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By means of thorough atomistic simulations an energy-based theory, named quantized fracture mechanics, is
commented and validated. This approach modifies continuum linear elastic fracture mechanics by introducing
the hypothesis of discrete crack propagation, taking into account the discreteness of the crystal lattice. We
investigate at an atomistic level the crack energy resistance for a matrix of silicon carbide with an isolated
crack, and the effect on the stress at the crack tip due to a second phase particle. In both cases our results show
that, while atomistic simulations provide the most basic level of understanding of mechanical behavior in
nanostructured brittle materials, quantized fracture mechanics is able to effectively incorporate the main lattice-
related feature, thus enlarging the realm of continuum modeling.
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I. INTRODUCTION

Modern materials technology is characterized by an ever-
increasing rush toward miniaturization, e.g., in microelectro-
mechanical �MEMS� and nanoelectromechanical �NEMS�
systems, computer chips, bioengineering devices, and so on.
Among several other issues an improved understanding of
materials mechanical behavior at the nanoscale is indeed re-
quired. We might expect to find basic differences in solid
mechanics at the macroscale �governed by continuum laws�,
or microscale �governed by dislocations, microstructural in-
terfaces and microcracks�, or nanoscale �governed by chemi-
cal bonding�.1 So, although solid mechanics is a well estab-
lished field of investigation at the macroscopic level, a basic
question is still open, whether continuum laws of mechanics
are still valid at the nanoscale. In particular, this is the case
of fracture mechanics that, on the one side it is initiated by a
true atomistic-scale event like a bond snap, but on the other
side does show up at the microscale, eventually driving to
materials macroscopic failure. As a matter of fact, stress and
strain fields computed by continuum theories at a vanishing
distance from the crack tip become mathematically
singular,2,3 thus making it hard to predict a relevant phenom-
ena �like toughness or crack deflection� in the near vicinity
of the crack tip.

The Griffith problem,2–4 describing a planar crack in an
homogeneous medium, is a paradigmatic example to point
out the limit of traditional linear elastic fracture mechanics
�LEFM� in describing the mechanical response at the nanos-
cale. According to the Griffith theory, the total energy varia-
tion dU associated to a virtual increment of the crack dc �see
Fig. 1� may be portioned into a mechanical dW and a surface
dUS term, so that dU=dW+dUS. The crack propagates when
the energy-release rate G, defined as G=−dW /dA, becomes
larger than the intrinsic crack resistance, GC=dUS /dA=2�s,
necessary to create the new surface dA. Within LEFM, in a
perfect homogeneous solid in vacuum, �s is identified with
the unrelaxed cleavage surface energy �.2,3,5 Such an identi-

fication �s=� is far from being generally valid in realistic
systems and has motivated a large amount of numerical and
analytical works in the past years.6–11As a matter of fact, it
has been recently found9 that in realistic models for brittle
solids �s turns out to be larger than � which only provides a
lower limit to crack resistance and, possibly, �s could be also
direction-dependent.10 Furthermore, the cleavage surface en-
ergy is not a constant, rather it depends on the crack length
and the state of deformation.

This example clearly proves that some critical re-
addressing of the basic features of LEFM should be carried
out in order to reconcile atomistics to continuum modeling.
This is in fact the scope of the present paper. By means of an
energy-based theory, named quantized fracture mechanics
�QFM�,11 developed as a natural evolution of LEFM, we will
discuss two case studies: The above isolated Griffith crack
and a defect pair formed by a nearby crack and an elastic
inclusion. While the first problem has a paradigmatic rel-
evance, the second one is quite important for developing
nano-composite materials, since the introduction of a second

FIG. 1. Static plane-crack system, showing incremental exten-
sion of its length dc and surface dA.
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phase fiber into a brittle material is an effective way to im-
prove its fracture toughness.12

QFM theory is focused on the basic assumption that the
medium is continuum, linear, and elastic everywhere. How-
ever, the hypothesis of discrete crack propagation is now
introduced to take into account the underlying crystal struc-
ture. For vanishing crack length QFM predicts a finite ideal
strength at the crack tip, and it has no restrictions on treating
crack of arbitrary size and shape, in contrast to LEFM. Such
a theory has been so far successfully compared with many
experimental results on carbon nanotubes,13 �-SiC
nanorods,14 and �-Si3N4 whiskers.15 The goal of the present
work is to use atomistic simulations to further test the pre-
diction of QFM, to firmly root such a theory into the atom-
istic picture, and to discriminate between QFM and LEFM.

