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Abstract

The aim of the present paper is to introduce a new failure criterion in the framework of Finite Fracture Mechanics.
Criteria assuming that failure of quasi-brittle materials is affected by stress or energy flux acting on a finite distance in front
of the crack tip are widely used inside the scientific community. Generally, this distance is assumed to be small compared to
a characteristic size of the structure, i.e. to any length describing the macroscale. A key point of the present paper is to
analyse what happens if the smallness assumption does not hold true. The proposed approach relies on the assumption
that the finite distance is not a material constant but a structural parameter. Its value is determined by a condition of con-
sistency of both energetic and stress approaches. The model is general. In order to check its soundness, an application to
the strength prediction for three point bending tests of various relative crack depths and of different sizes is performed. It is
seen that, for the un-notched specimens, the present model predicts the same trend as the Multi-Fractal Scaling Law
(MFSL). Finally, a comparison with experimental data available in the literature on high strength concrete three point
bending specimens is performed, showing an excellent agreement. It is remarkable to observe that the method presented
herein is able to provide the fracture toughness using test data from un-notched specimens, as long as the range of spec-
imen sizes is broad enough.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

When dealing with brittle or quasi-brittle materials, two main failure criteria are generally taken into
account. The former is a stress criterion:
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Nomenclature

(x,y) space coordinates
r generic normal stress (in Section 4: maximum stress in a TPB specimen)
ry normal stress in the y-direction
ru tensile strength
G crack driving force
GF fracture energy
KI stress-intensity factor under mode I conditions
KIc fracture toughness
a crack length
DS, DE, DSE finite crack extensions according to stress (S), energy (E) and coupled (SE) approaches
c dimensionless coefficient in the expression of DE

t dummy variable
b, d TPB specimen height and thickness
a = a/b relative crack depth of the TPB specimen
e = DSE/b ratio between the finite crack extension and the specimen height
S0(x/b), Sa(x/b) dimensionless stress function along the ligament, respectively for un-notched specimens

and notched specimens with relative crack depth a
F(a/b) shape function in the expression of the SIF for TPB specimens
rf apparent tensile strength of a TPB specimen
b = b/DS dimensionless structural size
d = DSE/DS dimensionless finite crack extension for the coupled (SE) criterion
lch material characteristic length in the MFSL expression
r0, b0 strength for a vanishing size and transitional size in the SEL expression
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i.e. failure takes place if, at least in one point, the stress r reaches the tensile strength ru. The latter is an ener-
getic criterion:
G ¼ GF ð2Þ

It states that failure happens if the crack driving force G equals the crack resistance GF. GF is the so-called
fracture energy, i.e. the energy necessary to create the unit fracture surface. As is well known, according to
Irwin’s relationship, the energetic criterion can be expressed equivalently in terms of stress-intensity factor
(SIF) KI and fracture toughness KIc:
KI ¼ KIc ð3Þ

For the sake of simplicity, only mode I crack propagation will be dealt with in the following.

The stress criterion provides good results for crack-free bodies, whereas the energetic criterion is physically
sound for bodies containing a sufficiently large crack. Otherwise both the criteria fail. In fact, the stress cri-
terion provides a null failure load for a body containing a crack, the stress field being singular in front of
the crack tip. On the other hand, the energetic criterion provides an infinite failure load for a crack-free body,
the stress-intensity factor being zero in absence of a crack.

The above mentioned criteria therefore work for the extreme cases (i.e. no crack or large crack) but are no
longer valid for the intermediate cases, such as, for instance, short cracks or sharp notches.

In order to overcome this drawback, several failure criteria have been proposed in the literature. Concern-
ing numerical applications to quasi-brittle materials, we may cite the fictitious crack model (FCM) introduced
by Hillerborg et al. [1], which takes into account both the tensile strength and the fracture energy of the given
material. The FCM, as well as the cohesive zone model, requires a specific numerical algorithm to be inserted
in structural design codes, thus providing a very versatile tool for the analysis of quasi-brittle material
structures.
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Anyway, easier criteria can be put forward by introducing a material length D, which allows one to get ana-
lytical results, at least with sufficiently simple geometries, or to couple the failure criterion with a linear elastic
analysis performed through a computer simulation such as the finite element method. The task of the charac-
teristic length D is to take into account the fracture toughness for the stress based criterion or the tensile
strength for the energy based criterion. For the sake of clarity, we refer to the simple scheme of Fig. 1. The
crack is loaded in mode I. It is directed along the x-axis and its length is 2a.

