigby & Aliabadi, 1993) related the asymmetrical portion to mode III; Rigby and Aliabadi (Rigby & 
Aliabadi, 1998) showed that for mode III the strain εIII

33 and stress σIII
33 are both equal to zero at the crack front. We therefore adopt this 

when decomposing F33, and Eq. (9) gives the displacement derivatives required for Eq. (4). 

ui,j = uI
i,j + uII

i,j + uIII
i,j =

∑

M
FM

ij − δM
ij , i, j = 1, 2, 3, M = I, II, III (7)  

ui,j =
1
2

⎛

⎝
u1,1 + u1,1 u1,2 + u1,2 u1,3 + u1,3
u2,1 − u2,1 u2,2 − u2,2 u2,3 − u2,3
u3,1 + u3,1 u3,2 + u3,2 u3,3 + u3,3

⎞

⎠+
1
2

⎛

⎝
u1,1 − u1,1 u1,2 − u1,2 0
u2,1 + u2,1 u2,2 + u2,2 0

0 0 u3,3 − u3,3

⎞

⎠+
1
2

⎛

⎝
0 0 u1,3 − u1,3
0 0 u2,3 + u2,3

u3,1 − u3,1 u3,2 − u3,2 0

⎞

⎠

(8)  

ui,j =
1
2

⎛

⎝
(F11 + F11) − 1 F12 + F12 F13 + F13

F21 − F21 F22 − F22 F23 − F23
F31 + F31 F32 + F32 (F33 + F33) − 1

⎞

⎠ +
1
2

⎛

⎝
F11 − F11 F12 − F12 0
F21 + F21 (F22 + F22) − 1 0

0 0 F33 − F33

⎞

⎠

+
1
2

⎛

⎝
0 0 F13 − F13
0 0 F23 + F23

F31 − F31 F32 − F32 0

⎞

⎠ (9) 

Finally, to calculate the strain energy density, W, the Green-Lagrangian strain tensor is split from the deformation (or displacement) 
gradient tensors as in Eqs. (10) and (11). 

εij =
1
2
(
FT

isFsj − δij
)
≈

1
2
(
ui,j + uj,i

)
εij = εI

ij + εII
ij + εIII

ij (10)  

εij =
1
4

⎧
⎨

⎩

ε11 + ε11 ε12 − ε12 ε13 + ε13
ε21 − ε21 ε22 + ε22 ε23 − ε23
ε31 + ε31 ε32 − ε32 ε33 + ε33

⎫
⎬

⎭
+

1
4

⎧
⎨

⎩

ε11 − ε11 ε12 + ε12 0
ε21 + ε21 ε22 − ε22 0

0 0 ε33 − ε33

⎫
⎬

⎭
+

1
4

⎧
⎨

⎩

0 0 ε13 − ε13
0 0 ε23 + ε23

ε31 − ε31 ε32 + ε32 0

⎫
⎬

⎭
(11) 

The mode-specific full deviatoric-strain tensors (εM
ij ) and elastic stress (σM

ij ) are then related by Hooke’s law with the anisotropic 
stiffness matrix. 

Fig. 3. SEM images of the fracture surface of the exemplar crack, which was propagated in a (001) silicon wafer loaded in compression parallel to 
[110]: a) showing the fracture surface and HR-EBSD mapping and FIB cutting locations after fracture. The numbers mark the intervals of crack 
growth, after which the stable crack tip was observed under load by HR-EBSD. The sample surface was cleaned from the accumulated debris before 
FIB cutting of trenches parallel to (110) at the marked locations to examine the sub-surface crack geometry, which shows details of the surface 
topography (beach marks and river lines). The locations of the FIB-milled sites are labelled, and the FIB site (L) is circled in (b). 

A. Koko et al.                                                                                                                                                                                                           



Journal of the Mechanics and Physics of Solids 172 (2023) 105173

6

Fig. 4. Example HR-EBSD data (Fig. 3a, at label 1 - see Table 1): a) elastic stress components (σij), rotation (ωij) and geometrically necessary 
dislocation (GND) density (ρGNDs) calculated in the microscope xyz reference frame, showing high normal stresses in the surface plane. The stress 
normal to the surface is zero. The average GND density is low and is high only along the crack edges and at its tip; b) elastic stress components and 
decomposed mode I, II, III von Mises stresses (σI,II,III

M ) after rotation by ∅ = 44.6◦; and c) then by θ = 20.6◦ (defined in Fig. 1). The crack propagation 
is from left to right, compared to the reference frame data presented in (a). The rotations, coupled with regularised pattern acquisition (square 
meshing where dA equals the step size), and centred crack tip ease the implementation of the domain equivalent integral (EDI) method of J-in-
tegral analysis. 
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3. Results 