We have focused our atomistic calculations on cubic sili-
con carbide ��-SiC� since it is the prototype of an ideally
brittle material up to extreme values of strain and because of
its technological relevance for structural and nuclear
applications.16 Concerning the inclusions, we have consid-
ered the two cases of silicon �Si/SiC� and carbon �C/SiC�
inclusions in SiC.

The paper is organized as follows. In Sec. II we introduce
the basic concepts of QFM, in particular for the crack energy
resistance in the Griffith geometry and the stress intensity
factor at the tip of a crack facing a nanosized fiber. In Sec. III
we describe the computational framework of present atomis-
tic simulations, taking special care in describing the geom-
etry. In Sec. IV we present our results and we extensively
compare LEFM to QFM predictions.

II. QUANTIZED FRACTURE MECHANICS

According to Novozhilov,17 during the crack propagation
there is a minimum crack extension �corresponding to the
breaking of just one interatomic bond� that is named the
fracture quantum. We like to stress that this somewhat un-
fortunate expression does not refer to any real quantum ef-
fect. Rather, it only underpins a discrete �versus continuum�
formalism. We will adopt such a phrase for the sake of con-
sistency with Refs. 11 and 17. Novozhilov proposed a modi-
fied fracture criterion based on stress, that at variance with
LEFM takes into account the discreteness of the fracture
event. In Mode I loading3 the critical stress is:

�Nov �
1

a0
�

0

a0

�z�x�dx = �C, �1�

where the load is applied along the z direction �see Fig. 1�. In
Eq. �1�, �z�x� represents the complete elastic stress field per-
pendicular to the xy crack plane in the near vicinity of the
crack tip �x=0� and a0 is the fracture quantum. The ideal
strength of the material is �C. This criterion can only be used
if the expression of the stress field is known everywhere. We
note that this information is often quite hard to get.

At variance with the Novozhilov theory, QFM is based on
an energy approach, still maintaining the hypothesis of dis-
crete crack propagation. Moreover, the restriction identifying
the fracture quantum with the atomic spacing is now re-

moved: More generally, the fracture quantum is the mini-
mum length of crack advance, which could be larger than the
atomic spacing.11 It is important to note that QFM is comple-
mentary with respect to the Novozilhov approach so that Eq.
�1� is still valid. In the QFM theory the usual Griffith crite-
rion G=GC is modified by substituting differentials with fi-
nite differences:

GQFM � −
�W

�A
= GC. �2�

The corresponding condition for stability is ��GQFM /�A�C

�0. Moreover, the stress intensity factor �SIF�, which is a
measure for the singular stress term occurring near the crack
tip,2,3 is now defined as

KI
QFM � ��KI

2�A
A+�A, �3�

where KI
QFM and KI are the SIF within QFM and LEFM,

respectively, and the average is computed as �f�x��A
A+�A

= �1/�A��A
A+�Af�x�dx.

Consider first the case of a slit crack of length 2c in open-
ing Mode I. The standard LEFM result for the failure
strength is

� f
LEFM =

KIC

��c
, �4�

where KIC is the fracture toughness. On the contrary, accord-
ing to QFM formulation, the failure strength depends on the
fracture quantum a0:

� f
QFM =

KIC

���c + a0/2�
. �5�

Notably, the difference with the LEFM case, no divergence is
found for the vanishing crack length �c→0�. This is the first
important conceptual improvement: QFM removes any sin-
gularity from the formalism.

