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Abstract
In this paper various deterministic and statistical models, based on new
quantized theories proposed by the author, are presented for estimating the
strength of a real, and thus defective, space elevator cable. The cable,
∼100 000 km in length, is composed of carbon nanotubes, ∼100 nm long: thus,
its design involves nanomechanics and megamechanics. The predicted strengths
are extensively compared with the experimental and atomistic simulation
results for carbon nanotubes available in the literature. All these approaches
unequivocally suggest that the megacable strength will be reduced by a factor
at least of ∼70% with respect to the theoretical nanotube strength, today
(erroneously) assumed in the cable design. The reason is the unavoidable
presence of defects in so huge a cable. Preliminary in-silicon tensile
experiments confirm the same finding. The deduced strength reduction is
sufficient to place in doubt the effective realization of the space elevator, that
if built as designed today will certainly break (in the author’s opinion). The
mechanics of the cable is also revised and possible damage sources discussed.

(Some figures in this article are in colour only in the electronic version)

Invited paper presented at Nanoscience and Nanotechnology 2005

1. Introduction

A space elevator (figure 1) basically consists of a cable attached to the Earth’s surface for
carrying payloads into space (Artsutanov 1960). If the cable is long enough, i.e., around
150 000 km (reducible by a counterweight), the centrifugal forces exceed the gravity of
the cable, that will work under tension (Pearson 1975). The elevator would stay fixed
geosynchronously. Once sent far enough, climbers would be accelerated by the Earth’s
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Figure 1. The cover of the American Scientist magazine (July–August 1997) reporting an
artistic conception of the space elevator (left); and its structural scheme (right, downloaded from
Wikipedia—the free encyclopaedia).

rotational energy. It is clear that a space elevator would revolutionize the methodology for
carrying payloads into space, and in addition at ‘low’ cost. On the other hand, its design is very
challenging.

The most critical component in the space elevator design is undoubtedly the cable, that
requires a material with very high strength and low density. Considering a cable with constant
section and a vanishing tension at the planet surface, the maximum stress, reached at the
geosynchronous orbit (GEO), is for the Earth equal to 63 GPa, even if a low carbon density
(1300 kg m−3) is assumed for the cable. Only recently, since the discovery of carbon nanotubes
(Iijima 1991), has such a large strength been experimentally observed (Yu et al 2000a, 2000b),
during tensile tests of ropes composed of single-walled carbon nanotubes or multiwalled carbon
nanotubes, expected to have an ideal strength of about 100 GPa. Note that for steel (density
of 7900 kg m−3, assumed strength of 5 GPa) the maximum stress expected in the cable is
383 GPa, whereas for Kevlar (density of 1440 kg m−3, strength of 3.6 GPa) the maximum
stress is 70 GPa, both much higher than their strengths. However, an optimized cable design
must consider a uniform tensile stress profile (Pearson 1975) rather than a constant cross section
area. Accordingly, the cable could be built of any material (Pearson 1975) by simply using a
large enough ‘taper ratio’, i.e., the maximum cross section area (at GEO) over its minimum
value (at the Earth’s surface). For example, for steel this value is 1033, for Kevlar it is 2.6 ×108

and for carbon nanotubes it is only 1.9. Since the mass of the cable depends on the taper ratio,
the feasibility of the space elevator seems to become only plausible currently thanks to the
discovery of carbon nanotubes (Edwards 2000, 2003). The cable would obviously represent
the largest engineering structure, hierarchically designed from the nanoscale (single nanotube
with length of the order of a hundred nanometres) to the megascale (space elevator cable with
a length of the order of a hundred megametres).
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Unfortunately, the presence of even a few vacancies in a single nanotube seems to play
a dramatic role, as suggested by quantized fracture mechanics (QFM) criteria (Pugno 2002,
2004b, 2006b; Pugno and Ruoff 2004). And in such a huge cable we expect pre-existing
defects not only for statistical reasons (Carpinteri and Pugno 2005) but also as a consequence
of damage nucleation, e.g., due to micrometeorite or low Earth orbit object impacts and atomic
oxygen erosion. After a review on the mechanics of the cable, the effect on the strength of
the damage types mentioned is considered. Accordingly, different deterministic and statistical
models are presented for estimating the strength of a real, thus defective, carbon nanotube-
based space elevator cable. All these methods suggest expecting a megacable strength reduced
by a factor of at least ∼70% with respect to the theoretical nanotube strength, corresponding to a
mass increment larger than 300%. Thus, the deduced strength reduction is sufficient to place in
doubt the effective feasibility of the space elevator that, as designed today and according to the
author’s analysis and opinion, will undoubtedly break. Experiments and atomistic simulations,
based on molecular or quantum mechanics, for carbon nanotubes confirm our argument. Size
effects deduced by in-silicon experiments for carbon nanotube-based ropes confirm the strength
reduction mentioned, in agreement with the first observations on the strength of metre-long
nanotube-based ropes (Zhang et al 2005).

Thus, the general optimism as regards the effective realization of the space elevator (in
15 years for $ 10B; see Edwards (2000, 2003); Edwards and Westling (2003)) is placed in
doubt by the role of defects in the cable: as we have not been able to build a large glass
cable possessing the strength of a glass whisker, perhaps we will face a similar limit during
the practical realization of the space elevator cable, and certainly if the design of the cable is
not dramatically reconsidered. Accordingly, a detailed analysis on the role of defects in the
cable seems to be crucial: formally, in addition to strength and density, the fracture toughness
has to be taken into account and cannot be further neglected. The QFM criteria introduced by
the author could help in solving, if a solution exists, the problem of a correct nanostructured
megacable design, whereas classical atomistic simulations or experimental analyses remain
unrealizable due to the tremendous size of the megacable.

2. From nanomechanics to megamechanics

As mentioned, experiments and atomistic simulations cannot be performed on so huge a cable.
Thus, we need a theory able to treat objects spanning from the nanoscale to the megascale.
We demonstrate here that this theory must include a characteristic length, governing the size
scale considered, in contrast to the classical theories of elasticity and in particular linear elastic
fracture mechanics (LEFM; Griffith 1921). Furthermore, LEFM has recently been generalized,
relaxing the hypothesis of a continuum crack propagation (Pugno 2004a, 2004b, 2006a, 2006b;
Pugno and Ruoff 2004), introducing in a natural way a characteristic length, i.e., the ‘fracture
quantum’. In this section we apply such a treatment to the smallest and to the largest object
that in our planet fall down in the domain of mechanics, i.e., a nanotube, having a radius of a
few nanometres, and the Earth itself, which has a radius of a few megametres. Note that these
two objects are connected in the space elevator. We are going to show that a quantized theory
successfully explains the deviations observed in the classical continuous counterparts, through
the introduction of a fracture quantum, that varies from a fraction of a nanometre to several
kilometres.

