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Prey Impact Localization Enabled by Material and Structural
Interaction in Spider Orb Webs

Vinícius F. Dal Poggetto,* Federico Bosia, Gabriele Greco, and Nicola M. Pugno*

Spider webs are mechanical systems able to deliver an outstanding
compromise between distinct requirements such as absorbing impacts and
transmitting information about vibration sources. Both the frequency
information and amplitude of input signals can be used by the spider to
identify stimuli, aided by the mechanical filtering properties of orb webs. In
this work, a numerical model based on nonlinear stress–strain constitutive
relations for spider silk is introduced to investigate how the spider orb web
allows spiders to detect and localize prey impacts. The obtained results
indicate how the orb web center relative transverse displacements, produced
by local resonance mechanisms, are used for precise localization, while
nonlinear stress stiffening effects improve prey sensing. Finally, it is also
shown that, although beneficial, a large number of radial threads may not be
necessary for prey localization.

1. Introduction

Spiders are remarkable for the extraordinary use they make of
silks and webs to obtain information about prey location, the
presence of potential predators, and as channels to communi-
cate with other spiders.[1,2] Distinct spider web geometries in-
clude the vertical orb web, funnel web, sheet web, and tan-
gle web.[3,4] Spider orb webs are the product of evolutionary
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adaptation, and are able to deliver a com-
promise between different requirements,
such as absorbing the impacts of prey
while also efficiently transmitting informa-
tion about the nature and position of vi-
bration sources,[5] which the spider uses
in addition to visual and olfactory informa-
tion. Spider orb webs have proven to be
one of the most inspiring systems to design
novel structures able to manipulate elastic
waves,[6–9] which further encourages the in-
vestigation of their complex mechanics.
Here, we consider a simple vertical orb

web model constituted by radial threads,
connecting the center of the web (hub)
to the outer region (frame), and viscid
threads (spiral) connecting adjacent ra-
dial threads.[10] These silk threads have

distinctmechanical properties: radial (mainly composed ofmajor
ampullate silk) threads are known for high toughness and ten-
sile strength, with higher Young’s modulus and diameters, while
spiral (flagelliform silk coated with aggregate glue, which makes
them viscid) threads are known for their large ultimate strain, but
have smaller Young’s modulus and diameters.[11–13]

Radial threads are the most important vibration-transmitting
elements, which also absorb most of the kinetic energy,[14] while
spiral threads ensure that the prey remains in contact with
the web, covering a wide catching area and coupling radial
threads. Radial threads can undergo several types of motion, dis-
tinguished between i) transverse motion (perpendicular to the
thread and the plane of the web) ii) lateral (perpendicular to the
thread and in the plane of the web), and iii) longitudinal (along
the thread axis).[5]

The frequency response in spider orb webs can present rather
intricate characteristics, and some of them are summarized
in[15–17]: i) longitudinal waves transmitted by radial threads have
an attenuation of about 0.2 to 0.3 dB cm−1, being 5 to 10 times
smaller in wavelength than transverse and lateral waves; ii) oscil-
lations caused by insect impacts contain most of the energy cen-
tered around 100 Hz; iii) peaks between 5 and 50 Hz are typical
of struggling insects due to leg movement; iv) fluttering bees and
flies produce peaks between 100 and 300 Hz; v) wind-induced vi-
brations are considerably lower in frequency (below 10 Hz); vi)
both frequency and amplitude can be used to identify stimuli;
vii) the gradient of signal amplitudes between the various threads
can be used (20 to 30 dB), since viii) the differences in time of ar-
rival at distinct threadsmay be too short (≈1ms) to be noticeable.
These characteristics suggest that spider orb webs have evolved
to act as mechanical structures that present unique wave trans-
mission and filtering abilities.[18]
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Figure 1. Process of assembly and stabilization of radial and spiral threads. The initial structure is assembled considering equally prestressed radial
threads ( ), connected to each other through their inner edges and restricted at their outer edges. a) The whole structure is circumscribed in a circle of
radius Rmax, with each of the n𝜙 radial threads apart from each other by an angle Δ𝜙 = 2𝜋∕n𝜙. b) After applying a stabilization process to accommodate
the pretensioned structure, ns spiral threads ( ) are disposed using an Archimedean spiral (R(𝜙) = 𝛼𝜙) and gluing elements ( ) are included. c)
Gluing elements are used to connect spiral and radial threads when their distances are smaller than a given threshold. d) Due to initial stresses at spiral
elements, an additional stabilization process is needed, leading to the stable final shape.