The exemplar crack was propagated under quasi-static conditions by in-plane compression of a (001) single-crystal silicon wafer 
(see method). Fig. 3a shows the fracture surface and the locations of the in situ HR-EBSD measurements and subsequent FIB trench cuts 
that revealed its sub-surface inclination. The nominal applied stress, and the orientation and crack length increment at each obser-
vation are summarised in Table 1. After some initial changes, the crack’s orientation was practically constant over ~700 µm (labels 5 to 
12), with the propagation direction within 1◦ of [310] and the crack plane within 4◦ of (131). 

After breaking open the sample, inspection of the fracture surface (Fig. 3) shows that the crack plane was generally smooth over the 
propagation region of interest following the complex initiation of fracture. Small steps (beach marks similar to ‘Wallner’ lines) indicate 
the crack front was essentially perpendicular to the EBSD-observed (001) surface. Wing cracks can be observed, particularly between 
locations 5 to 9 (Fig. 3b). 

The example of an in situ HR-EBSD observation of the crack (Fig. 4) shows the elastic plane stress components (Fig. 4a) and the 
decomposed mode I, II, and III von Mises stresses after rotational transformations (Fig. 4b). Here, the field has been rotated (Qz) to 
align the crack trace with the x1-axis and translated to place the crack tip at the centre of the map, which has been cropped to 15 × 15 
µm2. The same stress field, after rotation (Qx) to align x3 perpendicular to the crack plane, is shown in Fig. 4c. The most significant 
effect is observed in the shear components; the magnitude of in-plane shear (σxy) has increased and the out-of-plane shear (σxz) has 
decreased. The mode II von Mises stress is higher than the von Mises stresses of mode I and III. 

J-integral values and the three-dimensional elastic stress intensity factors were calculated from each EBSD-measured field as the 
integration domain was advanced from the crack tip (Fig. 5). The initial values with the smallest domain are erroneous due to noise and 
large strains close to the crack, and convergence is obtained as the domain expands. Contours larger than 2 µm correspond to 
encapsulation of the highly deformed field at the tip, and these stable values were used. The mode-specific J-integral (or equivalent 
stress intensity) is the average of the 10 values in the converged shaded region (Fig. 5). The total J-integral is the summation of the 
three mode-specific J-integrals (see method). The average values (and standard deviation) for each of the observations (labelled in 
Fig. 3) of the quasi-static propagating cleavage crack are given in Table 1. 

The crack plane and propagation direction are effectively constant between locations 5 and 12 (Fig. 3), as the crack propagated on 
the (131) plane in the [310] direction with an average total energy release rate (J-integral) of 2.23 ± 0.17 J m− 2. The average mode I 
stress intensity factor is 0.31 ± 0.11 MPa m0.5, with an average mode II stress intensity factor of 0.48 ± 0.06 MPa m0.5. The average 
mode III stress intensity factor is small at 0.15 ± 0.06 MPa m0.5. The average effective stress intensity factor, Keff , for the (131) plane is 
0.61 ± 0.02 MPa m0.5. All means and variances are calculated using the bi-square weights method. The values for all 12 observations 
are reported in Table 1. 

Fig. 5. (a) J-integral and three-dimensional stress intensity factors as the contour of the integration domain expanded from the crack tip. The 
example is at the crack tip position labelled 1 in Fig. 3a. Values of the mode-specific J-integral (or equivalent stress intensity factor linked through 
the effective Youngs’ modulus, shear modulus and Poisson’s ratio estimated from the (001) silicon anisotropic stiffness tensor) are the average of the 
10 values in the converged shaded region. The total J-integral is the summation of the mode-specific J-integrals. The values for all observations of 
this crack are given in Table 1(b) Stress intensity factors through the observed intervals of the crack propagation. The horizontal axis is the total 
distance of crack propagation from initiation. The statistical bounds were obtained by the Bisquare weights method, implemented natively in 
MATLAB®, which uses an iterative reweighted least-square approach that minimises outliers’ effect to calculate the mean and lower and upper 
bounds (shown above) or variant (s2 in Fig. 6). 
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4. Discussion 