Let us consider the well-known Neuber (1958) and Novozhilov (1969) approach, that is
the stress analogue of the energy-based QFM. It implies considering instead of the local stress,
the corresponding force acting on a fracture quantum of length a, or equivalently the mean
value of the stress σ along it. By applying this theory for predicting the failure stress σf of
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a nanotube with a nanohole of radius R around which a stress field σ arises, i.e. by setting
〈σ 〉a = σth where σth is the theoretical material strength, we deduce the following failure stress
σf (Pugno and Ruoff 2004):

σf

σth
= 2x3 + 6x2 + 6x + 2

6x3 + 11x2 + 8x + 2
, x = R/a. (1)

Note that according to the elasticity and by imposing the maximum stress equal to the material
strength, i.e., σmax = σth, the prediction would be simply σf/σth = 1/3. In contrast,
equation (1) implies σf/σth = 1/3 only for x → ∞ (large holes; equation (1) does not
consider boundary interactions), whereas for x → 0, σf/σth = 1, i.e., holes with vanishing
size do not affect the structural strength. A similar result is obtained by applying QFM, i.e.,√〈K 2〉a = KC , where K is the stress intensity factor (here at the tip of a mode I crack,
emanating from the hole) and KC is the fracture toughness of the material: in particular we
found σf/σth(x → ∞) = 1/3.36 and σf/σth(x → 0) = 1. QFM is based on the energy balance
for a quantized crack growth; thus basically it is derived from the classical Griffith’s energy
balance replacing the differentials by the finite differences. Mielke et al (2004) and Zhang
et al (2005) performed quantum mechanical calculations using density functional theory and
semiempirical methods and molecular mechanics to explore the role of vacancy defects in the
fracture of carbon nanotubes under tension. Equation (1) closely describes their predictions on
strength of nanotubes containing pinhole defects, as we will discuss in detail in section 5. An
example of a comparison is given by the dashed line (equation (1)) and the rhombs (atomistic
simulations on a [29, 29] carbon nanotube) reported in figure 2(a). Instead of using the fracture
quantum a as a best fit parameter, we have more physically considered a ≈ 2.5 Å, that is the
distance between two adjacent chemical bonds broken during fracture (figure 2(b)): thus, the
agreement is remarkable, as the deviation from the classical value of 1/3.

On the other hand, let us consider the coefficient of geostatic stress, i.e., the ratio between
the horizontal and vertical geostatic stresses (a fundamental parameter for tunnelling design).
The vertical stress at a depth z is given by σV = γ z, where γ is the specific weight of the Earth’s
crust. Thus, the horizontal stress is given according to elasticity by σH = v/(1 − v)σV, where v
is Poisson’s ratio, and consequently the coefficient of geodetic stress becomes K0 = v/(1 − v)

(∼0.4). In contrast, after a huge experimental analysis Brown and Hoek (1978) found the
coefficient of geodetic stress in the form K ≈ K0 + C/z in which C ≈ 1 km represents a
corrective term, not expected from classical elasticity. Simply by considering instead of σH its
quantized version, i.e., σ ∗

H = 1
a

∫ z+a
z σH dz, as a method for including the effect of the layered

crust structure of the Earth, we deduce

K = σ ∗
H

σV
= K0 + K0a

2z
, (2)

i.e., exactly the experimental relation, with C = K0a/2. Thus, in this context, a ≈ 5 km.
Accordingly, at the nanoscale a is found to be of the order of the ångström, whereas at

the megascale it is of the kilometre order. Thus, continuum theories, simply assuming a = 0,
are not appropriate in our multiscale context. This example shows that in general a simple
but useful quantized elasticity can be formulated by replacing the stress σ with its mean value
around a volume quantum a3, i.e., σ → 〈σ 〉a3 , recovering classical (local) elasticity only in the
limited case of a → 0, and extending the Neuber’s (1958) and Novozhilov’s (1969) approach
also for problems that do not involve a crack propagation.

Similarly we expect a very large fracture quantum in the study of geophysics, e.g., treating
earthquakes as fracture instabilities in faults. In addition, the dynamic version of QFM (Pugno
2004b, 2006b) suggests the existence of an (incubation) time quantum for crack propagation,
related to the time needed to generate a fracture quantum: such a time delay has been observed,
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Figure 2. (a) Strength of defective SWCNT versus hole size defined as n = 2R/a (QFM, dashed
line; rhombs, atomistic simulations), or versus crack length n = 2l/a (QFM, continuous line;
points, atomistic simulations); the fracture quantum a ≈ 2.5 Å is fixed identical to the distance
between adjacent broken chemical bonds, thus not as a best fit parameter. (b) Defect and fracture
quantum sizes: n = 2 denotes a nanocrack formed on removing two adjacent chemical bonds,
m = 1 denotes a nanohole formed on removing the first carbon atom perimeter (six atoms); the
applied tensile load is vertical.

of the order of microseconds, in impact failures of small specimens (see Pugno 2004b, 2006b),
but of several hours during earthquake triggering (Gombers and Johnson 2005), confirming our
argument.

This analysis suggests that QFM is a powerful tool for studying spatial–temporal problems
from the nanoscale to the megascale, as required in the design of the nanotube-based space
elevator megacable.

3. Review on the mechanics of the space elevator cable

The equilibrium between gravitational and centrifugal forces for a portion of length dz (z = 0
fixed at the Earth’s centre) of the space elevator cable implies (Pearson 1975)

dT

dz
= −ρA (z) g (z) , g (z) = − GM

z2
+ z�2 (3)

where T is the tension in the cable, A is its cross section area, G is the universal gravitational
constant and M and � are respectively the mass and rotational speed of the Earth. Since
T = σ A, with σ the stress in the cable, two main and complementary cases can be discussed:
a constant cross section area A, for which dT = A dσ , or a uniform stress cable profile, for
which dT = σ dA.