2. Finite fracture mechanics

We start from the stress based failure criterion (S), according to which failure is achieved when the average
stress ahead of the crack tip over a DS-long segment reaches the critical value ru. Or, equivalently, when the
force resultant over a segment of length DS in front of the crack tip reaches the critical value ruDS. This can be
expressed as
Z aþDS

a
ryðxÞdx ¼ ruDS ð4Þ
Obviously, this criterion provides Eq. (1) for a crack-free specimen under a tensile load. On the other hand, the
value of the material length must be determined imposing Eq. (3) for a relatively large crack (DS� a). In such
a case, the asymptotic stress field ry ¼ KI=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx� aÞ

p
can be used; its substitution in Eq. (4) yields:
DS ¼
2

p
KIc

ru

� �2

ð5Þ
In order to provide meaningful results in the intermediate cases, the stress field to be inserted in Eq. (4) must
be the exact one and not the asymptotic one (in the limit of x! a). This means, for instance in the case of a
central through-crack in an infinite body, the use of Westergaard’s solution. When the exact solution is not
available, the stress field can be obtained numerically by a finite element analysis.

We now turn our attention to the energy based failure criterion (E), according to which failure is achieved
when the energy available during a DE-long crack extension reaches the critical value GFDE. This can be
expressed as
Z aþDE

a
GðaÞda ¼ GFDE or

Z aþDE

a
K2

I ðaÞda ¼ K2
IcDE ð6Þ
Obviously, this criterion provides Eq. (3) for a specimen containing a large crack. On the other hand, the value
of the material length must be determined imposing Eq. (1) for a vanishing crack (a = 0). In such a case,
considering only through cracks for two-dimensional geometries, the asymptotic value for the stress-intensity
x

y

2a

σ

σ

Fig. 1. Centre through crack in infinite slab under tensile load.
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factor is given by KI ¼ cr
ffiffiffiffiffiffi
pa
p

, where c is a dimensionless factor equal to 1 for centre cracks and equal to 1.122
for edge cracks. Substituting this expression in Eq. (6) yields:
1 Str
finite v
DE ¼
2

p
KIc

cru

� �2

ð7Þ
In order to provide meaningful results, the function of a describing the stress-intensity factor to be inserted in
Eq. (6) must be the exact one and not the asymptotic one (in the limit of a! 0). Nevertheless, it is worth
pointing out that, as long as the SIF vs. a functions are available in the SIF handbooks, the energy criterion
(6) is much easier to apply than the stress criterion (4). In fact, the analytical solution for the stress field to be
inserted in (4) is usually not available and a finite element analysis is required for each value of a.

A second comment on the failure criteria introduced above is that the characteristic lengths D (Eqs. (5) and
(7)) are a measure of the material brittleness. For instance, from Eq. (4), it is clear that a very small D implies
that only the asymptotic stress field affects the failure load: the structural behaviour is therefore brittle and
governed by the material toughness (Eq. (3)). On the contrary, a very large D means that the failure load is
affected by the whole stress field: the structural behaviour is therefore ductile and governed by the material
strength (Eq. (1)).

In other words, the brittleness of the structural behaviour is provided by the ratio between the material
length D and a length characteristic of the structure. We note that this ratio coincides with the brittleness num-
ber introduced by Carpinteri [2].

The physical meaning of the two criteria (4)–(6) is clear: fracture does not propagate continuously but by a
finite crack extension, whose length is a material constant. Hence, the framework is a finite fracture mechanics

(FFM) approach. Therefore, by definition, FFM cannot deal with continuous crack growth1, whereas FCM
can. On the other hand, from a physical point of view, it should be noted that several (perhaps all) fracture
processes involve discontinuous crack growth rather than smooth, continuous growth, at least at the begin-
ning of the cracking phenomenon (see, e.g., [3] for metals, [4] for polymers and [5] for bones). These crack
jumps are likely related to material microstructure (i.e. barrier spacing or grain boundaries), giving rise to
material instabilities such as snap backs. However, these microstructural processes are far from being com-
pletely understood and, in what follows, the finite extension of a crack will be assumed a priori.

Note that the crack extensions (5) and (7) for the stress and energy criteria are the same for a centre crack
while slightly differ for an edge crack. The simulations performed till now [6] have shown that the predictions
of the two criteria are usually close but not identical, as can be shown in some counterexamples (see, for
instance, Section 5).

