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A B S T R A C T

We propose a new conceptual approach to reach unattained dissipative properties based on the
friction of slender concentric sliding columns. We begin by searching for the optimal topology
in the simplest telescopic system of two concentric columns. Interestingly, we obtain that the
optimal shape parameters are material independent and scale invariant. Based on a multiscale
self-similar reconstruction, we end-up with a theoretical optimal fractal limit system whose cross
section resembles the classical Sierpiński triangle. Our optimal construction is finally completed
by considering the possibility of a complete plane tessellation. The direct comparison of the
dissipation per unit volume 𝛿 with the material dissipation up to the elastic limit 𝛿𝑒𝑙 shows a
great advantage: 𝛿 ∼ 2000 𝛿𝑒𝑙. Such result is already attained for a realistic case of three only
scales of refinement leading almost (96%) the same dissipation of the fractal limit. We also show
the possibility of easy recovering of the original configuration after dissipation and we believe
that our schematic system can have interesting reliable applications in different technological
fields.

Interestingly, our multiscale dissipative mechanism is reminiscent of similar strategies
observed in nature as a result of bioadaptation such as in the archetypical cases of bone, nacre
and spider silk. Even though other phenomena such as inelastic behavior and full tridimensional
optimization are surely important in such biological systems, we believe that the suggested
dissipation mechanism and scale invariance properties can give insight also in the hierarchical
structures observed in important biological examples.

. Introduction

Hierarchical structure design opened up the possibility of creating new devices with optimized mechanical properties (Bührig-
olaczek et al., 2016; Yong, Xiang, Jin, Chen, & Wang, 2018). Ultra-tough fibers have also been proposed in Pugno (2014) based on
iomimetic design by introducing in the fiber a periodic sequence of sliders such as knots (see the extensions in Berardo, Pantano,
nd Pugno (2016), Bosia et al. (2016), Pantano, Berardo, and Pugno (2016)). Moreover, low scale tensegrity type systems, possibly
ultiscale, have been shown to deliver interesting possible applications for isolation based on their intrinsic strongly non linear

eometrical properties (De Tommasi, Maddalena, Puglisi, & Trentadue, 2017; De Tommasi, Marano, Puglisi, & Trentadue, 2015;
rentadue, De Tommasi, & Marasciuolo, 2021). Also in nature, hierarchical structures have been recognized at the base of the
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capacity of dissipation and crush resistance of different biological systems such as bones (Currey, 2012), spider silks (Fazio, De
Tommasi, Pugno, & Puglisi, 2022) and nacre (Oaki & Imai, 2005).

We propose a prototype of dissipative systems obtained by the composition of multiscale frictional devices arranged in a planar
rray, and characterized by a self-similarity of the dissipative and geometric properties at the different involved scales. Specifically
e consider a ‘telescopic’ system as the one schematized in Fig. 1𝑎 where the dissipation is attained by the friction of the thinner

column inside the larger, based on an internal pressure ensuring column friction. The optimization consists in increasing the
dissipative energy per unit material volume 𝛿. Despite our mechanism is restricted to one dimensional loading, we argue that the
general underlying idea can be extended to more general shapes.

Our optimization scheme takes care of both material strength and columns instability thresholds and it is organized according
with the following theoretical scheme. First we optimize the column section geometry and we obtain that the optimal shape is that
of an equilateral triangle. Then, we determine the optimal length of superposition and slenderness of the single column. Finally,
we extend the optimization to the possibility of selfsimilar decomposition of the column. As we show, the optimality increases with
the structure complexity (number of involved length scales) with the theoretical optimal limit attained by an infinite refinement
of the system. Interestingly, the resulting fractalization of the transversal section resemble the theoretical fractal Sierpiński triangle
construction. Thanks to the simplicity of our scheme all results are analytical with a clear mechanical interpretation. Of course a
(technologically and economically) realistic optimal structure is attained when very few refinement scales are considered. We then
show that for the proposed scheme already at the third complexity degree the optimal dissipation is almost fully attained (96%).
The final optimal dissipation device is then identified based on the possibility of a complete tessellation of the plane by adjacent
dissipative columns. As well known, for identical sections this property is possible only for regular polygons with 𝑛 = 3, 4, 6 sides.