Integrating equation (3) assuming A = constant yields

σ (z)− σ0

ρ
= GM

(
1

z0
− 1

z

)
+ 1

2
�2

(
z2

0 − z2
)
. (4)
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Note that the term on the rhs of equation (4) is only planet dependent. Assuming
σ0 = 0 at z0 = R∗ (Earth’s radius) and ρ = 1300 kg m−3 as for carbon nanotubes, the
maximum stress is reached at GEO, i.e., at zGEO = (GM/�2)1/3 ≈ 35 800 km where the
gravitational and centrifugal forces are self-balanced. For the Earth σmax = σ(zGEO) ≈ 63 GPa
(R∗ ≈ 6.38 × 106 m, M ≈ 5.98 × 1024 kg, G ≈ 6.67 × 10−11 m3 kg−1 s−2). Incidentally, this
value corresponds to the highest strength observed in the experiments by Yu et al (2000b)
on multiwalled carbon nanotubes (MWCNT). Larger maximum stresses for more massive
materials are expected to scale according to their density as described by equation (4). Thus,
only today has the feasibility of the space elevator cable seemed to become realistic, as a
consequence of the discovery of carbon nanotubes. By setting T (z = R∗ + L) = 0 one derives
the length L of the megacable to be globally under tension, as L ≈ 150 000 km (Pearson
1975). The cable length L can be reduced by a counterweight of mass mc at zc, quantifiable
by satisfying the equilibrium of the mass, i.e., from σ(zc)A = g(zc)mc. The cable volume
is V = AL, to which the total mass will be proportional. The cable elastic extension can be
evaluated as �L = 1

E

∫ R∗+L
R σ(z) dz.

Note that for a hypothetical compressive load, the slenderness (s = L/
√

I/A, with I the
moment of inertia) corresponding to the transition between the tensional collapse and the Euler
elastic instability is sC = π

√
E/(σC(1 + a/L)), where E is the material Young modulus (e.g.,

0.94 TPa for a [10, 10] carbon nanotube, according to the quantum mechanical calculations
by Mielke et al (2004)), σC is its (compressive) strength and the first-order corrective term
a/L has been derived assuming quantum elasticity. Thus, larger sensitivity to elastic instability
is expected for smaller L/a and E/σC ratios (nanoscale). Yakobson et al (1996) studied the
elastic instability of carbon nanotubes by using molecular dynamics. For a nanotube with
length of 6 nm (and diameter of 1 nm) they found a critical strain of 0.09, whereas applying
elasticity a critical value of 0.137 (Wang and Varadan 2005) would emerge. The discrepancy
is explained by our correction if a ≈ 3.1 nm (0.137/0.09 = 1 + a/6).

On the other hand, integrating equation (3) assuming σ = const yields

A (z)

A0
= exp

{
ρ

σ

[
GM

(
1

z
− 1

z0

)
+ 1

2
�2

(
z2 − z2

0

)]}
(5)

that for A = A0 at z0 = R∗ gives a maximum area AGEO at zGEO, for which

AGEO

A0
= exp

(
0.776R∗g0

ρ

σ

)
(6)

where g0 = g(z = R∗) ≈ 9.78 m s−2 is the gravity acceleration at the Earth’s surface. The lhs
term in equation (6) is the so-called taper ratio (Pearson 1975). For example, as anticipated, for
steel this value is approximately 1033, for Kevlar 2.6 × 108 and for carbon nanotubes 1.9: only
today has the feasibility of the space elevator cable seemed to become realistic. The cable length
L can be deduced satisfying the equilibrium of the counterweight, i.e., σ A(zc) = g(zc)mc.
The cable volume is V = ∫ R∗+L

R A(z) dz, approximately proportional to AGEO/A0. The cable
elastic extension is �L = σ

E L.
Now let us consider the dynamics of the cable. Since for carbon nanotubes the taper ratio

is small, we can assume ∂A/∂z ≈ 0 in the motion equation of the cable, even if tapered. The
effect of the taper ratio on the longitudinal vibrations of the cable was studied in detail by
Pearson (1975). Here we are going to present just a simplification of the problem, according
to Edwards (2003). The transverse or longitudinal vibrations of the cable can be deduced by
solving the classical equation of the motion:

∂2u

∂ t2
= Y

ρ

∂2u

∂z2
(7)
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where u is the transverse or longitudinal displacement and Y = σ for transverse and Y = E
for longitudinal oscillations. If the boundary conditions are both free or both fixed, the period
of the oscillations is

P = 2L

q

√
ρ

Y
(8)

where q = 1, 2, 3, . . . is an integer number. To avoid resonance P must be far from the period
of the Moon (12.5 h), Sun (12 h) and Earth (24 h). Accordingly, considering the first mode

L 	= P
2

√
Y
ρ

, and for ρ = 1300 kg m−3, Y = σ = 63 GPa, L 	= 157 000, 150 000, 300 000 km.

Resonance would imply transverse oscillations pumped by the Moon, Sun or Earth: thus, this
problem has to be considered with caution, since we are close to the realistic cable length.
However, the megacable length L can be modified by a counterweight, as previously described.
It could also help in stabilizing the radial relative equilibrium of the megacable (Steindl and
Troger 2005).

4. Atomic oxygen erosion/corrosion; micrometeorite and low Earth orbit object impacts

Damage nucleation in the cable is expected as distributed or localized, due to space debris
erosion or impacts. In particular, atomic oxygen erosion will take place between 60 and 800 km,
with the highest density around 100 km altitude (see Edwards 2000, 2003). The classical theory
of erosion (see Carpinteri and Pugno 2004) assumes the material removal as proportional to the
kinetic energy of the erosive particles, and consequently

1

2
v2

o

dmo

dt
= k

dV

dt
(9a)

where vo is the velocity of the atomic oxygen mass flux dmo/dt impacting on the cable volume
V ; the constant k denotes the erosion resistant of the cable material. Accordingly,

dH

dt
= ρov

3
o

2k
= K (9b)

where ρo is the atomic oxygen density and H is the cable thickness.
Analogously, micrometeorite impacts, arising between 500 and 1700 km with the highest

density around 1000 km altitude (see Edwards 2000, 2003), will cause holes and/or craters in
the cable. Particularly dangerous are the Leonid meteors, that traverse our solar system each
33 years, and that are expected in 2031. The Leonid debris includes dust particles and objects
up to 10 cm in diameter, and some debris is always permanent.