The stress criterion dates back to Neuber [7] and Novozhilov [8]. Afterwards, several researchers applied
this criterion in a wide range of geometries and materials: see, for instance, notch analysis [9–12], fatigue prob-
lems [13] and composite materials [14].

The energy criterion as expressed by Eq. (6) was developed by Pugno and Ruoff [15], under the heading
Quantized Fracture Mechanics (where its validity for nanostructures and microscopic specimens was estab-
lished) and by the present authors [6], who suggested the name Finite Fracture Mechanics. These two papers
have demonstrated that the approach can be used for all classes of materials, at all size scales from point
defects in carbon nanotubes to large notches in engineering structures. Note that the term FFM has been
already used by Hashin [16] and Kim and Nairn [17] in a different framework, i.e. the multiple cracking of
coating layers and of composite laminates. In those cases, the term finite refers to the creation of new cracks
of (although small) finite size. In spite of the different context, we decided to use the same name since the idea
to substitute the infinitesimal increase of crack surface with a finite increment is the same both for our and
their approach.

A slightly different form of the energy criterion (6) has been introduced by Seweryn [10]. Furthermore, a
model related (but distinctly different) to FFM (sometimes called equivalent LEFM) involves placing a
pre-existing crack at the notch root, using LEFM to predict the conditions for failure of this notch/crack
ictly speaking, the discrete case contains the continuous case in the limit of a vanishing increment. However, for a material with
alues of strength and toughness, FFM cannot predict a continuous crack growth.
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combination. At first sight this appears similar to the present argument, but the idea breaks down if we shar-
pen the notch to the point at which it becomes a crack, because if a small crack is to exist at the tip of this
crack then what we have is simply a longer crack so there is no reason why another small crack should not
be added to it, and so on ad infinitum. The problem does not arise in the case of FFM since it is assumed that
the crack advances discontinuously, in quanta of length D. Equivalent LEFM was introduced by Irwin [18] in
order to take into account the plastic zone ahead of the crack tip in metals. More recently, it has been applied
also to quasi brittle material failure (e.g., [19,20]). In the authors’ opinion, however, the equivalent LEFM
should be regarded as an approximation of the FFM approach, in the sense that equivalent LEFM can be
obtained from Eq. (6) approximating the integral by the product of the middle point value times the integra-
tion interval length (i.e. K2

I ðaþ DE=2Þ � DE). It is evident that they provide the same result as far as KI /
p

a

(e.g., the Griffith crack).
The aim of the present paper is to demonstrate some drawbacks of the FFM models (4)–(6), especially

when the crack advancement is of the same order as the ligament of the specimen. We will show that coupling
the energetic and stress approaches yields a new criterion which retains the advantages of previous FFM
approaches and overcomes their drawbacks, since it takes into account the interaction between the finite crack
extension and the geometry of the specimen. This new approach also helps to clarify the physical mechanisms
underlying FFM. A fundamental result is that the finite crack extension ceases to be a material constant and
becomes a structural variable.

However, before introducing the new failure criterion, it is instructive to apply the FFM criteria to the case
of a Griffith crack (Fig. 1). The stress at infinity (orthogonal to the crack) is r. We need the stress field ahead of
the crack tip (Westergaard’s solution) and the stress-intensity factor for any value a. By using the reference
system displayed in Fig. 1, these well-known functions are, respectively:
Fig. 2.
two FF
ryðxÞ ¼
xffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � a2
p r ð8Þ

KIðaÞ ¼ r
ffiffiffiffiffiffi
pa
p

ð9Þ
Substituting the expressions (8) and (9) respectively in Eqs. (4) and (6), we can obtain the failure stress rf, i.e.
the value of the remote stress causing the crack to propagate. Interestingly the two criteria yield the same
result:
rf

ru

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða=DSÞ þ 1

p ð10Þ
observing that, in this case, DS = DE because, dealing with a centre crack, c = 1 in Eq. (7). Eq. (10) is plotted in
Fig. 2 together with the LEFM criterion (Eq. (3)), which, according to Eq. (9) provides:
rf

ru

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða=DSÞ

p ð11Þ
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Dimensionless failure stress vs. dimensionless crack length for a Griffith crack. The LEFM prediction is the dot-dashed line; the
M criteria (stress and energy approaches), both coincide in this particular case, giving the thick line.