It is interesting to remark that the obtained optimal parameters are all of geometrical type and so material independent.
oreover, in the spirit of self-similarity, they are scale-invariant and so may be identically reproduced at the different scales keeping

ixed the stress thresholds. As a result the device can have different applications independently from the required dimension. Two
ther points are important to be mentioned: from one side since our construction is thought to keep the material in the elastic state
e may argue that the system can be healed with a simple reversion of the loading sliding; from the other side possible increased
roperties can be considered, by extending the analysis to hollow sections, but this advantage should be compared to the known
echnological complications depending on the specific application.

As a final remark we want to point out that we also would like to make some analogies with observed phenomena in natural
ystems. From one side we refer to the observation of the diffused presence of triangular sections in biological devices, such as
riangular shaped indenters as reported e.g. in Keten, Xu, and Buehler (2011). From the other side we observe that hierarchical
tructures are at the base of intriguing optimization of mechanical properties in nature such as in the case of the high dissipative
nd stiff spider silks (Cranford, Tarakanova, Pugno, & Buehler, 2012). The optimal dissipative properties are attained based on
ierarchical structures with contemporary structural optimization at different scales (Wegst & Ashby, 2004). Such complex structures
ave been recognized as optimal dissipators allowing to attain such macroscopic responses based on materials with standard or poor
esistance and stiffness properties (Nosonovsky & Bhushan, 2007). Despite different complex mechanisms may operate or cooperate
n these biological examples, we believe that the hierarchical friction mechanism here proposed can shed some light also in the field
f optimized dissipative biological materials.

. Optimal dissipative friction column

The proposed dissipation device consists in a planar arrangement of telescopic, friction based, dissipative columns constituted
y an hollow cylindrical container and an adhering sliding solid section (see the scheme in Fig. 7). In the following we optimize
he geometric properties of the proposed dissipator by searching for the maximum dissipation per assigned volume. As we show
his competes with the instability of the compressed sliding column. Observe that, due to the proposed planar tessellation, we may
eglect the instability of the hollow containers. We restrict to the hypothesis of homogeneous, convex, compact sections of the column,
ecause this leads to the easiest fabric conditions, but extensions of the proposed approach can be easily considered.

.1. Section shape optimization

Consider first the problem of the maximum attainable dissipation for given column weight. The aim is to maximize for the given
ection area (and column volume) both the force leading to buckling instability and the total friction. To attain the maximum force
t fixed area we need to find the shape that corresponds to the smallest value of the slenderness against buckling. First we observe
hat optimal sections cannot be characterized by different inertia moments for different axes. Indeed, roughly speaking, if 𝛼 and 𝛽
re the in-plane eigenvectors of the inertia tensor, with 𝐽𝛼 > 𝐽𝑥 > 𝐽𝛽 for all directions 𝑥 ≠ 𝛼, 𝛽, than one can consider a (fixed area)
shape variation’ (as sketched in Fig. 1𝑏) increasing the minimum inertia moment.

As a result, we may restrict our attention to regular polygon shapes with 𝑛 sides of length 𝑎𝑛. Let 𝑟 be the radius of the
ircumscribed circle. The polygons can be decomposed in 𝑛 ≥ 3 isosceles triangles as the ones shown in Fig. 1𝑐 . The base of the
riangle has length

𝑎𝑛 = 2𝑟 sin 𝜋
𝑛
, (1)

area

𝐴 = 𝑟2 cos 𝜋 sin 𝜋 , (2)
2

𝑛 𝑛 𝑛



International Journal of Engineering Science 176 (2022) 103673G. Puglisi and N.M. Pugno
Fig. 1. (a) Scheme of the friction dissipator. (b), (c) shape optimization. In (b) we sketch the reason why regular polygons are optimal with respect to instability,
in (c) we show the resulting different possible section shapes.