The removed volume after an impact can be estimated using expressions similar to
equations (9):

1
2v

2
mmm = k ′�V (10a)

where vm is the velocity of the micrometeorite with mass mm, creating a crater of volume�V ;
the constant k ′ denotes the impact resistance of the cable material. Accordingly,

�V

Vm
= ρmv

2
m

2k ′ = K ′ (10b)

where ρm is the meteorite density and Vm is its volume.
Roughly speaking, for large fragmentations k ≈ k ′ ≈ σC , where σC is the macroscopic

material strength (Carpinteri and Pugno 2002); we can speculate that this estimate will remain
valid at all size scales if the corresponding size-dependent value for the structural strength
σC is considered (larger at the nanoscale, as a consequence of approaching the theoretical
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strength σth). For atomic oxygen erosion, assuming plausible values of σC ≈ 10 GPa,
ρo ≈ 10−8 kg m−3 and vo ≈ 1 km s−1, we deduce K ≈ 10−9 m s−1, comparable with the
experimental value of K ≈ 1 mm/month ≈ 3 × 10−9 m s−1 (see Edwards 2003). However,
we have to note that here erosion is coupled with corrosion and thus that the process is more
complex than as described. Similarly, for plausible values of σC ≈ 10 GPa, ρm ≈ 3000 kg m−3

and vm ≈ 10 km s−1 we deduce K ′ ≈ 15, comparable with the value K ′ ≈ 50 suggested by
Edwards (2003). Thus, for nanofragmentation we could roughly estimate a material removal
of �V ≈ EK/σth where EK denotes the kinetic energy of the projectile.

Equations (9) predict a steady-state erosion, whereas a catastrophic failure was
experimentally deduced by treating data recorded on the MIR space station by applying a
fractal theory of erosion, in which the main assumption is the replacement of the volumes
in equations (9a) and (10a) with their fractal counterparts (i.e., the fractal domain of the energy
dissipation, between a Euclidean surface and volume; Carpinteri and Pugno 2002, 2004). Thus
equations (9) and (10) are not conservative; however a coating layer (e.g., of gold, platinum
or aluminium) is expected to improve the protection of the cable against erosion/corrosion and
micrometeorite impacts (Edwards 2003).

According to equation (10b) objects larger than ∼10 cm could destroy the cable. Low
Earth orbit objects (satellites and space debris larger than 10 cm) are tracked by US Space
Command (∼8000 objects). The probability of an impact of such an object on the cable is
once over 250 days and could be avoided by controlling the cable position (Edwards 2003).
However, in the case of cable cut the scenario could be the following. The elastic energy per unit
volume cumulated in the cable is of the order of ψ = (1/2)σ 2/E ≈ (1/2)(63 × 109)210−12 ≈
2 T J m−3. Breaking the cable will result in a pair of de-tensioning waves moving apart at the
speed of c = √

E/ρ ≈ √
1012/1300 ≈ 28 km s−1. This would lead to a fragmentation of the

cable, especially of the lower portion of it, as it returns to Earth and encounters our atmosphere.
According to the design proposed by Edwards (2000, 2003) carbon nanotube bundles ∼1 cm
long will work in parallel and will be connected in series by epoxy junctions; since the cable is
expected to be 91 Mm long (a counterweight will be present) and the junction will be melted
due to friction with the atmosphere, the total cable is expected to be fragmented into ∼1010

segments (a terrorist attack would yield the same scenario).

5. The strength of a real, thus defective, carbon nanotube-based space elevator
megacable

In this section we present different deterministic and statistical models for predicting the
strength of a real, thus defective, carbon nanotube-based space elevator cable. In addition
to the previously discussed damage sources we expect unavoidable pre-existing defects in the
cable simply for statistical reasons (Carpinteri and Pugno 2005), ultimately governed, but not
controlled, by the production process. In fact, as we have not been able to build a large glass
cable possessing the strength of a glass whisker, the principle of maximum likelihood ratio
suggests to us that we will face a similar limit during the practical realization of the space
elevator cable. In other words, a defect-free huge cable is statistically unrealistic. In spite of
this, it is assumed in the current design (Edwards 2000, 2003). Accordingly, we have to take
into account the presence of defects to treat a real cable.

Two different hypotheses of interaction between parallel nanotubes are plausible,
depending on the cable construction: weak (i) or strong (ii) coupling. These two limits
correspond to the two main practical realizations of the nanotube-based cable: (i) with parallel
and independent nanotubes, (ii) in the case of forced interaction caused by transverse diagonal
fibres; in both cases the nanotubes are connected to form a ‘string’ by epoxy junctions (see



On the strength of the carbon nanotube-based space elevator cable S1979

Edwards 2003). The same behaviours could be obtained with a nanotube rope designed as
a macroscopic rope, i.e., without (i) or with (ii) a twisting angle (with an optimal value for
nanotube load transfer around 120◦; see Qian et al 2003). In the former solution (i) 1 cm long
nanotubes making up the ribbon will be parallel and overlap in the composite sections about
1 mm thick, whereas in the latter (ii) the cable will consist of both straight fibres under tension
running the length of the cable and crossed diagonal fibres to take up and distribute the load
in the case of meteor damage (a solution approximately 64% heavier than the first one; see
Edwards 2003).

We are going to show that both these hypotheses and considering both deterministic
(LEFM, Griffith 1921; QFM, Pugno 2002, 2004a, 2004b, 2006a, 2006b; Pugno and Ruoff
2004) and statistical approaches (Weibull 1939; nanoscale Weibull statistics, i.e., NWS, Pugno
and Ruoff 2006; Pugno 2004a, 2006a) yield the same prediction: the strength of a real space
elevator cable is expected to be reduced by a factor of at least ∼70% with respect to the
theoretical carbon nanotube strength. Thus, it is the author’s opinion that, as designed today,
the cable will break.

Weak coupling (i). This seems to be the most promising solution, as proposed by Edwards
(2003). In such a case even if a nanotube breaks, it produces almost no effect on the others, due
to the weak coupling between them. A crack is blocked and the chain reaction of fracture is
terminated (Yakobson and Smalley 1997). Unfortunately this positive behaviour has a negative
counterpart, never mentioned in the extensive space elevator literature: just a single vacancy in
a nanotube greatly affects its strength.

To demonstrate this we consider the atomistic simulations on strength of defective carbon
nanotubes performed by Belytschko et al (2002), Mielke et al (2004) and Zhang et al (2005)
and we compare their results with the related QFM predictions. Nanocracks of size n (number
of adjacent atomic vacancies) or nanoholes of size m are considered: the index m = 1
corresponds to the removal of an entire hexagonal ring, m = 2 to the additional removal of
the six hexagons around the former one (i.e., the adjacent perimeter of (18) atoms), m = 3 to
the additional removal of the neighbouring 12 hexagonal rings (next adjacent perimeter), and
so on. Quantum mechanics (QM) semiempirical calculations (PM3 method) and molecular
mechanics (MM) calculations (with a modified Tersoff–Brenner potential of second generation
(MTB-G2) or a modified Morse potential (M)) are reported and extensively compared with
the QFM predictions in table 1. The comparison shows a relevant agreement, confirming
and demonstrating that just a few vacancies can dramatically reduce the strength of a single
nanotube. In particular, Belytschko et al (2002) performed atomistic molecular mechanics
simulations on the fracture strength of a defective nanotube containing n adjacent atomic
vacancies, as reported in table 1. The comparison with equation (11) is also depicted in figure 2
for the [80, 0] nanotube (QFM (continuous line) versus atomistic simulations (points)): in such
a figure the two limit defects, a nanohole and a nanocrack, are compared for similar sizes n;
note the asymptotic behaviour σf ∝ n0 for holes and σf ∝ n−1/2 for cracks, on increasing the
defect size n = 2R/a = 2l/a.