Single crystal silicon is a brittle material at room temperature that can be most easily cleaved on the {110}, {111} and {001} planes 
(Table 2) (Masolin et al., 2013). Cleavage favourably propagates in the <110> direction (Masolin et al., 2013), and experimentally 
measured fracture toughness varies both with the crack plane and direction (Tanaka et al., 2006, Ebrahimi & Kalwani, 1999). Under a 
complex stress state, cleavage has been observed on other low-index planes of the {11/} type (Danilewsky et al., 2013) and can also 
deviate from the <110> direction (Deegan et al., 2003). The geometrically necessary dislocation (GND) density at the crack tip 
(Fig. 4a), which represents significant lattice rotations in only a small zone, demonstrates that the fracture was brittle with no sig-
nificant plastic deformation, unlike cleavage in single-crystal metals (Tanaka et al., 2008, Kalácska et al., 2020). The significant 
observations were obtained for a crack that propagated close to a low index {113} plane in a quasi-static manner with no branching 
(Table 1 and Fig. 3). The initially complex crack path, which was not analysed, may be due to multi-axial stresses from the Hertzian 
contact of the rough edge of the sample with the loading anvil. 

The three-dimensional stress intensity factors (Table 1, Fig. 5b) obtained for the crack show that the stress field surrounding the 
crack tip was almost constant during quasi-static cleavage along the (131) plane. The mixed-mode I/II loading was dominated by mode 
II, though some notable changes to higher mode I and lower mode II occurred at locations 5 and 10. The mode III stress intensity factor 
was generally small. The local variations in the relative modes may be due to slight length-scale deviations in the direction of the crack 
when it arrests. The observed ‘Wallner’ lines are evidence of crack deviation at arrest and re-initiation. Incorrect definition of the local 
crack propagation direction (q1), which is assumed in the analysis to be the visible crack trace, would influence the symmetry of the 
field decomposition and, consequently, the inferred SIFs. Still, it would not significantly alter the effective stress intensity factor (see 
supplementary information) (Dhondt, 2002). 

The average mode I stress intensity factor measured for cleavage on (131) is lower than the reported mode I fracture toughness 
values of the low-index cleavage planes (Table 2); however, this is to be expected. There are various criteria proposed for crack 
propagation under mixed-mode loading, of which the maximum potential energy release rate (MPERR), developed for both 2D 

Table 1 
Geometrical information for the example crack (Fig. 3) propagating in a (001) silicon wafer (angles are defined in Figure 7). The elastic moduli are 
evaluated normal to crack plane. The evaluated J-Integral, three-dimensional stress intensity factors (KI , KII , KIII) and effective stress intensity factor 
(Keff ) are also shown.   

Nominal applied 
compressive 

Increment of 
crack 

Crack 
Trace  

E μ  J Keff KI KII KIII 

Label stress (MPa) growth (µm) Angles 
(◦) ∅, θ 

Trace (GPa) (GPa) v (J 
m− 2) 

(MPa 
m0.5) 

(MPa 
m0.5) 

(MPa 
m0.5) 

(MPa 
m0.5) 

