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Abstract
The effects of non-ideal experimental configuration on the mechanical
resonance of boron (B) nanowires (NWs) were studied to obtain the corrected
value for the Young’s modulus. The following effects have been theoretically
considered: (i) the presence of intrinsic curvature, (ii) non-ideal clamps,
(iii) spurious masses, (iv) coating layer, and (v) large displacements. An
energy-based analytical analysis was developed to treat such effects and their
interactions. Here, we focus on treating the effect of the intrinsic curvature
on the mechanical resonance. The analytical approach has been confirmed
by numerical FEM analysis. A parallax method was used to obtain the three-
dimensional geometry of the NW.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Uniaxial nanostructures such as nanotubes, nanowires, nanorods and nanowhiskers are of
recent interest. Two commonly used methods to study the mechanical properties of uniaxial
nanostructures are the mechanical resonance method and the tensile testing method (Ding et al
2006). The resonance method has been frequently used to probe the stiffness of nanostructures
(Poncharal et al 1999, Wang et al 2000a, 2000b, Bai et al 2003, Dikin et al 2003, Calabri
2005). As reported in this paper, there are many factors that may affect the results in terms of
the fit value and spread of values of Young’s modulus.

In this work we focus, in particular, on treating the effect of the intrinsic curvature on the
mechanical resonance of the beam-shaped structures, analysing experimental data (Ding et al
2006) of curved boron (B) nanowires (NWs).
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Figure 1. SEM image of CVD-grown crystalline B NWs projecting from the edge of a TEM grid.

Mechanical resonance can be induced when the frequency of the applied force (the forcing
frequency) approaches the nth normal mode frequency of the NW. According to the simple
beam theory, the nth mode resonance frequency fn of a clamped–free uniform beam, is given
by

fn = β2
n

2π

√
E0 I

mL4
(1)

where E0 is the Young’s modulus of the beam, I is the cross-section moment of inertia, m is
the mass per unit length, and L is the beam length. The term βn is a constant value depending
on the resonance mode (β0 = 1.875, β1 = 4.694, β2 = 7.855 and β3 = 10.996: values of βn

for the first four resonance modes).
Mechanical resonance measurements were performed on chemical vapour deposition

(CVD)-grown crystalline B NWs (Otten et al 2002), and the Young’s modulus values for each
were calculated according to the beam theory (Ding et al 2006). To apply the classical beam
theory, several hypotheses have to be verified (Meirovich 1975). The experimental conditions
often disagree with the hypotheses introduced with the elastic theory; for this reason we tried to
consider effects such as the driving condition (excitation), NW curvature, boundary conditions
and different kind of surface irregularities (presence of spurious masses and/or deposition of a
layer of material during the experiment), with an energy-based analytical analysis based on the
Rayleigh–Ritz method.

2. Experimental configuration

The crystalline B NWs used were previously synthesized by a catalysed chemical vapour
deposition method (Otten et al 2002; we appreciate receiving the sample used from Otten).
They are tens of microns in length with diameters in the range 20–200 nm. Figure 1 shows an
SEM image of such B NWs projecting from the edge of a TEM grid.

The whole resonance measurement was performed (Ding et al 2006) inside an SEM
chamber. The B NWs tested were first clamped to the tip of an AFM cantilever using the
EBID process (Ding et al 2005) (figures 3(a) and (b)), and then removed from the source using
a home-built nano-manipulator (Yu et al 1999). The AFM cantilever, with the NW clamped
on its tip, is connected to the stage of the nano-manipulator through a piezo-bimorph actuator
(figures 2(a) and (b)). During the resonance measurement, a clamped–free NW was excited
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Figure 2. (a) Electrical excitation of a cantilevered boron nanowire. (b) Mechanical excitation of a
cantilevered boron nanowire.