After having demonstrated the validity of QFM by this extensive comparison, we treat the
experimental results reported by Yu et al (2000a, 2000b) on single-walled carbon nanotube
(SWCNT) ropes or on multiwalled carbon nanotubes (MWCNT) grown by arc discharge. Both
the experiments were able to give a prediction of the fracture strength of a single-walled carbon
nanotube, assuming for the nanotube rope/multiwalled nanotube the load carried only by the
external nanotubes/shell. The ropes were supposed to be composed of [10, 10] nanotubes, thus
with a diameter of 1.36 nm, arranged in the close-packed hexagonal structure, at a ‘contact’
distance of 0.34 nm. In table 2 the experimental measurements are reported and rationalized
by applying QFM (i.e., by setting

√〈K 2〉a = KC ), assuming the presence of n adjacent atomic
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Table 1. Atomistic simulations (Belytschko et al 2002, Mielke et al 2004, Zhang et al 2005)
and QFM (Pugno and Ruoff 2004) predictions for a nanocrack of size n (number of adjacent
atomic vacancy) or nanohole of size m. The index m = 1 corresponds to the removal of an entire
hexagonal ring, m = 2 corresponds to the additional removal of the six hexagons around the former
one (i.e., the adjacent perimeter of (18) atoms), m = 3 considers in addition the removal of the
neighbouring 12 hexagonal rings (next adjacent perimeter), and so on. Quantum mechanics (QM)
semiempirical calculations (PM3 method) and molecular mechanics (MM) calculations (modified
Tersoff–Brenner potential of second generation (MTB-G2), or modified Morse potential (M)). The
symbol (+H) means that the defect was saturated with hydrogen. Symmetric and asymmetric bond
reconstructions were also considered (see Mielke et al 2004, Zhang et al 2005 for details). The
tubes are ‘short’, if not otherwise specified: note that for long tubes a reduction in the strength is
always observed, as an intrinsic size effect. For nested nanotubes an increment in the strength of
∼5 GPa is here assumed to roughly take into account the van der Waals (vdW) interaction between
the walls.

Nanotube Nanocrack (n) Strength (GPa) by QM (MTB-G2) and MM (PM3; M)
type and nanohole (m) sizes atomistic or QFM calculations

[5, 5] Defect free 105 (MTB-G2); 135 (PM3)
[5, 5] n = 1 (sym. +H) 85 (MTB-G2); 106 (PM3)
[5, 5] n = 1 (asym. +H) 71 (MTB-G2); 99 (PM3)
[5, 5] n = 1 (asym.) 70 (MTB-G2); 100 (PM3)
[5, 5] n = 2 (sym.) 71 (MTB-G2); 105 (PM3)
[5, 5] n = 2 (asym.) 73 (MTB-G2); 111 (PM3)
[5, 5] m = 1 (+H) 70 (MTB-G2), 68 for long tube; 101 (PM3)
[5, 5] m = 1–2 (+H) 50 (MTB-G2), 47 for long tube; 76 (MTB-G2)
[5, 5] m = 2 (+H) 53 (MTB-G2), 50 for long tube; 78 (PM3)
[5, 5] Stone–Wales 89 (MTB-G2), 88 for long tube; 125 (PM3)

[10, 10] Defect free 88 (MTB-G2); 124 (PM3)
[10, 10] n = 1 (sym. +H) 65 (MTB-G2)
[10, 10] n = 1 (asym. +H) 68 (MTB-G2)
[10, 10] n = 1 (sym.) 65 (MTB-G2); 101 (PM3)
[10, 10] n = 2 (sym.) 64 (MTB-G2); 107 (PM3)
[10, 10] n = 2 (asym.) 65 (MTB-G2); 92 (PM3)
[10, 10] m = 1 (+H) 56 (MTB-G2), 52 for long tube; 89 (PM3)
[10, 10] m = 1–2 (+H) 56 (MTB-G2), 46 for long tube; 84 (PM3)
[10, 10] m = 2 (+H) 42 (MTB-G2), 36 for long tube; 67 (PM3)

[50, 0] Defect free 89 (MTB-G2)
[50, 0] m = 1 (+H) 58 (MTB-G2); 60 (QFM)
[50, 0] m = 2 (+H) 46 (MTB-G2); 43 (QFM)
[50, 0] m = 3 (+H) 40 (MTB-G2); 37 (QFM)
[50, 0] m = 4 (+H) 36 (MTB-G2); 35 (QFM)
[50, 0] m = 5 (+H) 33 (MTB-G2); 33 (QFM)
[50, 0] m = 6 (+H) 31 (MTB-G2); 32 (QFM)

[100, 0] Defect free 89 (MTB-G2)
[100, 0] m = 1 (+H) 58 (MTB-G2); 60 (QFM)
[100, 0] m = 2 (+H) 47 (MTB-G2); 43 (QFM)
[100, 0] m = 3 (+H) 42 (MTB-G2); 37 (QFM)
[100, 0] m = 4 (+H) 39 (MTB-G2); 35 (QFM)
[100, 0] m = 5 (+H) 37 (MTB-G2); 33 (QFM)
[100, 0] m = 6 (+H) 35 (MTB-G2); 32 (QFM)

[29, 29] Defect free 101 (MTB-G2)
[29, 29] m = 1 (+H) 77 (MTB-G2); 67 (QFM)
[29, 29] m = 2 (+H) 62 (MTB-G2); 48 (QFM)
[29, 29] m = 3 (+H) 54 (MTB-G2); 42 (QFM)
[29, 29] m = 4 (+H) 48 (MTB-G2); 39 (QFM)
[29, 29] m = 5 (+H) 45 (MTB-G2); 37 (QFM)
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Table 1. (Continued.)