1 2.6 0 44.6, 
20.6 

[100](031) ±
2.1◦

177.2 79.6 0.113 2.03 ±
0.10 

0.60 ±
0.02 

0.26 ±
0.01 

0.52 ±
0.02 

0.12 ±
0.01 

2 11.8 263.3 40.1, 
18.7 

[100](031) ±
0.2◦

176.8 79.2 0.116 2.08 ±
0.15 

0.60 ±
0.02 

0.29 ±
0.02 

0.49 ±
0.02 

0.19 ±
0.01 

3 11.9 9.3 36.8, 
19.0 

[710](173) ±
3.9◦

176.0 78.4 0.122 2.26 ±
0.26 

0.62 ±
0.04 

0.35 ±
0.04 

0.48 ±
0.04 

0.11 ±
0.01 

4 13.3 50.9 30.8, 
23.7 

[410](142) ±
2.2◦

173.9 76.4 0.138 2.71 ±
0.09 

0.69 ±
0.01 

0.35 ±
0.01 

0.57 ±
0.01 

0.12 ±
0.01 

5 20.7 147.4 27.3, 
23.3 

[310](131) ±
5.8◦

172.3 74.9 0.15 2.48 ±
0.19 

0.65 ±
0.03 

0.53 ±
0.02 

0.33 ±
0.04 

0.13 ±
0.01 

6 21.1 34.6 26.4, 
25.5 

[310](131) ±
8.0◦

171.8 74.5 0.154 2.07 ±
0.13 

0.59 ±
0.02 

0.19 ±
0.02 

0.54 ±
0.02 

0.13 ±
0.01 

7 22.6 61.8 23.6, 
24.7 

[310](131) ±
7.1◦

170.4 73.2 0.164 2.15 ±
0.16 

0.60 ±
0.02 

0.26 ±
0.02 

0.51 ±
0.03 

0.16 ±
0.01 

8 23.2 36.5 24.9, 
23.7 

[310](131) ±
6.1◦

171.1 73.8 0.159 2.12 ±
0.14 

0.60 ±
0.02 

0.3 ±
0.03 

0.51 ±
0.01 

0.08 ±
0.01 

9 25.8 215.0 25.1, 
20.6 

[310](131) ±
3.1◦

171.2 73.9 0.158 2.28 ±
0.14 

0.62 ±
0.02 

0.36 ±
0.02 

0.45 ±
0.01 

0.22 ±
0.01 

10 26.5 63.5 25.3, 
19.6 

[310](131) ±
2.1◦

171.3 74.0 0.158 2.52 ±
0.16 

0.65 ±
0.02 

0.40 ±
0.03 

0.34 ±
0.04 

0.34 ±
0.02 

11 27.1 62.9 26.4. 
17.9 

[310](131) ±
0.4◦

171.8 74.5 0.154 2.39 ±
0.34 

0.62 ±
0.05 

0.31 ±
0.04 

0.48 ±
0.05 

0.20 ±
0.03 

12 30.7 237.8 25.5, 
14.9 

[310](131) ±
2.6◦

171.4 74.1 0.157 2.04 ±
0.16 

0.59 ±
0.02 

0.15 ±
0.03 

0.55 ±
0.02 

0.12 ±
0.01  

Table 2 
Recommended and reported mode I fracture toughness values for single crystal silicon cleavage at room temperature (Masolin et al., 2013).  

Fracture Plane {100} {110} {111} 

Reported KIC (MPa m1/2) 0.75–1.29 0.68–1.19 0.62–1.22 
Recommended KIC (MPa m1/2) 0.75 0.71 0.62 
Recommended JIC (J m− 2) 2.163 1.483 1.022  
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(Nuismer, 1975, Palaniswamy & Knauss, 1978, Hussain et al., 1974) and 3D (Chang et al., 2006), is robust and simple to apply. Chang 
et al. (Chang et al., 2006) used a three-dimensional fracture surface to represent the mixed-mode contributions to the MPERR criterion 
(Fig. 6a and c). The experimental SIFs (Table 1) for (131) cleavage (best) fit the critical surface for KIC of 0.69 MPa m0.5 with R2 equals 
0.84 (Supplementary information). Thus, considering the quality of the fit (i.e., uncertainty in KIC) KIC is 0.69 ± 0.03 MPa m0.5. 

(KI/KIC)
2
+ (KII/KIIC)

2
+ (KIII/KIIIC)

2
= 1 (12)  

KIIC =

̅̅̅
3

√

2
KIC, KIIIC =

̅̅̅̅̅̅̅̅̅̅̅
k + 1

√

2
KIC (13)  

k =
(3 − v)
(1 + v)

for plane stress (14)  

Fig. 6. Experimental data Table 1) with the critical surface (Eqs. (12) to ((15)) constructed at a constant value of KIC = 0.69 MPa m0.5 (R2 = 0.84) 
for the mixed-mode maximum potential energy release rate (MPERR) criterion (Chang et al., 2006). (a) All data (1 to 12) on a contour plot with KIC 

= 0.69 MPa m0.5 (see Supplementary information). (b) three-dimensional plot of the critical to the experimental data for (131) (i.e., points 5 to 12). 
The solid black lines are the measurement uncertainty. The vertical dotted black lines indicate the difference (parallel to the KI /KIC axis) between 
the data and the surface. 
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ψ = tan− 1
(

KIII

/ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

K2
I + K2

II

√ )

(15) 

This novel analysis method provides a direct and high-resolution solution to quantify the elastic fields acting on a crack tip, using 
local measurements without knowing the external boundary conditions (e.g., load, crack length). The analysis can be applied to mixed 
mode loading and the in situ studies of quasi-static cleavage crack propagation. The present analysis is suitable for elastic deformation 
or small-scale yielding conditions, but more advanced decomposition algorithms will need to be employed for significant elasto-plastic 
deformation (Yu & Kuna, 2021). This local method has advantages over micro-mechanical methods that use geometrical analytical 
solutions, as these rely on accurate knowledge or control of the external boundary conditions such as specimen dimensions, load, and 
displacement. 