Another interesting feature that is indicative of spider adap-
tation is pre-stress, which can be adjusted to facilitate the sens-
ing of smaller prey.[19] The study conducted by Mortimer et al.[20]

using truss elements to reproduce the cable-like behavior of spi-
der silk indicates that the prestress of radial threads can have
significant effects on the sonic properties of webs. This can be
partially explained by the fact that distinct waves speeds are gov-
erned by distinct mechanisms (transverse wave by string ten-
sion and mass density, and longitudinal waves by mass den-
sity and stiffness,[21] which is a physical behavior associated with
wave propagation in strings, as we also demonstrate later). Also,
Wirth and Barth[22] have demonstrated that radial thread pre-
stress increases with the mass of the spider, considering both
spiders of the same species and of different species, thus in-
dicating this is a generally observed phenomena in spider orb
webs. Although other phenomena such as supercontraction may
play a major role in silk behavior,[23,24] we shall restrict our
attention to radial and spiral threads with fixed stress–strain
curves.
Kaewunruen et al. [25] proposed a numerical model to evaluate

the natural frequencies and mode shapes of different spider orb
web configurations. However, the same material properties were
considered for both radial and spiral threads, and the spidermass
was not accounted for in the analysis, which certainly has amajor
influence on the vibration response of the spider orb web.
In this work, we derive a simple model for an orb web to allow

the investigation, using a wave propagation approach, on how
prey-induced vibrations can be perceived at the orb web center.
Considering energy conservation principles, this is implemented
in a finite element (FE)method framework to performboth linear
and nonlinear vibration analyses. In particular, it is possible to
compute vibration modes and time-transient vibrations induced
by prey impact.

2. Models and Methods

Without loss of generality, we will consider a common European
spider species (Araneus diadematus) to obtain typical geometric

and mass values to properly represent a spider web model. Even
though this spider’s orb web may present geometric asymme-
try with respect to its center (hub),[26] we will consider here a
structure with symmetric radial threads and almost symmetric
(see below) spiral threads, so the implications of geometric asym-
metry is not considered in the assessment of other effects. The
model of the spider orb web is constructed using radial and spi-
ral elements and the corresponding properties of dragline and
viscid threads, respectively, with 1D elements connecting spe-
cific points (nodes). The web construction process is shown in
Figure 1.
The geometric configuration of the spider orb web of radius

Rmax is initially modeled by n𝜙 pretensioned radial threads (red
lines in Figure 1a), with angular distances Δ𝜙 = 2𝜋∕n𝜙 and con-
nected to each other at the orb web center (hub). Although sym-
metry has been shown to influence the spider’s time of response,
we consider it here as a simplifying hypothesis.[27]

To account for the position of the spider at the hub, nodes
at this region are equidistant from the geometric center of the
orb web, using a distance considered here as the representative
size of a spider, given by Lspider. Due to the residual forces gener-
ated by prestressing, additional displacements may be required
to produce the corresponding strain and stress configuration that
yields equilibrium.
After stabilization, spiral threads are included in the model,

connected to the radial threads using gluing elements (spiral
threads in blue and gluing elements in yellow in Figure 1b).
Gluing elements are considered to have the same character-
istics of viscid silk, only serving to provide connections be-
tween radial and spiral threads, which is a simplifying hypoth-
esis. Its actual behavior can be much more complex, as demon-
strated by Greco et al.,[13,28] and may also be associated with prey
retention.[29]