The ideal sharp crack, discussed above, can be regarded
as the limit case of a blunt crack at vanishing tip curvature.
The asymptotic LEFM stress field around the tip, for such a
blunt crack, is18

��r� =
KI�

�2�r
	1 +

	

2r

 , �6�

where 	 is the crack tip radius and KI� is the corresponding
fictitious SIF. As shown in Fig. 2, r is the distance from the
center of the circular blunt notch; everywhere in the elastic
medium r
	 /2. By substituting Eq. �6� into Novozhilov
equations, it is obtained the following condition for brittle
crack propagation19

�
	/2

	/2+a0

�z�x,	,KIC� � =�2a0

�

KIC�

�1 + �	/2a0�
= �c. �7�

For a slit �	 /a0→0� Eq. �7� gives

�
0

a0

�z�x,	 = 0,KIC� =�2a0

�
KIC = �c. �8�

By comparing these two results it is found that:
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KIC� � KIC
�1 + �	/2a0� . �9�

KIC� and KIC are the fracture toughness for a blunt and a slit
crack, respectively. According to Eq. �9� the blunt crack in-
creases the toughness with respect to the case of the sharp
crack. Once more, we point out that this result is notably
different from a simplified correction to LEFM which
predicts20 KIC� �2KIC �i.e., no dependence upon the tip ra-
dius�. The QFM failure stress for the blunt crack is obtained
by replacing KIC� , Eq. �9�, in place of KIC in Eq. �5�

� f
QFM�c,	� = KIC�1 + �	/2a0�

��c + a0/2�
= � f

LEFM�1 + 	/2a0

1 + a0/2c
.

�10�

For the crack resistance energy we finally get

�s

�
=

1 + 	/2a0

1 + a0/2c
. �11�

At very short cracks �c of the order of few atomic spac-
ings�, �s /� depends monotonically upon c. For the large
crack �a0 /c→0� we get �s /�=1+	 /2a0�1. We further re-
mark that a0 �which is related to the bond network� could
also depend upon the direction of crack propagation. Accord-
ingly, QFM can in principle account for the variation of the
crack resistance with propagation direction, as indicated by
some atomistic simulations.10

The QFM approach may be applied to the case of a crack
interacting with an elastic inclusion, as well. According to
the Eshelby theory,21 the variation of the SIF at the crack tip
�Ktip, respect the case of the isolated crack �K0�, is
�Ktip /K0=c1 /d2, where d is the crack inclusion distance and
c1 is a constant depending on the geometrical and elastic
properties of the matrix and the inclusion. The QFM version
of this law is obtained by using Eq. �3�

�Ktip
QFM

K0
=� 1

a0
�

d

d+a0 �Ktip
2

K0
2 dx

=
c1

d2�1 + a0/d + 1/3�a0/d�2

�1 + a0/d�3 . �12�

In the limit of small a0 /d, this equation reproduces the same
result predicted by the Novozhilov theory:

�Ktip
nov

K0
=

1

a0
�

d

d+a0 �Ktip

K0
dx =

c1

d2�1 + a0/d�
. �13�

At very short crack-inclusion distances, a0 /d�1, the QFM
correction to the Eshelby theory is important.

III. ATOMISTIC SIMULATIONS

In order to reproduce at atomistic level the above geom-
etries �i.e., the isolated crack and the crack-inclusion pair�,
we have considered a slab of perfect �-SiC monocrystal �see
Fig. 3�. The atoms interact through the bond-order Tersoff
potential,22 well suited to study the mechanical properties of
�-SiC.9,23,24 In particular such a force model is able to cor-
rectly reproduce the brittle failure of silicon carbide under
tensile load once that a suitable modification of the potential
has been operated according to Ref. 9. The stress fields were
obtained by force relaxations based on the damped dynamics
method. The convergence was controlled by monitoring the
maximum atomic force and stress components, and the sys-
tem was considered fully relaxed for atomic forces below
0.01 eV Å−1. The x, y, and z directions were aligned along