The present study employed a brittle single silicon crystal where the deformation is localised at the crack tip and with careful 
consideration of the reference pattern selection (Koko et al., 2022); thus, reducing the significant problem of obtaining a stress-free 
HR-EBSD reference pattern that typically arises in the analysis of engineering materials (Wilkinson & TBen, 2012). This issue needs 
to be addressed before the method can be more generally applied. Although that remains challenging, this might be achieved by 
simulation of reference patterns (Tanaka & Wilkinson, 2019). Other possible experimental approaches are high-resolution strain 
mapping methods that provide absolute strains, such as cross-correlation of transmission electron microscopy (TEM) acquired 
nano-diffraction patterns (Gammer et al., 2016), Laue microdiffraction (Larson et al., 2002), and dark-field X-ray microscopy (Kutsal 
et al., 2019). As this method can be used to examine mixed-mode fracture criteria with a high spatial resolution, it would allow in-
vestigations of the fracture properties of brittle inclusions, coatings, interfaces, and grain boundaries in engineering materials. 

5. Conclusion 

A novel approach has been formulated to decompose the J-integral evaluation of the elastic energy release rate to the three- 
dimensional stress intensity factors (KI,II,III) directly from experimental measurements of the local elastic deformation gradient ten-
sors of the crack field under small-scale yielding conditions. Strictly speaking, no numerical method, such as Finite Element or Finite 
Difference, has been used to solve the boundary value problem. 

An exemplar study is presented of a quasi-static crack, inclined to the observed surface, propagating on low index {hkl} planes in a 
(001) single crystal silicon wafer and was characterised using in situ high (angular) resolution electron backscatter diffraction (HR- 
EBSD). The mixed-mode crack fields were consistent with a constant maximum potential energy release rate criterion for crack 
propagation, with average fracture toughness, KIC, of the {113} plane measured to be 0.69 ± 0.03 MPa m0.5. This high-resolution 
approach can potentially be used to study the local fracture resistance of brittle inclusions, coatings, and interfaces at the micron 
scale within material microstructures under complex loading. 
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Supplementary Figures  

 

Supplementary Figure 1: The exemplar crack propagated in a (001) silicon wafer, loaded in compression parallel 

to [1̅10]: a) showing the crack path and HR-EBSD mapping and FIB cutting locations. The numbers mark the 

intervals of crack growth, after which the stable crack tip was observed in situ under load by HR-EBSD. The sample 

surface was cleaned from the accumulated debris before FIB cutting of trenches parallel to (110) at the marked 

locations to examine the sub-surface crack geometry; b) 3D visualisation of the crack geometry close to the 

surface, using the FIB slice traces and cubic interpolation between points. 
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Supplementary Figure 2: EBSD data confirmed the (001) wafer orientation and defined the x and y axes as [110] 

and [1̅10] as shown in Figure 3 in the main text. The pole figure and measured traces were then used to identify 

the crack direction and plane. The example here is for observation 11, showing the crack pole is close to a {131} 

plane.  

 

Supplementary Figure 3: The goodness of the fit (R2) using different 𝐾𝐼𝐶  values [1] on (131) plane data with the 

grey area highlighting weighted uncertainty. 
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Supplementary Notes (A): Assumed Crack Direction 

There is no significant effect of the beam on the sample. Bouscaud et al. [2] considered how 

the electron beam could cause the local temperature to increase in the interaction volume 

due to dissipating energy created from inelastic scattering. The interaction volume can be 

estimated using Monte Carlo Simulation (Casino v2.48 [3]). A 173 nm effective volume of 

interaction (i.e., depth of resolution, 𝑟) was calculated for 5 x 106 electrons bombarding a 70° 

titled silicon sample placed inside a Merlin FEG-SEM that has a beam mean-radius of  ~25nm 

at 20 keV beam energy (𝐸0) of and 10 nm current (𝐼0) (Supplementary Figure 4). A (mean) 

induced temperature (∆T) of 1.2 K was then estimated from equation (1), assuming a thermal 

conductivity (𝜆) of 149 W m-1 K-1 at 300 K [4], which is negligible. 

∆T =
𝐸0𝐼0

2𝜋𝜆𝑟
 (1) 

 

Supplementary Figure 4: Cumulative probability of backscattered electron detection vs depth from the surface 

for Monte Carlo simulated electron trajectories in silicon. A dashed red line indicates the mean of the distribution. 

The fracture surface was marked by ‘Wallner’ lines that indicate local deviations in the crack 

plane. Examples of the surface observations (Supplementary Figure 5c) show that the 
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arrested crack is sometimes slightly kinked and returns to the previous plane on propagation.  