2026 P. Cornetti et al. / Engineering Fracture Mechanics 73 (2006) 2021–2033
The accuracy of Eq. (10) in predicting experimental data on brittle ceramic materials has been demon-
strated by Taylor [21]. Note that, for a vanishing crack length, while the LEFM provides an infinite failure
stress, the FFM criteria provide the required result rf = ru. Finally, observe that the stress and the energetic
approach provide the same failure stress, but this is not always the case, as will be shown later.

3. The coupled stress and energy FFM criterion

As shown above, the classical failure criteria (1), (2) can be modified introducing an internal length, D,
whose value is determined imposing the fulfilment of the limit cases: long crack failure load for the stress cri-
terion and no crack failure load for the energetic criterion. Nevertheless the two approaches remain distinct
and the fulfilment of one of them usually implies the violation of the other one. In other words, when applying
the average stress criterion, the energy released in the crack extension is not always GFD: hence the energy bal-
ance is violated (under the assumption that the kinetic energy associated with the dynamics of crack growth is
negligible). On the other hand, when applying the energetic criterion, the resultant of the stresses acting on the
crack extension can differ from the product ruD.

In order to overcome this incongruence, we can proceed removing the hypothesis that D is a material con-
stant. Note that the crack is still propagating by finite steps, i.e. we remain in the framework of FFM. The
value of the finite crack extension is determined by the fulfilment of both the stress and energy criteria, i.e.
when both of the following equations are satisfied:
R aþDSE

a ryðxÞdx ¼ ruDSER aþDSE

a K2
I ðaÞda ¼ K2

IcDSE

(
ð12Þ
This means that failure takes place whenever there is a segment of length DSE over which the stress resultant is
equal to ruDSE, and, contemporarily, the energy available for that crack extension is equal to GFDSE. Eq. (12)
represent a system of two equations in the two unknowns: rf, the failure load, and DSE, the crack extension.
We propose that, while each single equation represents only a necessary condition for failure, the fulfilment of
both of them represents a necessary and sufficient condition for fracture to propagate. From a physical point
of view, the criterion expressed in Eq. (12) is equivalent to state that fracture is energy driven but a sufficiently

high stress field must act in order to trigger crack propagation.
The present criterion is close to the one proposed in Leguillon [22,23], where it was applied successfully to

the prediction of the failure load of a three point bending beam with re-entrant corners of different amplitude.
But Leguillon’s formulation differs from ours because it is based on the point-wise stress criterion. To our
knowledge, Eq. (12) has not been proposed in the literature yet.

Finally, observe that the application of this criterion to the Griffith crack is trivial, since, as shown in Sec-
tion 2, the stress and energy approaches separately predict the same failure stress. In other words, the solution
of the Eq. (12) is simply given by Eq. (10) and DSE = DS = DE. This means that the finite crack extension is
constant, i.e. it is not a function of the crack length a.

4. Three point bending tests

In this section the FFM criteria (4)–(6) as well as the coupled criterion (12) are applied to the strength pre-
diction of Three Point Bending (TPB) tests. We chose this kind of test because the stress and energy criteria
provide, for small specimen sizes, strongly different results.

4.1. TPB tests of un-notched specimens

We begin by considering un-notched specimens, i.e. a = 0 (see Fig. 3). We assume the slenderness ratio l/b
to be constant and equal to 4, l being the beam length and b its height.

As is well known, experimental data on brittle and quasi-brittle materials show an increasing strength with
diminishing structural size. Therefore, the simple stress criterion (1) fails in predicting this result, whereas the
FFM criteria may not.
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According to simple beam theory, the stress field over the path the crack will follow, i.e. the x axis (see
Fig. 3) is linear, given by
ry ¼ rS0ðx=bÞ ð13Þ
where r = 6P/bd is the maximum stress in the y direction (d being the beam thickness), reached at the bottom
of the beam middle section, and S0 is the linear function:
S0ðtÞ ¼ 1� 2t ð14Þ
Here the subscript zero refers to the value of the relative crack depth a = a/b. Henceforth, t represents a dum-
my variable used for integration.