the 112̄�, 1̄10�, and 111� orthogonal directions, respec-
tively. In the x-y plane the system was kept fixed at the
equilibrium lattice parameter of �-SiC �4.318 Å� and peri-
odically repeated. In the z direction the crystal was deformed
by means of the constant traction method.25 According to this
method, periodic boundary conditions were removed along
the z direction and the resulting surfaces in our case one top
silicon and one bottom carbon �111� shuffle planes� were
subject to constant forces �tractions� to mimic the embedding

FIG. 2. Coordinates for the local stress distribution at distance r,
ahead of a blunt crack of tip radius 	.

FIG. 3. �Color online� Top panel: Geometry and orientation
of the simulation cell. For the case of an isolated crack the
cell dimension L along x and z direction were the same
�22 nm�L�88 nm�. For the case of crack-inclusion pair, x and z
cell dimension were, respectively, 44.43 and 22.44 nm. In both
cases the y dimension is 0.61 nm. Bottom panel: Atomic-scale view
of the relaxed crack, where black �yellow� dots represent carbon
�silicon� atoms.
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into an infinite bulk at the same condition of strain. This
loading condition, corresponding to a fixed stress along z
direction �zz=�zz

� and fixed strain in the orthogonal plane
xx=yy =0, represents the plane strain border condition of
continuum mechanics.2 The lowest unrelaxed surface energy
of �-SiC is that of �111� shuffle plane, having the lowest
density of dangling bonds. As a consequence, �111�-plane
cracks is the most likely to form in experimental conditions,
and therefore, we focused our theoretical analysis on such a
crack arrangement. The crack was obtained by cutting the
interatomic bonds across a segment of a central �111� plane
in the deformed simulation cell.

For the case of an isolated crack we varied the crack
length in the range 2c0�2c�50c0, where c0=2.644 Å is the
interbond distance along x direction �see Fig. 3, bottom
panel�. This choice resulted in a total number of atoms rang-
ing from 3�104 up to 2.5�105. Special care was taken in
order to avoid finite-size effects: The imposed condition
L /c
10 corresponds to such a requirement. For any micro-
crack we varied the applied load up to obtain the critical
condition of crack advance.

For the case study involving crack-inclusion interaction, a
cylindrical fiber was introduced at some distance from the
crack and centered on the same �111� plane �see Fig. 3, top
panel�. We have considered both a carbon and a silicon fiber,
as prototype of tensile and compressive inclusion, respec-
tively. The carbon and silicon fibers were created replacing
silicon �carbon� atoms inside a cylindrical region by carbons
�silicon� atoms. The actual fiber radius was 1 nm. As a result,
coherent inclusions were obtained. In this case we used a
fixed number of atoms �60 480� and the crack length was
kept 2c=3.6 nm. The applied load was varied so as to pro-
duce a resulting 3%–8% strain condition. We calculated the
relative variation of the SIF at the crack tip by comparing the
stress of a crack facing an inclusion, �CI�x�, with that of an
isolated crack �C�x� according to the following relation:

�Ktip

K0
= lim

�→0

�CI�xC + �� − �C�xC + ��
�C�xC + ��

, �14�

where � is a vanishing distance from the crack tip.

IV. RESULTS: ATOMISTICS VERSUS QFM

A. Isolated crack

In order to compare atomistic simulations to QFM predic-
tions for the isolated crack we calculated the failure strength
at different crack-length values; the corresponding atomistic
results for the crack resistance energy is reported in Fig. 4.

Within the LEFM theory �dot-dashed line in Fig. 4� the
ratio �s /� does not depend upon crack length. This is not the
case of the atomistic data that increase up to a value �1.25�
at very long cracks. Part of this discrepancy was explained in
a previous work9 by introducing the strain dependence of the
surface energy and the Young modulus into the original Grif-
fith formula for a sharp crack. It was found that the elastic
theory for a sharp crack is not able to reproduce the atomistic
results and the use of an elastoplastic model was proposed.