The superposed spiral has an angle-varying radius R(𝜙), ob-
tained using an Archimedean spiral in the form

R(𝜙) = 𝛼 𝜙 (1)
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Figure 2. Stress–strain relations for ( ) dragline and ( ) viscid silk
threads.

where 𝛼 is a parameter defined according to the desired number
of spirals ns, given by

𝛼 =
Rmax

ns 2𝜋
(2)

which yields 𝜙 ∈ [0, ns2𝜋].
Gluing elements are created by checking, for each of the spi-

ral nodes, which is the closest of the radial thread nodes, and
if the distance between such nodes is smaller than a given toler-
ance, resulting in typically two connections per crossing between
radial and spiral threads (Figure 1c). Once all elements are con-
nected, the structure is once again stabilized with respect to in-
ternal forces now accounting for initial prestressing due to ten-
sioned spiral threads, resulting in the typical final structure (Fig-
ure 1d).
Although some species use a specific signal thread and do

not reside at the center of the orb web,[30] we will restrict our-
selves to species exploiting wave transmission in the web. As al-
ready pointed out by Mortimer et al.,[31] the presence in the spi-
der orb web of the spider mass itself greatly influences vibration
transmission. For this reason, we also consider that, for a given
spider mass mspider, each of the innermost nodes of the radial
threads is loaded with an additional mass equal to mspider∕n𝜙.
Even though the weight of a spider may greatly vary during its
lifespan,[32] it is also true that larger spiders usually producer
fibers with larger dimensions, which indicates a balance between
these quantities.[33–35] Thus here a typical value is considered for
the purpose of modeling.
Typical nonlinear stress–strain relations for the dragline and

viscid threads are illustrated in Figure 2. Both stress–strain rela-
tions are numerically described in Supporting Information using
the empirically parameterized data from.[10]

In the considered relations, the dragline silk stress–strain
curve shows a relatively small linear region until yielding, fol-
lowed by an exponential stiffening, and a region with affine be-
havior until failure. The stress–strain relation for the viscid silk
thread displays a combination between linear and exponential be-
haviors.
Since the strain energy is dependent on the current stress

state of considered threads, which increase due to displacements
(displacement-induced strains and strain energy are derived in
Supporting Information), this yields intrinsically nonlinear rela-

tions for the analysis of wave propagation in this type of struc-
ture. Thus, ideally, linear analyses considering constant-stiffness
elements are only valid for very small input forces and may lose
their validity as elements present increasing stresses.
To assess the effect of increasing stresses and their influence

on wave propagation, two types of analyses are performed: i) lin-
ear and ii) nonlinear. In linear analyses i) stresses and strains
are computed for an initial configuration and the transitory time
analyses are performed considering no significant changes in el-
ement stresses. Nonlinear analyses ii) consider each material’s
stress–strain curve. Thus, the difference between fully linear and
nonlinear analyses is that in the latter, the computed displace-
ments induce additional stresses which have a stiffening effect
on the structure (stress stiffening), while in the former, this ef-
fect is negligible.
The derivation of mass and stiffness matrices (accounting for

both longitudinal stiffness and stress-induced stiffening effects)
necessary to perform time-dependent analyses is presented in
Supporting Information. The description of the iterative pro-
cesses for the structure stabilization due to residual internal
forces and for time-series computations is given in Support-
ing Information.
Since in this work we are only concerned with structure-

bourne vibrations (as opposed to vibrations associated with fluid
interactions[36–38]) and slit sensilla in spiders perform similar
functions as that of strain gauges,[39] acting as high-pass filters
to attenuate very low-frequency signals typical of environmental
noise,[40] it seems only natural to consider the outputs of our sim-
ulation as those perceived in the central region of the structure.
Due to the nonlinear nature in the constitutive relations of the
threads forming the orb web, when considering nonlinear anal-
yses, various input displacements must be tested to assess the
variation in the web response.