The stress-intensity factor function for cracked beams loaded in this way is not known precisely, but an
analytical expression with errors less than 0.5% for any value of a is available in the stress-intensity factor
handbooks:
KI ¼ r
ffiffiffiffiffiffi
pa
p

F ða=bÞ ð15Þ

Here function F is given by (l/b = 4):
F ðtÞ ¼ 1ffiffiffi
p
p 1:99� tð1� tÞð2:15� 3:93t þ 2:7t2Þ

ð1þ 2tÞð1� tÞ3=2
ð16Þ
Using the stress criterion, we substitute the stress field (13) into Eq. (4). This gives:
rf

ru

¼ b
b� 1

ð17Þ
Here rf is the value of the maximum stress r at failure (i.e. the apparent tensile strength) and b is the dimen-
sionless structural size defined as the ratio between the beam height b and DS. Eq. (17) is plotted in Fig. 4. It
provides a failure stress rf equal to the tensile strength only for very large sizes. For smaller sizes, an increase
of the strength is predicted, which is consistent with experimental data and with the cohesive crack model pre-
dictions [24]. On the other hand, the stress criterion predicts an infinite strength as the beam height equals DS

(i.e. b! 1), since the resultant of the stresses along the whole beam ligament is zero. This result is obviously
not confirmed by experiments.

To apply the energy criterion, we substitute Eq. (15) into Eq. (6), giving
rf

ru

¼ 1

cb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
R 1=bc2

0
tF 2ðtÞdt

q ð18Þ
where b is defined as above for the sake of comparison with Eq. (17) and c is equal to 1.122 as prescribed by
Eq. (7) when dealing with edge cracks. The integral in Eq. (18) can be solved analytically; nevertheless, for the
sake of clarity, we leave it symbolically since its closed form is rather long.
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Eq. (18) is plotted in Fig. 4. As with the stress criterion, so also the energy criterion provides a failure stress
equal to the tensile strength only for very large sizes. For smaller sizes, an increase of the strength is predicted,
consistent with experimental data. However, the energy criterion differs from the stress criterion in that it pre-
dicts a null strength as the beam height equals DE (i.e. b! 1/c2 = 0.794), since the energy available at constant
load is infinite in such a case. Again, this result is obviously not confirmed by experiments.

The coupled criterion (12) is able to overcome the drawbacks shown by the FFM criteria (4)–(6). Firstly, we
have to substitute Eqs. (13) and (15) in the system (12). Then, in order to get an equation in a unique
unknown, we can raise the second equation to the square and take the ratio side by side so as to eliminate
the failure stress rf, giving:
R DSE

0
paF 2ða=bÞdaR DSE

0
S0ðx=bÞdx

h i2
¼ K2

Ic

r2
uDSE

ð19Þ
Introducing, as well as b = b/DS, the dimensionless variable e = DSE/b, Eq. (19) becomes
2eb
Z e

0

tF 2ðtÞdt ¼
Z e

0

S0ðtÞdt
� �2

ð20Þ
where the unknown is the variable e. Eq. (20) can be solved numerically: the solution changes with the value of
b, the structural size. Once e is computed, the graph of the dimensionless finite crack extension d = DSE/DS vs.
the dimensionless structural size b can be easily plotted (Fig. 5). The large dots represent the b values Eq. (20)
is solved for; the curve is obtained by cubic spline interpolation.

Observing Fig. 5, it is seen that, for large sizes, d! 1/c2, i.e. DSE tends to the constant value DE. On the
other hand, for small sizes, d � b, i.e. DSE tends to cover the whole ligament b. However, the value of DSE

is always smaller than the beam ligament for any structural size. In other words, Fig. 5 shows clearly that,
according to the coupled criterion (12) and differently from the FFM criteria (4)–(6), the finite crack extension
is not a material constant: we can refer to it as a structural parameter, a function of material strength and
toughness as well as of structural geometry and size. Interpreting it as a fracture process zone, it means that
this zone scales along with the size only for small structures, while, at large sizes, it tends to a constant value.
Note that this feature is shared by the cohesive crack model, since it also provides a process zone covering the
whole ligament for small structural sizes [24]. On the other hand, the cohesive crack model provides a finite
value for the apparent tensile strength rf at small sizes, in contrast with the prediction of the present criterion,
as shown below.