Fig. 2. Representation of the non dimensional optimization parameters as functions of the number of section edges.

and second moment of area with respect to the cylinder axes

𝐽𝑛 =
𝐴𝑛
2
𝑟2

(

cos2 𝜋
𝑛
+ 1

3
sin2 𝜋

𝑛

)

. (3)

Let then 𝑝 = 𝑛𝑎𝑛, 𝐴 = 𝑛𝐴𝑛 and 𝐽 = 𝐽𝑧
2 = 𝑛𝐽𝑛

2 be the perimeter, the area, and the in-plane axial inertial moment (that of course for
the regular figures is independent from the axis orientation), respectively. We may then introduce the two optimization parameters

𝜒𝑎 = 𝜒𝑎(𝑛) ∶=

√

𝑝2

𝐴
= 2

√

𝑛 tan 𝜋
𝑛

(4)

and

𝜒𝑏 = 𝜒𝑏(𝑛) ∶=
𝐽
𝐴2

=
𝐽𝑛

2𝑛𝐴2
𝑛
= 1

4𝑛

(

cot 𝜋
𝑛
+ 1

3
tan 𝜋

𝑛

)

. (5)

Observe that to optimize the column we need to increase both parameters. Indeed by increasing 𝜒𝑎 the lateral surface area at fixed
section area grows and thus the friction force for the given sliding friction coefficient increases. On the other hand, by increasing 𝜒𝑏
we increase the maximum force that can be applied to the column for the assigned area before buckling instability load is attained.

The optimization parameters 𝜒𝑎 and 𝜒𝑏 at variable 𝑛, normalized with respect to the value attained in the case 𝑛 = 3 of the
triangular section, are represented in Fig. 2. Observe that the equilateral triangle represents the optimal section shape among the
compact convex ones. As a result in the following we restrict our attention to triangular columns. We point out that the obtained
geometrical optimization results are material and size-independent. In this respect it may be interesting to remark that the optimality
of triangular sections has been observed and described in several compressed biological devices such as the cell-puncture needle of
the bacteriophage T4 virus (Keten et al., 2011).
3
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Fig. 3. (a) Dependence of the buckling and friction stress from the slenderness parameter 𝜂 at different value of the insertion fraction 𝜉. (b) representation of
he equilibrium condition (10) showing that the lowest value of length and so of the volume is attained at 𝜉 = 𝜉𝑜 =

1
3
. Here 𝑐𝑏 = 𝑐𝑓 = 10, but the optimal value

𝜉𝑜 =
1
3

does not depend from these constants.

.2. Height and insertion size optimization

To attain the device volume optimization we require, by controlling the friction stress as described in the following, that the
issipator begins to slide when the stress reaches its limit value corresponding to Euler buckling, i.e. the maximum, attainable load
or slender columns. The limit condition of the attainment of the force 𝐹𝑦 = 𝜎𝑦𝐴 where 𝜎𝑦 represents the material limit stress is

considered later. It is also important to remark that for simplicity of notation here and in the following we omit the presence of
possible safety factors.

Let then 𝜂 𝑎 be the height of the column and let 𝜉 𝜂 𝑎 be the insertion length (see Fig. 1). Both the friction force and the Euler
buckling force depend on the insertion fraction 𝜉. The total axial force that can be equilibrated by the shear friction stress 𝜏, assumed
to be a given constant parameter, is

𝐹𝑓 = 3𝜏𝜉𝜂𝑎2. (6)

On the other hand the buckling Euler force 𝐹𝑏 for a cantilever loaded at the end – under an assumption of buckling length 𝐿0 = 2ℎ,
corresponding to a column clamped from one side and free from the other one – and an height ℎ = (1 − 𝜉)𝜂𝑎 is