 (a)

(b) 

Figure 3. (a) Resonance of the first mode of vibration of the curved B NW shown in (b), attached
to an AFM tip.

to resonance by applying a mechanically or electrically induced periodic force to it. In the
electrical excitation method (figure 2(a)), an ac voltage with tunable frequency was applied
between the AFM cantilever and the counter electrode, thus an alternating electric field is
created in the area around the B NW. In the mechanical excitation method (figure 2(b)), the
ac voltage was directly applied to a piezo-bender to induce the mechanical vibration of the
cantilever and consequently of the NW attached to it. Either way, the resonance of the B NW
can be excited as the ac signal frequency matches its proper frequency.

For other experimental details please refer to Ding et al (2006).
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(a)

(b) (c)

Figure 4. (a) 3D reconstruction of a real B NW ((b), (c)) modelled with CAD software. The units
of measurements reported in (a) are µm. The SEM images ((b), (c)) refer to the same wire and are
obtained by tilting the sample with a 90◦ angle. They are necessary to apply the parallax method
(Huang et al 2004) and to reconstruct the 3D configuration.

3. Results and discussion

3.1. Resonance measurement results

During experiments (Ding et al 2006) the resonance frequency of several B NWs tested was
recorded. Figure 3 shows SEM images of the first mode resonance of a cantilevered B NW
attached to an AFM tip.

Since SEM images only gave a two-dimensional (2D) projection of the NW, there could
be some errors in the length measurement if the NW is not parallel to the plane of projection.
As shown in equation (1), the Young’s modulus is proportional to the fourth power of the beam
length. Young’s modulus is thus particularly sensitive to errors in the length. To accurately
measure the NW length, a parallax method was used to reconstruct the three-dimensional (3D)
configuration of the nanowire (Huang et al 2004). Figure 4(a) shows the 3D reconstruction of a
real B NW (figures 4(b) and (c)) obtained with CAD software (SolidWorks® 2005, SolidWorks
Corporation). These measurements are to determine the spatial coordinates of the reference
points representing the characteristic of the beam curvature.

With accurate NW geometry (L, I and m) and resonance frequency data ( fn), the Young’s
moduli of the NWs were calculated according to equation (1), converted in order to express the
Young’s modulus directly:

E0 = 4π2mL4

β4
n I

fn . (2)

The measured Young’s moduli of the curved B NWs ranged between 150 and 250 GPa,
as listed in table 1. (As discussed in detail in our previous work (Ding et al 2006), there is
an amorphous oxide layer covering the NWs. Here we did not make corrections to take into
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Figure 5. In the ideal case the clamp is infinitely rigid and the NW is perfectly straight, with no
spurious masses attached on it and no coating deposited on its surface. In the real case these four
effects often co-exist and thus would be interacting. In addition, the role of the finite kinematics
(large displacements) could be significant.

Table 1. The Young’s modulus of curved B NWs.

Sample # Lengtha (µm) Diameterb (nm) Frequencyb (kHz) Young’s modulusc (GPa)

11-06 #1 16.2 ± 0.2 75 ± 1 346 ± 0.05 218 ± 18
11-29 #2 7.8 ± 0.2 70 ± 1 1295 ± 0.05 155 ± 17
12-09 #2 22.2 ± 0.2 103 ± 2 440 ± 0.05 362 ± 11
12-22 #1 25.6 ± 0.4 78 ± 2 106 ± 0.05 96 ± 11
01-10 #1 7.8 ± 0.2 64 ± 3 1332 ± 0.05 196 ± 42

a Wire length: obtained with the parallax method based on the experimental data (see note b).
b Wire geometry and frequency: results obtained from experiment (Ding et al 2006).
c Fit values are expected to be affected by the non-ideal configuration of the experimental set-up.

account the boron oxide layer, so the Young’s modulus listed is the average value of an oxide-
coated B NW and not the Young’s modulus of the B core. Please refer to Ding et al (2006)
for a detailed analysis considering the boron oxide layer.) The main point of our treatment of
the influence of curvature is of its influence on the resonance frequency of a cantilevered beam.
The fact that we have a core–shell structure versus a structure homogeneous throughout is thus
a secondary issue for the analysis presented below.

The results reported in table 1 are obtained using the simple beam theory, considering the
NWs tested as ideal beams (straight, uniform and rigidly clamped); nevertheless to apply this
theory there are several assumptions that are rendered not completely valid, by the non-ideal
configuration.