The kinks may be due to the effects of local crack tip plastic deformation as the crack arrests 

(see GND density map in Figure 4a in the main text). The slight changes in local crack direction 

mean that the assumed crack (expected) propagation direction (𝑞) – which was assumed to 

follow the average crack plane geometry – is not always applicable. Such an error will 

influence the mode mixity (i.e., the relative magnitude of SIFs) but not the effective stress 

intensity factor (𝐾eff) because the loading modes are coupled [5,6].  

 

Supplementary Figure 5: (i) Secondary electron, and (ii) forward scatter detector (FSD) images for the crack tip 

at the points labelled (a) 1 and (b) 4 in Supplementary Figure 1. (c) and (d) are the crack trace after propagation 

at the following in-situ observation. 

This is illustrated in Supplementary Figure 6 for a case where a mode I field has been 

simulated in the ABAQUS® Finite element solver, and mode I and II stress intensity factors 

have been calculated with the assumption of 𝑞-vectors that deviate from the actual direction 

using the interaction integral method [7] natively implemented in ABAQUS®. As the assumed 

direction deviates from the true direction with the maximum potential strain energy release 

rate (𝐽-integral), the mode II stress intensity factor (SIF) increases, and the mode I SIF 

decreases. 
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Supplementary Figure 6: (a) ABAQUS® simulation of a two-dimensional crack on an isotropic material (E = 210 

GPa), loaded to 38 MPa m0.5 in mode I. (b) Calculated mode I and II while changing the assumed crack extension 

direction (𝑞) using the interaction integral method (natively implemented in ABAQUS®). As the crack, it 

experiences increased mode II and reduced mode I. 



Page 7 of 19 

 

Supplementary Notes (B): In situ EBSP0 selection 

The effect of using a ‘Native’ compared to ‘Chosen’1 on the correlation parameters was 

quantified and tabulated in Table 1. PH and MAE values are more consistent between maps 

that used the ‘Chosen’ approach than those using the ‘Native’ approach. The accuracy of the 

maps was slightly improved using the ‘Chosen’ EBSP0, which was then used for further J-

integral analysis. 

Table 1: Effect of using ‘Native’, ‘Chosen’, and 8th interval EBSP0 as a reference pattern. 

Interval 
Native Chosen 8th Chosen-EBSP0 

PH MAE (10–4) PH MAE (10–4) PH MAE (10–4) 

1 0.75 1.8 0.74 1.6 0.75 17.9 

2 0.75 1.8 0.74 1.6 0.73 7.9 

3 0.69 1.9 0.71 1.7 0.74 5.1 

4 0.74 1.9 0.74 1.6 0.74 14.8 

5 0.74 1.8 0.74 1.6 0.74 5.3 

6 0.74 1.8 0.73 1.6 0.74 5.0 

7 0.74 2.1 0.73 1.7 0.78 2.3 

8 0.73 1.8 0.73 1.6 0.73 1.6 

9 0.74 1.9 0.74 1.7 0.74 10.8 

10 0.74 1.8 0.73 1.6 0.76 18.7 

11 0.75 1.9 0.75 1.6 0.76 21.1 

12 0.74 1.7 0.74 1.6 0.74 19.6 

Average 0.74 1.9 0.74 1.6 0.75 10.8 

 

Since the beam conditions and experiment geometry were kept the same during the 

experiment intervals, all maps can be calculated relative to one EBSP0 instead of 12. A 

 

1 ‘Native’ and ‘Chosen’ EBSP0 definition can be found in Ref. [27]. Briefly, ‘Native’ is EBSP0 selected away from 
stress concentration as identified using pattern image quality (IQ) and the grain mean orientation, where 
‘Chosen’ it is the point with the give least mean angular error and highest cross-correlation peak height.  



Page 8 of 19 

 

synthetic 12 x 12 EBSD map was created using the EBSP0 from each interval, as shown in the 

schematic in Supplementary Figure 1, where numbers donate the EBSP0 interval. HR-EBSD 

analysis was conducted on the data. In the synthetic data, the 8th interval EBSP0 was chosen 

as the least deformed from the available EBSP0 using conventional selection criteria, i.e., 

based on pattern quality (IQ) and low kernel average misorientation (KAM). 

1 2 3 4 5 6 7 8 9 10 11 12 

1 2 3 4 5 6 7 8 9 10 11 12 

1 2 3 4 5 6 7 8 9 10 11 12 

1 2 3 4 5 6 7 8 9 10 11 12 

1 2 3 4 5 6 7 8 9 10 11 12 

1 2 3 4 5 6 7 8 9 10 11 12 

1 2 3 4 5 6 7 8 9 10 11 12 

1 2 3 4 5 6 7 8 9 10 11 12 

1 2 3 4 5 6 7 8 9 10 11 12 

1 2 3 4 5 6 7 8 9 10 11 12 

1 2 3 4 5 6 7 8 9 10 11 12 

1 2 3 4 5 6 7 8 9 10 11 12 

Supplementary Figure 1: Schematic of patterns arrangement in the synthetic EBSD map. 