𝐹𝑏 =
𝜋2𝐸

128
√

3

𝑎2

𝜂2(1 − 𝜉)2
, (7)

where 𝐸 is the Young modulus of the material. The corresponding stresses are given by

𝜎𝑓 = �̂�𝑓 (𝜉) =
𝐹𝑓

𝐴
= 𝑐𝑓 𝜉 𝜂 and 𝜎𝑏 = �̂�𝑏 (𝜉) =

𝐹𝑏
𝐴

= 𝑐𝑏
1

𝜂2(1 − 𝜉)2
, (8)

where we introduced the two material parameters

𝑐𝑓 = 4
√

3 𝜏 and 𝑐𝑏 =
𝜋2𝐸
96

, (9)

depending from the triangular shape through the numerical coefficients. Thus different coefficients would correspond to different
section shapes even possible hollow ones.

Now to equilibrate the optimal maximum force 𝐹𝑏 we need an initial insertion fraction 𝜉𝑜 such that 𝐹𝑓 = 𝐹𝑏 that gives

𝜂 = 𝜂𝑒𝑞(𝜉𝑜) = 3

√

𝑐𝑏
𝑐𝑓 (1 − 𝜉𝑜)2𝜉𝑜

. (10)

By minimizing 𝜂𝑒𝑞 in (10) with respect to the initial insertion 𝜉𝑜, we obtain that the minimum value of 𝜂 and thus of volume is
ttained for

𝜉𝑜 = 𝜉 = 1
3
. (11)

It is again interesting to point out that the optimal value of 1∕3 of inserted height is material and size independent. Moreover it is
independent from the section shape because this result does not depend from 𝑐𝑎 and 𝑐𝑏 (see Fig. 3).

Correspondingly we obtain an optimal slenderness of the beam

�̂� = 3 3

√

𝑐𝑏
4𝑐

(12)
4

𝑓
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and of the initial equilibrium stress

�̂� = �̂�𝑓
( 1
3

)

= �̂�𝑏
( 1
3

)

=
3

√

𝑐2𝑓 𝑐𝑏
4

≤ 𝜎𝑦. (13)

Observe that during sliding, by using (8), the ‘instantaneous’ friction stress is

𝜎𝑓 (𝜉, �̂�) = 𝜒 𝑐𝑓 𝜉 �̂�, 𝜉 ∈ [1∕3, 1] (14)

where we introduced the non dimensional parameter 𝜒 = 𝜇𝑑∕𝜇𝑠, measuring the ratio between the static friction coefficient 𝜇𝑠 and
he dynamic one 𝜇𝑑 . In this respect it is important to observe that

𝜎𝑓 (𝜉, �̂�) − 𝜎𝑏(𝜉, �̂�) =
(1 − 3𝜉)2(3𝜉 − 4)
9 22∕3(𝜉 − 1)2

< 0 for 𝜉 ≠ 1
3
,

thus granting that at all values of sliding the system does not buckle.
We may now evaluate the fundamental parameter 𝛿 assigning the maximum attainable dissipation per unit volume

𝛿𝑣 = ∫

1

1∕3
𝜎𝑓 (𝜉)𝑑𝜉 = 2

3
𝜒 3
√

2𝑐𝑓 𝑐2𝑏 (15)

corresponding to a total dissipation per column

𝛥 = �̂�

√

3
4

𝑎3 𝛿𝑣 =
√

3𝜒
3

√

𝑐𝑓 𝑐2𝑏
2

𝑎3. (16)

To develop further the optimization, we may observe that since 𝑐𝑓 depends on the shear friction stress 𝜏, we may increase it,
varying the slenderness through (13) until the maximum force, corresponding to material failure, is attained

�̂� = 𝜎𝑦. (17)