Nanotube Nanocrack (n) Strength (GPa) by QM (MTB-G2) and MM (PM3; M)
type and nanoholes (m) sizes atomistic or QFM calculations

[29, 29] m = 6 (+H) 42 (MTB-G2); 36 (QFM)
[47, 5] Defect free 89 (MTB-G2)
[47, 5] m = 1 (+H) 57 (MTB-G2); 61 (QFM)

[44, 10] Defect free 89 (MTB-G2)
[44, 10] m = 1 (+H) 58 (MTB-G2); 61 (QFM)

[40, 16] Defect free 92 (MTB-G2)
[40, 16] m = 1 (+H) 59 (MTB-G2); 63 (QFM)

[36, 21] Defect free 96 (MTB-G2)
[36, 21] m = 1 (+H) 63 (MTB-G2); 65 (QFM)

[33, 24] Defect free 99 (MTB-G2)
[33, 24] m = 1 (+H) 67 (MTB-G2); 67 (QFM)

[80, 0] Defect free 93 (M)
[80, 0] n = 2 64 (M); 64 (QFM)
[80, 0] n = 4 50 (M); 50 (QFM)
[80, 0] n = 6 42 (M); 42 (QFM)
[80, 0] n = 8 37 (M); 37 (QFM)

[40, 0] (nested by a [32, 0]) Defect free 99 (M)
[40, 0] (nested by a [32, 0]) n = 2 73 (M); 73 (QFM + vdW interaction ∼5 GPa)
[40, 0] (nested by a [32, 0]) n = 4 57 (M); 58 (QFM + vdW interaction ∼5 GPa)
[40, 0] (nested by a [32, 0]) n = 6 50 (M); 50 (QFM + vdW interaction ∼5 GPa)
[40, 0] (nested by a [32, 0]) n = 8 44 (M); 44 (QFM + vdW interaction ∼5 GPa)

[100, 0] n = 4 50 (M)

[40, 40] n = 4 54 (M)

vacancies, i.e., a nanocrack of length 2l = na:

σf = KC

√
1 + ρ/2a

π (l + a/2)
= σth

√
1 + ρ/2a

1 + 2l/a
, σth = KIC√

π/2a
(11)

where ρ ≈ a/2 is the crack tip radius (note that LEFM, i.e., K = KC , would give the trivial
prediction of equation (11) in the limit case of ρ/a, a/ l → 0). We have again assumed
for consistency the fracture quantum a as coincident with the distance between two adjacent
chemical bonds. Obviously, like equation (1), equation (11) assumes no interaction between
defect and boundary. In table 2 we have assumed values of n for the highest measured strength
in order to obtain plausible theoretical strength, which must be, as is well known, around
100 GPa; see table 1; the corresponding theoretical strength (n = 0) is thus quantified. We
note that pinhole defects seem to be more realistic than adjacent atomic vacancies, not only for
chemical reasons but also as a consequence of the space debris impacts, sources of nanoholes
rather than of nanocracks. Assuming large holes (R/a → ∞) and applying QFM, we predict
(σth − σf)/σth → 70%. However note that in the experiments larger strength reductions were
observed, suggesting the presence of more critical defects, such as elliptical holes or even
truly nanocracks. Similarly, for the independent carbon nanotubes in the megacable the most
plausible expectation is a strength reduction by a factor of at least ∼70%.

An additional data set on MWCNT tensile experiments is available today (Barber et al
2005); see table 3. However, the very large highest measured strength denotes an interaction
between the external and internal walls, as pointed out by the same authors. Thus, the
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Table 2. QFM (Pugno and Ruoff 2004) applied to SWCNT assuming the presence of nanocracks,
i.e., n adjacent atomic vacancies: fracture strength extracted from single-walled carbon nanotube
(SWCNT, Yu et al 2000a) ropes or multiwalled carbon nanotubes (MWCNT, Yu et al 2000b)
nanotensile tests. Note that the case corresponding to the prediction of an ideal strength of 80.6 GPa
(too small) is unlikely.

Strength (GPa) Strength (GPa)
SWCNT ropes Number n of atomic MWCNT Number n of atomic
(nanotensile tests) vacancies (QFM) (nanotensile tests) vacancies (QFM)

1 13 79 63 47 11 97 130
2 15 59 47 35 12 82 109
3 16 52 41 31 18 36 48
4 17 46 36 27 18 36 48
5 22 27 21 16 19 32 43
6 23 25 19 14 20 29 39
7 25 21 16 12 20 29 39
8 29 15 12 9 21 26 35
9 32 12 10 7 24 20 27

10 33 11 9 6 24 20 27
11 37 9 7 5 26 17 22
12 43 6 5 3 28 14 19
13 45 6 4 3 34 9 13
14 48 5 4 3 35 9 12
15 52 4 3 2 37 8 11
16 37 8 11
17 39 7 9
18 43 5 8
19 63 2 3
Predicted 104.0 93.0 80.6 97.6 112.7
ideal strength (unlikely)
(GPa)

measured strength cannot be considered plausible for describing the strength of a SWCNT.
Furthermore, in table 3 we have assumed n = 0 for the highest measured value of 259.7 GPa
(ideal strength), or alternatively for the case of the measured value of 109.5 GPa (close to the
plausible value of 100 GPa). Thus, in this last case and for the higher values of strengths,
sites of interactions (here treated as ‘negative’ vacancies) between the two external layers
have to be assumed; roughly speaking, the number of interaction sites can be estimated as
the difference between the previous two cases, as described in table 3; and in the context of
load transfer, sites of interactions are positive features. Note that we are just now going into
the third-generation era of nanotensile tests (Zhu and Espinosa 2005), suggesting that in the
future rigorous experiments, by simultaneous independent stress and strain monitoring, will be
possible also at the nanoscale.

The tremendous defect sensitivity (i.e., large strength reduction due to small defects)
discussed is confirmed by a statistical analysis based on NWS (Pugno and Ruoff 2006).
According to this theory, the probability of failure F for a nearly defect-free nanotube under
a tensile stress σf is independent of its volume (or surface), in contrast to classical Weibull
statistics (1939), namely

F = 1 − exp

(
σf

σ0

)m

. (12)

The experimental data of Yu et al (2000a, 2000b) are treated with NWS in figures 3(a), (b).
For the first data set σ0 ≈ 33.9 GPa (SWCNT), whereas for the second one (MWCNT) a
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Table 3. QFM (Pugno and Ruoff 2004) applied to MWCNT: experiments on fracture strength
extracted from MWCNT nanotensile tests (Barber et al 2005). Note the estimations of the
interaction sites, treated as ‘negative’ vacancies (the difference between the columns 3 and 4
for lines 18–26 is always equal to 6, i.e., the number of vacancies that must be assumed in
correspondence to a plausible ideal strength, starting from the wrong assumption of an ideal strength
coincident with the highest measured value).