The three-dimensional reconstruction of the NW is very important also for the correction
procedure (see section 3.2 below) and for the FEM simulation (section 3.3), where the exact
geometry of the NWs (length and curvature radius) is necessary to rationalize the experimental
results.

3.2. Correction procedure

The Young’s modulus values of these curved NWs listed in table 1 are much lower than the
modulus of bulk crystalline boron (Tavadze et al 1981). Several factors were believed to
contribute to this issue (figure 5): (i) foremost, the amorphous coating layer, (ii) intrinsic
curvature of the wire, (iii) non-ideal boundary conditions, (iv) the possible presence of spurious
attached particles, and (v) large displacements. We neglected the effect of the possible presence
of nanocracks in the NWs (Pugno et al 2000, Carpinteri and Pugno 2005a, 2005b).

We tried to consider all these factors with an analytical approach based on the classical
Rayleigh–Ritz method. We carried out an expression available for the Young’s modulus of
a non-ideal wire (neglecting the effects related to the second order corrections due to the
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interaction between the causes):

E ≈ E0(1 + cr Cr + cδCδ + ccCc − ckCk − cqCq) (3)

where E0 is the Young’s modulus derived neglecting the effects (i), (ii), (iii), (iv) and (v); Cr ,
Cδ , Cc, Ck and Cq are the coefficients which take account of the non-ideal boundary conditions
(Ck), intrinsic curvature of the wire (Cr ), spurious masses (Cq), large displacements (Cδ) and
amorphous coating layer (Cc); and cr , cδ, cc, ck , and cq are positive constants.

In particular:

Ck = E0 I

kL
; Cr = L2

r 2
; Cq = q

mL
α4; Cδ = δ2

L2
; Cc = t

R
β (4)

α = z

L
and β = 1 + ρc

ρ
− 2

Ec

E0
(5)

where k is the rotational stiffness of the clamp; r is the intrinsic curvature radius; q is the
spurious particle mass; δ is the amplitude of the tip oscillations; ρc is the density and Ec is
the Young’s modulus of the coating layer (shell) with thickness t enveloping the B core having
radius R, density ρ and Young’s modulus E0; α represents the mass particle position on the
wire with reference to the edge of the clamp and β is a factor which takes into account the
density and the Young’s modulus of the coating layer.

The formula (3) is particularly easy to apply and takes into account each ‘problem’
linked with the non-ideal configuration of the experimental set-up, to first order in each. The
multiplying factors (ck , cr , cq , cδ , cc) have to be ‘calibrated’ with a numerical procedure in
order to obtain a generic formula available for a wide range of tested beams.

In this paper we present only the determination of the intrinsic curvature multiplying factor
cr (section 3.3), considering only the problems linked with the curvature of the B NWs. It
remains to consider the other non-ideal effects and to calibrate the other factors so as to obtain
a complete formula.

3.3. Vibration of curved nanowire

The five NWs listed in table 1 are all curved NWs. Since the equation (1) we used to calculate
the Young’s modulus is for a straight cantilevered beam (simple beam theory hypothesis),
applying this formula to a curved structure introduces errors. To obtain the true Young’s
modulus of the curved NWs and to calibrate the correction factor in formula (3), we carried
out FEM simulations with ANSYS® software (Ansys 8.0, Ansys Inc.) by running a modal
analysis.

First an ideal straight NW was modelled (figure 6) to ensure that the numerical results were
correct and the simple beam theory verified. In this way we checked the quality of the FEM
model used. Then the same modelling procedure was applied to those B NWs with a curved
geometry (figure 7), giving a correction comparable to that deduced by equation (6) (table 2).