In other words the system starts to slide in correspondence with the optimal slenderness such the Euler force equals the limit
material force 𝜎𝑦𝐴. In particular if 𝜎𝑦 corresponds to the elastic limit stress this condition grants the possibility of shape recovering
after dissipation, an important technological advantage. By (13) and (17) we obtain the corresponding friction stress

𝜏 =
2
√

2
𝜋

√

𝜎3𝑦
𝐸

→ 𝛾 ∶= 𝜏
𝜎𝑦

=
2
√

2
𝜋

√

𝜎𝑦
𝐸

, (18)

where we introduced the non dimensional friction parameter 𝛾. This corresponds to an optimal slenderness of the beam assigned
by the height/side ratio

𝜂 = 1
8

√

3
2
𝜋

√

𝐸
𝜎𝑦

, (19)

and a dissipation per unit volume

𝛿𝑣 = 4
3
𝜒𝜎𝑦. (20)

To get an analytic measure of the dissipation properties of the attained optimal telescopic device we may consider in the
ypothesis of a still device, 𝜎𝑦 = 210 MPa, 𝐸 = 2.1 105 MPa, 𝜇𝑠 = 0.75, 𝜇𝑑 = 0.54 so that we obtain the parameters reported in

the table in Fig. 4. It is worth noticing that a comparison with a rough measure of the elastic dissipation energy of the material is
given by

𝛿𝑚𝑎𝑡 ∼
1
2

𝜎2𝑦
𝐸

∼ 0.1 J/m3 ∼
𝛿𝑣

2000
.

Moreover in the figures we report for comparison the dissipation densities of an industrial dissipator presently adopted in vehicle
mechanics.

On the other hand we obtain that for steel

𝛿𝑣 = 0.96𝜎𝑦

corresponding to the work of a perfectly plastic material with a limit deformation of 𝜆 = 1.96 i.e. with the material reaching a half
of its initial length. The variations of the density of dissipation per unit volume 𝛿 and per unit mass 𝛿𝑚 = 𝛿𝑣∕𝜌, where 𝜌 = 7 g/cm3

is the steel mass density, are represented for a steel in Fig. 4. Observe also that the corresponding friction force requires a low
precompression 𝜎𝑝 =

𝜏
𝜇𝑠

= 7.5 MPa – corresponding to 𝜎𝑝 =
𝜎𝑦
28 – that can be easily attained during the production process.

It is also interesting to observe that it is possible to consider an active control of the internal pressure with a modulation of
he force 𝐹𝑑 inducing sliding and dissipation. Then, since during slipping 𝜉 increases from 1∕3 to 1, the system dissipates without

collapsing up to a maximum final force, after all the dissipation, of 𝐹𝑚𝑎𝑥 = 3𝐹𝑑 . Finally, it is worth pointing out, that under our
assumption that �̂� < 𝜎𝑦 after dissipation the overall system is still elastic and it can be restored by simply repositioning it into the
5

original configuration 𝜉𝑜 = 1∕3.
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Fig. 4. Optimal parameters for a steel column. With the two dots we report the dissipation densities of an industrial dissipator presently adopted in vehicle
mechanics.

3. Multiscale optimal dissipative friction columns

In this section, based on the previous observation of size independence of the optimal geometric parameters, to attain an even
higher optimization and improve the dissipative behavior of the proposed system, we consider the possibility of a self-similar
reproduction of previously described scheme (see Fig. 5). Our geometrical construction consists in dividing the triangular section
and the height in three equal parts. The crucial idea at the base of this rescaling is that the slenderness and the stress corresponding to
buckling of the columns are both scale invariant. This result suggests the possibility of a dissipation mechanism contemporary attained
at different length scales. To get simple analytical results we here analyze a simple quasistatic regime, but we point out that a full
description of the dynamical behavior of the proposed dissipative device deserves both experimental, numerical, and theoretical
deeper investigation that will be the subject of our future work. We remark that the recalled scale-invariance properties have
been considered in Puglisi and Truskinovsky (2013) as a possible reason for multiscale self-similar optimization in the evolutionary
creation of fibrillar optimal adhesive biological system such as geckoes pads. All the details of the resulting dissipative behavior can
be found in Maddalena, Percivale, Puglisi, and Truskinovsky (2009).