Strength (GPa) Number n of atomic vacancies
(nanotensile tests) (QFM)

1 17.4 277 49
2 22.3 169 29
3 23.7 149 26
4 30.0 93 16
5 44.2 42 7
6 49.3 34 5
7 52.7 29 4
8 54.8 27 4
9 62.1 21 3

10 66.2 18 2
11 84.9 11 1
12 90.1 9 1
13 90.3 9 1
14 91.1 9 1
15 99.5 8 1
16 101.6 7 0
17 108.5 6 0
18 109.5 6 0
19 119.1 5 −1 (interaction)
20 127.0 4 −2 ”
21 132.9 4 −2 ”
22 140.8 3 −3 ”
23 141.0 3 −3 ”
24 175.0 2 −4 ”
25 231.8 1 −5 ”
26 259.7 0 −6 ”
Predicted ideal (259.7)
strength (GPa) (unrealistic) 109.5

comparable value σ0 ≈ 31.2 GPa is deduced, and for both data sets the nanoscale Weibull
modulus is m ≈ 2.7. The experiments by Barber et al (2005) are reported in figure 4,
for which σ0 ≈ 108.0 GPa (but not significant for the strength of a single nanotube) and
m ≈ 1.8. Note that the ‘nominal strength’ σ0 corresponds to a probability of failure of
63%; σ0 is found statistically with respect to σth, reduced by a factor of about 70%, even if
just a few vacancies are expected to be the cause of this tremendous reduction. Note that
considering a partial transfer loading between the external and internal nanotubes/shells for
SWCNT ropes/MWCNT would correspond to an additional ‘geometrical’ strength reduction.
Furthermore, we have to emphasize that this definition of strength refers to a cross section
annular area of a single atomic thick layer (0.34 nm) and thus the ‘bulk’ strength (referred to
the compact circular area) is expected to be scaled down proportionally to the ratio between the
effective and nominal cross section areas. However, for a single SWCNT and in this context
(see equations (4) and (5)) this is just a matter of definition since the ratio σ/ρ is invariant.

Thus, also for the most promising solution (i), a strength reduction by a factor of at least
70% seems to be at the moment the most plausible expectation. This is due to the strong
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NWS on SWCNT ropes
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Figure 3. NWS (Pugno and Ruoff 2006) applied to SWCNT: experiments on fracture strength
extracted from nanotensile tests on SWCNT ropes ((a); Yu et al 2000a) and on MWCNT ((b); Yu
et al 2000b) grown by arc discharge.

strength reduction that just a few vacancies can produce (and their presence is statistically
expected): roughly speaking, the effect of a single vacancy can be deduced from equation (1)
considering 2R ≈ a, i.e., x ≈ 0.5, for which σf/σth → 0.71. The strength band 0.71σth − σth

is thus forbidden, as a consequence of the crack quantization.
Strong coupling (ii). For such a case a single vacancy does not have this tremendous effect,

as suggested by the fact that the fracture quantum will be of the order of the nanotube spacing,
of the order of the nanotube diameter d , i.e., a ≈ d , rather than—as in the previous case—of
the order of the atomic size. Roughly speaking the effect of a vacancy can be deduced from
equation (1) considering 2R ≈ d/λ, i.e., x ≈ 1/(2λ), where λ denotes the ratio between
the nanotube diameter (the ‘characteristic size’ of the microstructure in the nanotube bundle)
and the atomic size (the ‘characteristic size’ of the atomic structure in a single nanotube). We
expect an even larger value for a than d at larger size scales, as a consequence of a larger
cooperation between nanotubes. At any rate, the smallest plausible value for λ is ∼10. Thus
for x ≈ 1/20, σf/σ

′
th → 0.95, where σ ′

th ≈ σth/
√
λ denotes the new theoretical strength,

assuming cooperation between nanotubes. And for σth ≈ 100 GPa (λ ≈ 10), σ ′
th ≈ 32 GPa

whereas for λ ≈ 100, σ ′
th ≈ 10 GPa: thus, a reduction by a factor of ∼70% with respect to

the theoretical carbon nanotube strength seems to be again unavoidable, even without defects.



On the strength of the carbon nanotube-based space elevator cable S1985

NWS on MWCNT 
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Figure 4. NWS applied to MWCNT: experiments on fracture strength extracted by nanotensile tests
on MWCNT grown by chemical vapour deposition (Barber et al 2005).

A vacancy will additionally reduce the strength by a factor of about 5%, as previously deduced.
Summarizing, for interacting nanotubes the presence of a defect is less critical but the ideal
strength is intrinsically reduced, as synthetically described by

σf

σ ′
th

≈
√

1 + ρ/2d

1 + 2l/d
, σ ′

th ≈ σth√
λ
. (13)

Analogous to equation (11), equation (12) must be rewritten according to the coupling,
namely as

F = 1 − exp Nα
x Nβ

y Nγ
z

(
σf

σ0

)m

(14)

where Nx , Ny , and Nz are the number of nanotubes along x , y, z (longitudinal axis) respectively
and α, β , γ are the corresponding scaling exponents. Weibull statistics (1939) basically
assumes α = β = γ = 1, with N = Nx Ny Nz = V/V0, where V0 is a characteristic volume,
here assumed for consistency with equation (12) as the volume of a single nanotube (and V is
the megacable volume). The constants σ0 and m are in general different from those appearing
in equation (12). According to equation (14), a size effect for the nominal strength is predicted:

σf = σ0 N−α/m
x N−β/m

y N−γ /m
z . (15a)

The previous equation is simplified if one assumes Weibull statistics (1939):

σf = σ0 N−1/m . (15b)

For consistency with the previously treated case of N = 1, σ0 in equations (12) and (14) or (15)
must be the same. Equation (15b) is the simplest scaling law for a bundle composed of N nan-
otubes, each of them with (nominal) strength σ0. The real problem is the determination of
the three exponents in equation (15a) for the huge space elevator cable, or for simplicity the
determination of m in equation (15b).