3. Results and Discussion

3.1. Parameters

For the construction of the spider orb web, we have consid-
ered an outer radius of Rmax = 200 mm, n𝜙 = 8 radial divisions,
and ns = 25 spiral turns. Radial and spiral threads have radii of
3.93 μm and 2.40 μm, respectively,[10] while the mass density is
the same for both, namely 𝜌 = 1300 kg m−3.[20] Although differ-
ences in the pre-stressing of radial threads may occur depend-
ing on their relation with the surrounding supporting structure,
these differences can be considered negligible when compared to
the overall stress values.[20] Thus, we consider equally prestressed
radial threads with two distinct levels: i) 100MPa and ii) 150MPa,
both representing states that occur before yielding. Spiral threads
have a single prestress of 10 MPa. Boundary conditions are im-
posed as zero displacements at the outer edges of radial threads
considering all directions. Regarding dimensions and mass of
the spider, since typical sizes of the Araneus diadematus also vary
greatly (ranging from 6.5 to 20 mm in females and 5.5 to 13 mm
in males,[41]) we will consider a representative value, given by
a typical length of Lspider = 10 mm, with a mass of mspider = 20
mg,[31] which is considerably larger than the webmass (0.49mg).
Figure 3 shows the spider orb web structures obtained after
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Figure 3. Stable structures (deformations due to initial stress are suited to yield equilibrium) for a) 100 and b) 150 MPa.

Figure 4. Modes of vibration and natural frequencies considering only the orb web and spider masses. Mode (a) is a transverse displacement mode;
modes (b) and (c) represent bending modes; mode (d) is a torsional mode; modes (e), (f), (i), and (j) are second order-like bending modes, and modes
(g) and (h) are in-plane translational modes. Colors indicate zero and maximum values of absolute displacements.

applying the stabilization procedures for balancing initial pre-
stresses. Although some variation in the final prestress of radial
threads can be observed, these differences are small.

3.2. Modal Analysis

Figure 4 presents the modes of vibration and natural frequen-
cies of a spider web considering a 100 MPa prestressing on ra-
dial threads prior to any given impact, that is, considering only
the structural properties and the spider mass equally distributed
at central nodes.
These vibration modes can be interpreted as transverse (15.8

Hz), bending (61.9 Hz), torsional (62.0 Hz), second-order bend-
ing (110.8, 111.0, 143.7, and 143.8 Hz), and in-plane modes
(113.3 Hz). The orb web is mainly responsible for the system
stiffness associated with the observed modes and frequencies,
since its inertia effects are negligible when compared to the spi-
der mass. It is interesting to notice that when considering the
first three modes, the highest frequency associated with out-

of-plane displacements is 61.9 Hz, yielding a fundamental pe-
riod of 16.2 ms, which indicates that input forces with a dura-
tion considerably smaller than this can be interpreted as short
pulses.
The main influence of the increase in prestressing of radial

threads (150 MPa) is a 23% increase in the natural frequency of
the transverse displacement mode and a 29% increase for bend-
ingmodes (both first and second order-like). In-planemodes also
present an increase in their natural frequencies, but since we
assume prey impact in the orthogonal direction to the orb web
plane, they probably do not play a part in prey location and are
not discussed here.
We now consider the presence of a prey such as a Drosophila

fly (0.2 mg, of the same order of magnitude as described in the
literature,[42] about 1% of the total mass of the spider) modeled
as a point mass added in distinct positions at spiral threads. This
mass is sufficiently small not to change significantly the pre-
viously observed modes of vibration and frequencies (smaller
than 0.06% variation for the first three natural frequencies).
However, the addition of this mass introduces additional modes
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Figure 5. Locally resonant out-of-plane transverse mode and frequencies due to prey impact. a) An example of prey location with its b) corresponding
locally resonant out-of-plane normal mode indicating a frequency of 28.8 Hz. Colors indicate zero and maximum values of absolute displacements. c)
Colormap indicating impact points with corresponding resonant frequencies on the orb web domain for a radial thread pre-stress of 100 MPa. d) Same
as (c), but with a prestress of 150 MPa.