The dissipative column of hierarchical levels/complexity 𝑐 = 2 is represented in Fig. 5. Starting by the previously described
dissipative column, we assume that the internal slipping pillar is decomposed in a portion (2∕3 of the total length) of solid section
and in a remaining portion (1∕3 of the total length) shaped to host smaller slipping internal columns with the same slenderness. In
this second scale of complexity we have 𝑛 = 33 columns with sides of length 𝑎∕3 and height 𝐿∕9. In this way for the smaller columns
we have the same values of critical stresses (8) so that the optimal stress undergoing the same compression stress �̂� in (13) can be
applied. Moreover, based on previous consideration about the independence of the optimal parameters 𝜉𝑜 in (11) and 𝜂 in (12) we
consider the same values. Observe (see Fig. 5) that the system is designed in such a way that three columns out of nine are fixed
to the solid section with the other six pillars slipping. It is possible to verify that the average dissipation (per unit volume) is the
same

𝛿2 =
1
�̂�𝑎
3

∫

1

1
3

𝜎𝑎(𝜉)
�̂�𝑎
3
𝑑𝜉 = 𝛿𝑣. (21)

We then deduce that by adding such new system to previous subsystem we have that we may increase the total dissipation by

𝛥2 =
1
3
𝛥 (22)

by adding 2
9ℎ of beam height. Observe that since we added 1∕3 of the total volume only the total dissipation increases while the

dissipation density is constant 𝛿2 = 𝛿𝑣.
It is worth noticing that since 𝜎 grows with 𝜉 in an identical way at the two considered scales, we may expect in a quasistatic

process an identical evolution of the insertion parameter 𝜉 ∈ (1∕3, 1), with a cooperative dissipation at both scales. This represents
in our opinion an important general property of structural oprimization, leading to an equal distribution of dissipation at different
involved scales, that can drive the design of similar hierarchical devivices.

The refinement process can be repeated again by increasing the complexity 𝑐 and reproducing the reasoning about the scale
invariance of the geometrical, stress and dissipation properties (the section of a system with complexity 𝑐 = 3 is represented in
Fig. 6). At given complexity 𝑐 the total initial height attains the value

ℎ𝑡𝑜𝑡(𝑐) =
𝑐
∑

( 2)𝑖−1
ℎ (23)
6

𝑖=1 9
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Fig. 5. Scheme of a system with complexity 𝑐 = 2. (a) Global view and sections (in the fourth section the three gray triangles are fixed and the yellow ones
slip on them), (b) the three composing components, (c) sequential insertion of the two slipping parts.

Fig. 6. (a) scheme of the section for a complexity 𝑐 = 3; (b), (c) dependence of the total dissipation 𝛥 and total height ℎ𝑡𝑜𝑡 on the dissipative device from the
complexity 𝑐.

and the total dissipation is given by

𝛥(𝑐) =
𝑐
∑

𝑖=1

( 1
3

)𝑖−1
𝛥. (24)

The section of complexity 𝑐 = 3 is represented in Fig. 6 together with the variation of the total dissipation and height with
the complexity. The process can be theoretically increased at any complexity, with a contemporary slide at all the scales and a
corresponding increase of total dissipation. The limit length of this theoretical (fractal like) system is

ℎ𝑙𝑖𝑚
ℎ

=
∞
∑

𝑖=1

(2
3

)𝑖−1
= 9

7
. (25)

with a total dissipation

𝛥𝑙𝑖𝑚 =
∞
∑

( 1)𝑖−1
= 3 . (26)
7

𝛥 𝑖=1 3 2
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Fig. 7. Planar tessellation with friction based dissipator of complexity three.