As discussed before, we used a parallax method to reconstruct the 3D configuration of
the NWs (Huang et al 2004). Using this method, the spatial coordinates of several reference
points, representing the characteristic of the beam curvature (figure 4(a)), were exported to
ANSYS®, and a spline was designed with the same shape as the curved nanowire. Then an
FEM was created by extruding the NW cross-section area along the spline. Attention was
paid to ensuring the symmetry of the structure because a small error in the symmetry of the
beam can significantly affect the resonance frequency of the structure as obtained by the modal
analysis. The clamped–free configuration was used in the modelling, thus directly relevant to
the boundary condition present in the experiment.
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Figure 6. ANSYS model of a straight B NW. (a) Schematic diagram of a cantilevered straight B
NW. (b) FEM model of the B NW (the inset (c) shows a section of the model, so one can see the
radial distribution of the elements in the section). (d) SEM image of the cantilevered straight B NW
modelled.

Figure 7. ANSYS model of a curved B NW. (a) Schematic diagram of a cantilevered curved B
NW. (b) FEM model of the B NW (the inset (c) shows a section of the model, so one can see the
radial distribution of the elements in the section). (d) SEM image of the cantilevered curved B NW
modelled.

The Young’s modulus values of each of the B NWs modelled were obtained from the
simulation using the measured frequency values.

Table 2 shows the numerical simulation results for Young’s modulus for the five curved
B NWs treated. These results are compared in the table with the values of the Young’s
modulus of the corresponding straight NW of same length and with the values corrected with
the theoretical procedure. As mentioned, we considered only the effect of the curvature both
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Table 2. Comparison between the Young’s modulus of the curved NWs corrected with theoretical
and numerical (FEM) models.

Length Diameter Frequency Modulus assumed Modulus corrected Modulus corrected
Sample # (µm) (nm) (kHz) straight (GPa) (Theo) (GPa) (Num) (GPa)

11-06 #1 16.2 75 346 218 207.7 204.9
11-29 #2 7.8 70 1295 155 151.6 152
12-09 #2 22.2 103 440 362 356.5 356
12-22 #1 25.6 78 106 96 91.9 91.9
01-10 #1 7.8 64 1332 196 194.5 194.2

in the theoretical model than in the FEM one. There is good agreement between the numerical
and theoretical results, which suggests that this method allows straightforward evaluation of
the Young’s modulus of curved NWs.

The constant cr for the intrinsic curvature was obtained from the numerical simulation
results. We find that cr is equal to 1/25, thus one has

Ecurve ≈ Estraight

(
1 + L2

25r 2

)
. (6)

We used this formula to evaluate the ‘corrected’ Young’s modulus for the curved NWs
analysed from experimental data (table 2). All the samples reported in table 1 have a curved
shape; thus we applied the formula (6) for these. The numerical and theoretical approaches
clearly yield similar values.

As mentioned above, our goal here is not to treat the modulus of the B core, but instead to
develop a method to account for the influence of curvature on the fit value of the modulus of
the curved NW.

4. Concluding remarks

In this paper we investigated the effects of non-ideal experimental configuration and found a
straightforward method to correct the simple beam theory when its fundamental hypotheses
are not strictly verified, particularly with respect to curved versus straight beams. We used
an energy technique based on the classical Rayleigh–Ritz method, yielding formula (6). We
developed a numerical FEM analysis to consider the effect of the beam curvature on the value
of the Young’s modulus of the samples treated and furthermore to ‘calibrate’ a constant in the
formula in order to confirm the efficiency of this analytical approach. The nanowire diameter
and length were carefully determined, and a 3D reconstruction method was used to get the true
wire length. This is necessary both to use the simple beam theory and to model the real shape
of the wire in an FEM software.

Here, we focused on treating the effect of the intrinsic curvature on the mechanical
resonance, obtaining a good agreement between the numerical and theoretical results (as
reported in table 2). The future directions include extending this method of achieving
a ‘calibration’ of the other ‘correction’ coefficients so as to obtain a complete analytical
procedure for the vibration of real nanowires. In fact the non-ideal effects, such as (i) intrinsic
curvature of the wire, (ii) non-ideal boundary conditions, (iii) amorphous coating layer, (iv)
spurious attached particle, and (v) large displacements, are often present on real NWs and
they all affect the proper resonance frequency of the sample depending on the level of the
non-ideality (as one can deduce from equations (3) and (4)). We decided first to focus on the
intrinsic curvature of the nanowire because it often affects the shape of the B NWs, changing
in a significant way the value of their mechanical properties.
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