QFM results for a blunt crack suggest an alternative ex-
planation of the atomistic data in terms of an intrinsic curva-

ture at the crack tip due to the lattice. According to QFM, it
is found Eq. �11�� that the crack-resistance energy of a blunt
crack is higher than the sharp case and depends upon its
length c. By approximating the atomistic crack with an ellip-
tical hole �see Fig. 3�, a rough estimation of the crack tip
radius is 	=b2 /c, where c and b are the major and minor axis
of the ellipse, respectively. The radius turns out to be about
one half of the interbond spacing 	�0.45c0.

A fit of the atomistic data based on QFM result for blunt
crack is represented in Fig. 4 as a full line. The fitted fracture
quantum corresponds approximately to the interbond spac-
ing, a0�0.94c0. The radius of curvature turns out to be
	�0.55 c0, which is consistent with the previous analysis.
The QFM theory is nicely in agreement with the atomistic
data and reproduces an increasing crack energy resistance
for increasing crack length up to the asymptotic value �s /�
�1+	 /2a0 for infinite cracks. Notably the QFM result
works well at very short crack lengths. Finally, we observe
that the crack resistance predicted by traditional LEFM for a
blunt crack does not depend upon the crack length and,
therefore, atomistic data cannot be reproduced even consid-
ering a blunt crack. Accordingly, QFM represents an impor-
tant improvement with respect to the LFEM theory for the
isolated crack.

B. Interaction between a microcrack and an inclusion

The relative variation of the SIF at the crack tip was
evaluated by using Eq. �14� at different crack-inclusion dis-
tances d and for both silicon a carbon inclusions. In the
C/SiC case, the results are reported in Fig. 5. The intensifi-
cation of the stress at the crack tip is reduced by the presence
of the inclusion: Such a reduction is larger as the crack-
inclusion distance decreases. The available LEFM con-
tinuum models predict this behavior only qualitatively.23 In
particular it has been proved23 that the Li and Chen model,26

based on the Eshelby theory,21 works well at large distances,
while the Helsing model27 is able to describe the stress in-
tensification only at very short crack inclusion distances. In
both cases, the best agreement with the atomistic data was

FIG. 4. Crack resistance �s as a function of the crack length 2c
�unit of interbond distance c0�. The symbols are atomistic data; the
dot-dashed line is the original Griffith theory; the full line is the fit
of the atomistic data by QFM theory obtained for a0=0.25 nm.
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obtained assuming for the inclusion radius a value larger
than the effective one.

As in the case of the isolated crack, the QFM theory better
reproduces atomistic data than LEFM models. The QFM fit
of the atomistic results, obtained by using Eq. �13�, is re-
ported in Fig. 5 as a continuum line. Both a0 and c1 were
used as adjustable parameters. The resulting fracture quan-
tum is about the interbond spacing a0�1.4 c0 and
c1=−0.90 nm2. The agreement is good in the overall range of
distances considered. We point out that by using the exact
QFM relation, given by Eq. �12�, in place of the approxi-
mated form provided by Eq. �13�, the results are practically
unchanged.

A similar analysis was carried out for the Si/SiC system
as well. At difference with the carbon case the intensification
of the stress at the crack tip is increased by the presence of
the inclusion. The QFM best fit is reported in Fig. 6 as a
continuum line. The fitted values are a0=5.36 nm and
c1=5.19 nm2. In this case the calculated fracture quantum is
about 20 times larger than the interbond spacing. Conversely,
if we set a0 equal to the interbond spacing c0 the agreement

between atomistic and QFM theory �dashed line in Fig. 6� is
not overall satisfactory. This result proves that the No-
vozhilov hypothesis17 �namely, the equivalence between the
fracture quantum and the interatomic distance� has to be re-
leased in order to reconcile with the atomistic data. Present
results clearly indicate that the quantum of fracture rather
represents a measure of the length scale at which the QFM
deviates from LEFM �c0→0�. It turns out that such a length
scale is much larger in the silicon than in the carbon case.