Once e is computed from Eq. (20), the failure stress can be deduced from one of the two Eq. (12). Choosing
the first one, for the sake of simplicity, we obtain
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rf

ru

¼ eR e
0

S0ðtÞdt
¼ b

b� d
ð21Þ
Eq. (21) is plotted in Fig. 4 together with Eqs. (17) and (18). They represent the size effect upon strength
according to the different criteria. It is clear that all of them show the same trend for large size. On the other
hand, the behaviour is very different for small specimen size. The position of the vertical asymptote changes,
being at the origin only for the coupled criterion (12). Even more interesting, the same graph can be drawn in a
bi-logarithmic plot (Fig. 6), where the different behaviour at small scales can be better appreciated: the coupled
criterion (12) provides a straight line with a slope equal to �1/4. In other words, the failure stress increases
with decreasing structural size as b�1/4.

The present criterion predicts the same trend as the Multi-Fractal Scaling Law (MFSL) proposed in pre-
vious works by Carpinteri et al. [25]:
rf ¼ ru 1þ lch

b

� �1=2

ð22Þ
here written according to the symbols used in the present work. lch is a material characteristic length. Both the
coupled criterion (12) and the MFSL (22) provide a flat asymptote at large scales and a slant one at small
scales in the bi-logarithmic plot. The following consideration can explain the main difference, i.e. the slope
at small scales, equal to 1/2 for the MFSL and to 1/4 for the present model. The MFSL derives from a self
similar flaw distribution (and therefore describes a statistical size effect, particularly suitable for materials with
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ed by simple stress and energy FFM criteria.
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heterogeneous microstructure) whereas the criterion (12) provides a size effect because of the presence of a
stress gradient (a deterministic size effect). From this point of view, the higher slope of the MFSL at small
scales is to be expected, since it includes also the effect of the flaw distribution inside the material.

Furthermore, the size effect presented here is valid only for the TPB geometry. The criterion (12) does not
provide any size effect if there is no stress gradient, in the same way as the cohesive crack model. On the other
hand, the scaling provided by the MFSL is much more general and able to catch the size effect, experimentally
verified, in direct tension tests, i.e. when the stress distribution over the ligament is uniform.

4.2. TPB tests of notched specimens

By a further effort, the coupled criterion (12) can be applied also to the strength prediction of notched TPB
specimens. The main difficulty is due to the fact that only the asymptotic stress field in front of the crack tip is
known analytically, whereas we require the whole stress field along the ligament. Therefore we performed a
finite element analysis for a range of relative crack depths a = a/b and obtained the stress function Sa by inter-
polation. The subscript a reminds us that the stress function changes with a:
Fig. 7.
scales
ry ¼ rSaðx=bÞ ð23Þ

Note that now x = 0 corresponds to the crack tip. Proceeding as in the previous section, we obtain the fol-

lowing equation in the unknown e:
2eb
Z aþe

a
tF 2ðtÞdt ¼

Z e

0

SaðtÞdt
� �2

ð24Þ
Note that Eq. (24) is a generalization of Eq. (20), since it can be obtained by letting a = 0 in Eq. (24). Fixing
the two parameters a and b, e can be computed. Hence, the failure stress can be deduced from the first equa-
tion of the system (12) as follows:
rf

ru

¼ eR e
0

SaðtÞdt
ð25Þ
The results are plotted in the bi-logarithmic graph of Fig. 7, where the dimensionless strength vs. the dimen-
sionless size is drawn for different values of the relative crack depth. It is seen that, at small sizes, all the curves
show the same slope 1/4 valid for un-notched structures. On the other hand the behaviour at large size is
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completely different: the un-notched structure strength tends to a constant value (the tensile strength ru)
whereas the notched structure strength decreases with the 1/2 LEFM slope. For the sake of clarity, in
Fig. 7 we did not draw the predictions based upon the FFM criteria (4)–(6), since they provide the same draw-
backs shown above for un-notched specimens.

Observing Fig. 7, it is interesting to point out that the coupled criterion (12) is able to catch the concave–
convex transition when passing from notched to un-notched specimens in the log-log plot. While for the
notched structures the slope increases from 1/4 to 1/2 (in absolute value), for the un-notched structures it
decreases from 1/4 to 0.

A comparison can be made between this analysis and the Size Effect Law (SEL) proposed by Bažant [26]:
Fig. 8.
strengt
rf ¼ r0 1þ b
b0

� ��1=2

ð26Þ
here written according to the symbols used in the present work: b0 is the so-called transitional size and r0 the
strength for vanishing size of a given geometry. The comparison is allowable because, differently from the
MFSL, both the present approach and the SEL do not take into account the statistical flaw size distribution
inside material microstructure: therefore, they are not able to predict any size effect if there is no stress gra-
dient. In other words, they deal only with the deterministic size effect.