Note that a shadow from the stage anvil was cast on the patterns on the first interval 

(Supplementary Figure 02a) due to the proximity of the crack to the anvil; however, once 

excluded, it did not affect HR-EBSD cross-correlation (see Table 1). From HR-EBSD analysis 

(Supplementary Figure 02b), the 8th and 7th intervals show a relatively low deformation, but 

deformation conditions exacerbate with intervals which can be illustrated clearly from the 

gradient seen in the in-plane components of the normal strain and 𝜔13. The phantom (or 

artificial) stresses were introduced at each interval can be as high as 2.5 GPa and highly affect 

the in-plane stress (Supplementary Figure 02c). 
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Supplementary Figure 02: (a) In situ crack Chosen EBSP0 at different experimental intervals. (b) Elastic 

deformation component from the Chosen EBSP0 from each interval compared to EBSP0 from the 8th interval (red 

squared in a). (c) Stress tensors relative to the 8th interval were calculated using (001) Silicon anisotropic elastic 

properties [8]. 𝜎33 is zero due to the assumed traction-free surface [9].  

A closer look can be taken at the effect of swapping EBSPs across scans using the 8th EBSP0 for 

the 7th and 9th intervals. As indicated by the synthetic EBSD data in Supplementary Figure 02, 

the 7th interval deformation field slightly changes when using the 8th EBSP0 as a reference 

 c 
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pattern, as shown in Supplementary Figure 02c. As indicated in Supplementary Figure 02c, for 

the 9th scan, the deformation magnitude (in each tensor) was directly increased, especially in 

the in-plane components. This clearly shows, and contrary to our expectation, that each EBSD 

map has a different imaging condition; even when the current, voltage and working distance 

were kept constant, pattern centre (PC) shift due to beam movement during acquisition was 

minimised [10], pattern remapping [11], and no further angular effect from drift was expected 

as the ROI was small (~20 x 15 µm2) and the sample was conductive [12].  

 

Supplementary Figure 3: Deformation field components for steps (a) 7 and (b) 9 of in situ test using (I) Chosen 

and (II) Swapped (from step 8) EBSP0. 

It appears that slight stage movement coupled with minor re-focusing of the field of view 

(although there is no necking or change of thickness effect here) changed the experiment 

geometry; thus, impacting the probed EBSPs. This shows that swapping EBSP0 across intervals 
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or finding an EBSP0 for all intervals and relating all ‘relative’  or absolute  information to one 

EBSP0 will yield erroneous results. However, it slightly improves the correlation (see Table 1).  

The results are similar to results used pristine single crystal mounted within the sample for 

calibration [13] due to the change in projection parameters. When the 1st iteration of HR-

EBSD calculates both real and artificial strain, the 2nd iteration will not separate the real strain 

(Supplementary Figure 3) due to pattern centre variation inducing phantom stress [14]. This 

directly contradicts Deal et al.’s [15] evidence of the feasibility of using a physical reference 

pattern (EBSP0) library to calculate absolute strains using high (angular) resolution electron 

backscatter diffraction (HR-EBSD) with 11% repeatability. While the physical reference 

pattern (EBSP0) library method might work for very limited cases [16], it seriously 

underestimates the error (or phantom stress) and yet faces the same limitations daunting 

simulated reference patterns for absolute strain measurement but without providing an 

understanding of the (physical) building blocks.  
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Supplementary Notes (C): Analytical field benchmarking 

A mixed-mode crack’s displacement field that has a mode I stress intensity factor (𝐾𝐼) of 3 

MPa m0.5, mode II (𝐾𝐼𝐼) of 1 MPa m0.5, and mode III  (𝐾𝐼𝐼𝐼) of 2 MPa m0.5 were created using 

an analytical solution [17] and assuming plane stress conditions (eq. 1 to 5). The elastic 

modulus (𝐸) and Poison’s ratio  𝑣) were 210 GPa and 0.3, respectively. The field of view was 

1*1m, having 0.02*0.02 square elements and a crack tip at the centre (0,0). Then, the 

(numerical) displacement gradient (𝑢𝑖,𝑗) calculated from the displacement (equation 2-7). 