In order to understand the physical origin of the difference
between the Si and C fibers, we studied the local nonlinear
effect in the crack-inclusion interaction. As a matter of fact,
it has been demonstrated24 that the effect of the inclusion on
the stress intensification at the crack tip falls beyond the
linear regime. It is possible to define the defect of linearity24

as the difference between the total stress of the system con-
taining both the microcrack and the inclusion with that one
calculated in a system containing just one crack or just one
inclusion:

FIG. 5. Relative variation of the stress intensity factor at the
crack tip, for �-SiC containing a diamond inclusion, as a function
of the crack-inclusion distance d. The symbols are atomistic data
and the full line is their best fit by QFM theory, a0=0.37 nm.

FIG. 6. Relative variation of the stress intensity factor at the
crack tip, for �-SiC containing a silicon inclusion, as a function of
the crack-inclusion distance d. The symbols are atomistic data and
the full line is the QFM best fit, a0=5.36 nm. The dashed line is the
QFM fit corresponding to the choice a0=c0.

FIG. 7. Top panel: Defect of
linearity �nl

CI�x� profiles for carbon
inclusion, corresponding to crack
inclusion distance d=12.19 nm
�left� and d=2.73 nm �right�. Bot-
tom panel: Defect of linearity pro-
files for silicon inclusion, respec-
tively, for d=12.19 nm and d
=2.73 nm.
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�nl
CI�x� = �zz

CI�x� − �zz
� � − �zz

C �x� − �zz
� � − �zz

I �x� − �zz
� �

�15�

where the uniform stress background �zz
� is subtracted to

each term. According to Eq. �15�, �nl
CI�x� should vanish

whether the interaction of the two defects is purely additive.
Furthermore, �nl

CI�x� depends on the relative distance be-
tween the two defects and in particular it increases as the
crack inclusion distance decreases.

In Fig. 7 is reported the defect of linearity for the silicon
�bottom� and carbon �top� inclusion cases. At large distances
�nl

CI�x� is vanishingly small for both. At difference, at dis-
tances d�6 nm the �nl

CI�x� for the silicon inclusion is larger
than the carbon case by an amount of about 0.15 eV/Å3.
This different behavior depends on the fact that the inter-
atomic forces are not symmetric for bonds in high tensile or
compressive state. As a matter of fact, the deviation from an
ideal elastic model is larger in compression �Si/SiC� than in
tension �C/SiC�. Furthermore the Si/SiC lattice mismatch
��25% � is larger than the C/SiC mismatch ��18% �. As a
consequence, the silicon inclusion induces an higher local
nonlinearity possibly responsible for the the very large frac-
ture quantum.

V. CONCLUSIONS

The results of atomistic simulations have been compared
with the predictions of the QFM theory in two different

cases. As far as concerns for the isolated crack, we have
shown that the QFM theory explains the discrepancy be-
tween the atomistic crack energy resistance with respect to
the LEFM case by means of two parameters: An intrinsic tip
curvature and a fracture quantum. QFM agrees well with the
atomistic data over all the investigated range of crack length,
also providing a valuable estimation of the curvature radius.
The quantum fracture for the isolated crack turns out to be
close to the interbond spacing along the crack opening direc-
tion. As far as concerns for the crack-inclusion problem, we
have studied the crack tip stress intensification for two kinds
of nano-inclusions. QFM nicely reproduces the observed
toughening and weakening effect induced by the carbon and
silicon fiber, respectively. The quantum of fracture is a mea-
sure of the QFM correction to the LEFM and is much larger
in the silicon case �about 20�. We propose an explanation of
this discrepancy in terms of the strong nonlinearity in the
mechanical response observed for the Si/SiC system.
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