Of course this represents an ideal limit, but at a complexity 𝑛 = 3 the optimal complexity is already almost fully attained
𝛥(3)
𝛥 = 13

9 ∼ 1.44 corresponding already to the 94% of the limit of infinite refinement. The variations of the dissipation and of the
height with the complexity are represented in Fig. 6. Moreover we remark that the self-similarity construction increases the global
dissipation 𝛥 while keeping the dissipation density 𝛿 fixed. It is in any case important to notice that this increase of dissipation is
obtained at fixed global section area and so at fixed in plane dissipator size and this can be important in technological application.

The final step of our design of an optimal dissipative device is represented in Fig. 7. It is worth noticing that as well known
the plane can be tessellated by identical figures only in the special cases of equilateral triangles, hexagons or squares. As a result
our choice of regular triangles represents an optimal shape also in this perspective. Indeed we can maximize for the given area of
the dissipation device the area covered by dissipative columns. Importantly, this is also important in the perspective that, as we
anticipated, the choice of a planar tessellation avoids buckling instabilization of the containers at the highest dimension scale.

4. Discussion

We propose a new telescopic hierarchical dissipation device optimized in both the shape and complexity by considering the
possibility of self-similarity and contemporary dissipation at different length scales. This dissipative device starts dissipating at a
given design force and with the possibility of sustaining without collapsing a final force, after dissipation, that is three times the
initial force. We began by optimizing the dissipation properties for the single column with a resulting behavior summarized in Fig. 4.
By choosing the dimension and the number of dissipators the force 𝐹𝑒𝑙 that switches on the dissipative process can be chosen. After
dissipation begins, the system is able to equilibrate a force 𝐹𝑒𝑙 < 𝐹 < 3𝐹𝑒𝑙. It is very interesting to notice that the comparison of
the dissipation density 𝛿𝑣 with the material dissipation density 𝛿𝑒𝑙 ∼

1
2
𝜎𝑦
𝐸 shows the great advantage of the proposed friction based

dissipator: 𝛿𝑣 ∼ 2000𝛿𝑒𝑙. This dissipation is not attained by plastic dissipation, but by the sliding friction work of concentric columns.
As a result, we can argue that after dissipation the device can be restored to the initial configuration repositioning previously slided
pillars in the original configuration based on appropriate lubrication systems. The behavior has then been improved, by considering
a hierarchical reproduction of the optimized behavior of the single column dissipator. As we show, the device can have increasing
degree of complexity with the interesting aspect that the system contemporary dissipates at all the involved scales, thus optimizing
the dissipation process based on the scale invariance of the Euler instability stress. The total dissipation can be increased of 50%
increasing the device height of only 2∕7. While this value is only theoretical, because it refers to the limit fractal system, the
maximum dissipation value is almost attained already at a complexity 𝑐 = 3 (94% of the theoretical limit). Interestingly the selfsimilar
system has a section resembling the theoretical fractal Sierpiński triangle construction. Loosely speaking, the described properties
have some analogy with biological materials that typically owe their special material properties to their low scale geometry and
to their hierarchical character and not to the properties of the composing materials (Huang et al., 2019). Indeed, as we show, the
dissipation per unit volume is much higher than the dissipation that one could obtain by plasticizing the material.

Several interesting augmentations of the model can be considered. From one side there is the possibility of actively controlling
the friction based on the internal pressure, thus obtaining a controllable dissipation system that can be activated at variable force.
Moreover, it is possible to consider variable friction at different scales, with corresponding variation of the length accordingly
to previous treatment, allowing differential slipping at different forces. Thus for small forces only the smaller columns could
be activated, whereas for larger forces the number of involved scales could grow. A corresponding optimization for dynamical
dissipation and large spectra attenuation could be considered (Miniaci et al., 2018). All these properties suggest that the new
proposed concept for dissipation can be of interest in different directions of applications.
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