The main difference is in the small scale behaviour. Unlike the present approach, because of different
assumptions in the two models, the SEL provides a constant value (once the relative crack depth is fixed)
for vanishing structural size. On the other side, the large scale behaviour is substantially the same. This result
should have been expected since the SEL was firstly derived by truncating the Taylor expansion of the equiv-
alent LEFM criterion – the point-wise counterpart of Eq. (6) – at large scales. On the other hand, at the same
scales, the present approach coincides with the energy criterion (6), since D tends to the constant value (7), as
shown in Fig. 5.

5. Comparison with experimental data

In order to have a feedback for the proposed model, we present a comparison with the data obtained
by Karihaloo [27]. He tested TPB high strength concrete specimens of various sizes and with different relative
crack depths. The slenderness l/b and the thickness d were kept constant and equal respectively to 4 and 10 cm.
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His data are plotted in Fig. 8 together with the predictions of the coupled FFM model. The values of the ten-
sile strength and of the fracture toughness were determined by a best fit procedure: we found 8.27 MPa for
strength and 1.52 MPa

p
m for toughness. As expected, these values are a lower bound among the apparent

tensile strengths of un-notched specimens (8.28 MPa being the minimum value) and an upper bound for
the apparent fracture toughness of notched specimens (1.48 MPa

p
m being its maximum value).

It can be seen from Fig. 8 that the predictive accuracy of the coupled criterion is very good. In the paper by
Karihaloo [27], the same data are fitted using the MFSL, the SEL and a general law proposed by Karihaloo
himself. A great advantage of the present approach is that only two parameters are needed to fit all the data,
whereas the parameters of the other laws have to be determined for each relative crack depth. Furthermore,
while the parameters of the SEL as well as the ones of the MFSL are mainly empirical constants, the two best
fit parameters of the present criterion show a clear physical meaning, being the tensile strength and the fracture
toughness. This feature is shared by the cohesive crack model (see, for a review, [28]), which, however, requires
a specific computer code in order to be implemented. As a drawback, it should be highlighted that the results
presented herein are restricted to the TPB geometry. Applications to other shapes would require suitable solu-
tions of the system (12), which can be obtained either analytically or numerically. Further comparisons are
also needed in order to validate the present approach.

Finally, it is interesting to observe that, analysing only the data relative to the un-notched specimens and
using the coupled criterion (in this case, Eqs. (20) and (21)), the best fit procedure provides a fracture tough-
ness equal to 1.50 MPa

p
m. This value is very close to the one obtained applying LEFM to the large notched

specimens (1.48 MPa
p

m). In other words, the method presented herein is able to provide the fracture tough-
ness using test data from un-notched specimens, as long as the range of specimen sizes is broad enough. This
implies that the mechanism of fracture is the same, whether or not a pre-crack is present.

6. Conclusions

In the present paper, we introduced a new failure criterion. It was obtained by coupling the stress and
energy finite fracture mechanics approaches and allowing the finite crack extensions to vary according to
the specific geometry and loading.

A preliminary discussion of the two starting criteria has been provided. The stress method is a well-known
criterion. On the other hand, the energy approach has been introduced more recently: it relies on the assump-
tion of a crack growth by finite steps. However, using a constant value for the interval over which the stress is
averaged or for the crack advance, means that one of the two criteria will be violated.

On the other hand, removing the hypothesis of a constant crack advance, it is possible to formulate a cou-
pled FFM criterion that is consistent with both the energetic and stress criteria. In order to check its sound-
ness, we performed a comparison with experimental data on high strength concrete three point bending
specimens of different sizes. We showed that the coupled model is able to catch the size effect in quasi brittle
material structures and, particularly, the concave–convex transition in the bi-logarithmic plot when passing
from un-notched to notched specimens. Furthermore, for the sake of completeness, we provided a brief com-
parison with general size effect laws available in the literature.

We believe that the different FFM theories reviewed in the present paper (stress, energy, coupled criterion
as well as their point-wise counterparts), which are based on the presence of an internal length, should be rel-
evant to different mechanisms of failure. As a consequence, the most suitable fracture criterion could change
from case to case. Further efforts are therefore required to link these theories to the real failure mechanisms.
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