The experimental derivation of m is very complex. However, recently Zhang et al
(2005) have been able to build the first metre-long cable based on carbon nanotubes.
For such a nanostructured macroscopic cable a strength over density ratio of σ/ρ ≈
120–144 kPa/(kg m−3) was measured, dividing the breaking tensile force by the mass per unit
length of the cable (the cross section geometry was not clearly identified). The cable density
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was estimated to be ρ ≈ 1.5 kg m−3, thus resulting in a cable strength of σ ≈ 200 kPa. Thus,
we estimate for the single nanotube contained in such a cable σf ≈ 170 MPa (carbon density of
1300 kg m−3), exceptionally lower than its theoretical or measured nanoscale strength, as we
expected according to the scaling of equations (15). For such a case, assuming the nanotubes
investigated at the nanoscale to be 1 µm long and the cable 1 m in length, from equation (15b)
we deduce m ≈ −ln(1/10−6)/ln(31/0.17) ≈ 2.7. We think that this value is only fortuitously
coincident with that deduced by fitting the nanotensile experiments (that did not reveal size
effects) with NWS; we expect a larger value as soon as the proposed experimental technique is
improved for producing higher quality cables. Also, the power law in equations (15) is a too
simplified; in fact applying equation (15b) with m = 2.7 will result in a vanishing megacable
strength. Note that a densified cable with a larger value of σ/ρ ≈ 465 kPa/(kg m−3) was also
realized, demonstrating the possibility of improving the technique (corresponding to m ≈ 3.3).
Now let us assume that we can apply the same equation (15b) to the results on force versus
number of layers reported by Zhang et al (2005), just to have an idea about the scaling that we
have to expect on varying the number of sheets in the megacable: since for 2 layers a breaking
force of ∼40 mN was required, whereas for 12 layers a force of ∼235 mN was measured, and a
linear dependence from the other tested cases of 4, 6, 8 and 10 layers was observed, we deduce
m ≈ ln(12)/ ln((12 × 40)/(2 × 235)) ≈ 118, thus larger than the previously computed value.
Roughly, considering this value in the previous context, noting that the megacable volume is
of the order of 108 × 0.1 × 10−6 = 10 m3 and a nanotube has a volume of the order of
10−8 ×10−8 ×10−6 = 10−22 m3, a number of N ≈ 1023 nanotubes is expected, corresponding
to a megacable strength of σf ≈ 34 × (1023)−1/118 ≈ 22 GPa.

6. In-silicon experiments on the strength of the space elevator cable: the SE3 code

The SE3 code has, ad hoc, been developed for the in-silicon experiments of the space elevator
cable and the related size effects, especially on strength. This code mainly gives as outputs the
strength prediction and the damage space-time localization of the megarope. The stochastic
inputs are the NWS describing the experimental strengths of the carbon nanoropes/tubes given
by Yu et al (2000a, 2000b), i.e., F ≈ 1 − exp( σf[GPa]

34 )2.7, and the nanotube Young’s modulus
E ≈ 0.94 TPa deduced according to quantum mechanical simulations (density functional
theory) by Mielke et al (2004).

Density functional theory simulations are based on the numerical solution of the
Schrödinger’s equation, and molecular mechanics or dynamics solve Newton’s equation,
deriving the generalized force from a given potential. Treating single particles or atoms with
such methods is intrinsically limited in solving for objects at the atomic scale or nanoscale.
In contrast, the SE3 code is based on the global energy balance. The space elevator cable
is assumed to be composed of weakly coupled (mean field solution) stochastic–linear elastic
aligned SWCNTs (or ropes): basically a network of stochastic springs. Thus, the role played by
a particle or an atom in the atomistic simulations is here played by an entire SWCNT (or rope),
and thus the size limitation is correspondingly reduced. Imagine a virtual tensile experiment
on a tapered space elevator cable: the uniform stress is increased in the cable, as in the tensile
test of a cable with constant cross section area. Assuming a cable compliance C and stiffness
S = C−1, the total potential energy of the system is for T tension or δ displacement controls
respectively (T = Sδ):

W = 1
2 Sδ2 − T δ = − 1

2 CT 2, or W = 1
2 Sδ2. (16)

The failure of the nanotube j (1 < j < N) will take place when the stress acting on it, σ j ,
reaches the intrinsic nanotube strength σf j , stochastically distributed according to the failure
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(a) (b)

(c) (d)

Figure 5. 100 × 100 nanotube bundle. (a) Broken nanotubes after 1% of elongation. (b)
Broken nanotubes at failure and damage localization. (c) Stress (GPa) versus strain for a nanotube
bundle. (d) External work (N m) versus time (s). (e) Stored elastic energy (N m) versus time (s).
(f) Dissipated energy (N m) versus time (s). (g) Kinetic energy (N m) emitted versus time (s).
(h) Number of broken nanotubes versus time during the tensile test.

probability F (fitted to carbon nanotube nanotensile tests). The energy balance during failure
implies

�W j +�E j +�� j = 0 (17)

where �E j is the kinetic energy released and �� j is the dissipated energy (due to nanotube
fracture); �� j = G f�A where G f is the energy dissipated per unit area and �A is
the nanotube cross section area; �W j = − 1

2 T 2�C and �W j = 1
2δ

2�S for tension and
displacement controls respectively; �S and �C are the global variations imposed by the
breakage of the nanotube j (trivial to evaluate—this is left to the reader). Accordingly, from

the elastic energy
 j = 1
2

σ 2
f j

E �Al∗ stored in the nanotube (of length l∗) at fracture, the released
kinetic, dissipated and stored energies, as well as the external work, can be easily computed.
Space-time damage monitoring, stress–strain curves and related size effects can be accordingly
deduced. An example of outputs for a two-dimensional simulation of a 100 × 100 network of
nanotubes is reported in figure 5, assuming a displacement control linearly varying in time (t).
Rather than a power law the numerical results suggest the validity of the size/shape scaling law
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(e) (f)
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Figure 5. (Continued.)

proposed by Pugno (2006c):

σf (S/V )

σnano
=

((
σnano/σmega

)2 − 1

�S/V + 1
+ 1

)−1/2

(18)

giving the failure strength σf for a structure of volume V and surface S with a nanostrength
σnano and a megastrength σmega, where � is a characteristic length. Note that such a scaling for
the case of self-similar structures of size L (L ∝ √

S ∝ 3
√

V ) having σnano/σmega → ∞ agrees
with the well-known Carpinteri scaling law (Carpinteri 1982). Preliminary results obtained by
using the SE3 code with σnano = σ0 = 34 GPa are fitted with σmega ≈ 15 GPa (and � 
 L).
Thus again, the megarope is expected with a strength significantly reduced with respect to the
ideal strength of a single nanotube.

7. Conclusions

Our results are based on both deterministic and statistical treatments, whether or not we
consider interaction between the nanotubes in the megacable. For the last case (the current
proposal) the maximum strength is predicted to be larger, but with extremely high defect
sensitivity; in contrast, for the second case the situation is the opposite. In any case the
strength of a real, thus defective, carbon nanotube-based space elevator megacable is expected
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to be reduced by a factor of at least ∼70% with respect to the theoretical strength of a carbon
nanotube, assumed in the current design. Such a reduction is sufficient to cast doubt on the
effective realization of the space elevator. It is the author’s opinion that the cable, if realized as
designed today (see Edwards and Westling 2003), will break.
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