u1 =
𝐾𝐼

2𝜇
√

𝑟

2𝜋
cos (

𝜃

2
) [𝑘 − 1 + 2 sin2 (

𝜃

2
)] +

𝐾𝐼𝐼

2𝜇
√

𝑟

2𝜋
sin (
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2
) [𝑘 + 1 + 2 cos2 (
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2
)] 1 
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cos (

𝜃

2
) [𝑘 + 1 − 2 cos2 (

𝜃

2
)] −

𝐾𝐼𝐼

2𝜇
√

𝑟
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cos (

𝜃

2
) [𝑘 − 1 − 2 sin2 (

𝜃

2
)] 2 

u3 =
2𝐾𝐼𝐼𝐼

𝜇
√

𝑟

2𝜋
sin (

𝜃

2
) 3 

shear modulus (𝜇) =
𝐸

2(1 + 𝑣)
 4 

 𝑘 =
3 − 𝑣

1 + 𝑣
 5 

𝑢𝑖,𝑗 =
𝜕u𝑖

𝜕𝑥𝑗
 6 

Equation (7) was then used to decompose the displacement gradient to different 

modes. The (infinitesimal) strain was then calculated from each mode with their relationship 

as expressed below and shown in Supplementary Figure 1a. 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) 0—7 

Using the displacement derivatives with the method outlined in the main text, the calculated 

J-integral and decomposed stress intensity factors matched inputted values (Supplementary 

Figure 1b). Highly localised fields close to crack edges can also influence initial convergence, 

but convergence stabilises as the domain expands. 
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Supplementary Figure 1: (a) The analytical displacement gradient for a stationary mixed loaded crack. (b) J-

integral and decomposed loading modes as a function of contour distance from the crack tip. 

The key sources of errors in this analysis were assessed. First, a normally distributed random 

noise was incrementally induced from zero to 10% on all the strain components. 

Supplementary Figure 2a shows the amount of induced error in each component, with KII 

being highly influenced by noise. The dashed upper pound line indicates that this method is 

highly vulnerable to noise compared to a method that uses total elastic displacement, e.g., a 

6% noise induces a convergence error of 7.6 ± 18.8 %, 16.8 ± 35.5% and 4.2 ± 11.2 % in KI, KII 

and KIII, respectively, compared to 3.8%, 3% and 0.8% when using displacement field 

subjected to same noise [18,19]. This is because the induced noise on three displacement 

components will be diluted when the derivatives are calculated, where the induced noise on 

the nine strain components will directly affect the analysis. Calculating the strains next to the 

crack flanks is critical in mixed mode; this region cannot be masked or excluded, especially in 

mode I, but can be carefully extrapolated from the displacement gradients [20]. 
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Supplementary Figure 2: Error due to (a) noise and (b) crack tip accuracy. 

Second, the analysis sensitivity to crack tip location was assessed using the accurate 

crack tip positioned at the origin (0,0) coordinate. The error in accurately locating the crack 

increases if the location was assumed ahead relative to behind the crack (Supplementary 

Figure 2b). This is due to the nature of the analytical field, as there is symmetry on the crack 

edges, but the magnitude at the crack tip gradually changes with distance. Detailed analysis 

of two-dimensional errors reveals a distinct behaviour for each component of SIFs and the 

sum of all components in the J-integral influencing both magnitude and convergence.  

Linear strain and rotation gradient, caused by pattern centre (PC) shift due to the beam 

movement during each EBSP acquisition, were not assessed as this spurious gradient 

magnitude and distribution are highly dependent on the EBSP0 deformation status and 

position with respect to the beam. Nevertheless, errors due to PC shift can be reduced using 

AstroEBSD [10]. To less extent, certain meshing [21] and element/node configurations 

produce strain singularities [22,23]  to improve accuracy; however, the discrepancy in results 

obtained from different singular elements persists [24,25]. For J-integral, comparably coarse 

meshes are sufficient, with no unique crack tip elements being required, which reduces the 

need for a high degree of mesh refinement at the crack tip [24]. 

In addition, this decomposition method is suitable for a regulated mesh and a crack field that 

is symmetric around the crack with no apparent noise at the crack edges but does not work 



Page 15 of 19 

 

for other stress raisers with compressive mechanical conditions (especially mode I) as minus 

values are interpreted as imaginary. Also, the stress field needs to be linearly elastic and have 

the 𝑟−0.5 form of singularity, where 𝑟 is the distance from the crack tip. Complex and 

computationally expensive methods can be used as an alternative [26], which can be coupled 

with finite element solvers to get the most out of the measured field, including padding noise 

near the crack [20], calculate the crack probable extension direction (e.g., XFEM ABAQUS®), 

etc. 
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