corresponding to the displacement of the prey mass in the same
(longitudinal) and in the orthogonal (transverse) direction as the
spiral thread where it is located. Figure 5 shows a possible prey
location, the mode of vibration and natural frequency of the in-
troduced out-of-plane transverse mode for 100 MPa prestressed
radial threads. Following the same reasoning, we also construct
a map corresponding to the resonant frequencies associated with
the out-of-plane transverse mode due to the inclusion of prey
mass at each impact point separately, for both 100 and 150 MPa
pre-stressed radial threads.
Figure 5a shows an example of an impact position, that is, lo-

cation for the addition of prey mass, which introduces an addi-
tional out-of-plane transverse displacement vibration mode with
a natural frequency of 28.8 Hz, as shown in Figure 5b. The
map of resonant frequencies (Figure 5c) which shows that i)
the distribution of resonant frequencies is fairly regular con-
sidering each pair of adjacent radial threads, which is due to
the web symmetry; ii) the resonant frequency is minimal at
the center of each spiral thread and increases toward adjacent
radial threads; iii) for a fixed angular direction, resonant fre-
quencies increase for points closer to the orb web center, which
is explained by the smaller length of the corresponding spiral
thread.
When considering the influence of an increased value of pre-

stress for radial threads (150MPa, Figure 5d), themost notable ef-
fect is the increase of resonant frequencies at points in the vicin-

ity of radial threads. This indicates that radial threads correspond
to almost rigid structures when compared to the spiral threads,
mainly due to the higher stress levels of radial threads, repre-
senting little influence on the frequencies associated with local
behavior induced by prey impact.
Thus, one may conclude that, for each region between two

adjacent radial threads, the location of prey impact cannot be
completely determined using the resonant frequency alone. Also,
these results indicate a decoupling between the natural mode of
vibration that may be generated by wind (Figure 4a, circa 16 Hz)
and the frequency components associated with prey-induced vi-
bration (>20Hz), thus indicating robustness in prey detection.[43]

Since the resonant frequencies are also dependent on the spiral
thread stiffness and prey mass, this may possibly be used as an
indicative of the size of prey.[44]

3.3. Vibration Transmission

We now apply force input signals, modeled as the function

f (t) =

{
AH0(t) sin(𝜔0t), 0 ≤ t ≤ T0∕2
0, T0∕2 < t ≤ T

(3)

where 𝜔0 = 2𝜋f0 is the circular frequency of the signal with fun-
damental frequency f0, T0 = 1∕f0, H0(t) is a smoothing function
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Figure 6. Computed transverse displacements considering an impact on an orb web with 100 MPa prestressed radial threads. a) The displacements
of the input point resembles a damped mass-spring resonator. b) Output displacements present a similar behavior, with deviations with respect to
their mean value. c) Displacement maps taken at different time instants indicate a wave-like propagation starting from the impact point, with opposing
displacement signals at the region of the impact and the orb web center. d) Displacement maps relative to the orb web center. Color scale indicates
transverse displacements in 𝜇m.

(Hanning window, used for a smoother transition from the ini-
tial zero value) of length T0, and the constant A is defined so that
the signal reaches a predefined maximum value. The value of T
is chosen so as to allow a certain frequency resolution, given by
Δf = 1∕T .
For the computation of the following results, we consider a

fundamental frequency of f0 = 100 Hz (typical of insect impacts,
see Section 1) and a maximum value of 10 μN. The actual dura-
tion of the input signal is of 5 ms (T0 = 10 ms), which is con-
siderably smaller than the period of the first bending modes of
the spider orb web, and might thus be considered as an impulse
signal. Also, the frequency content of this input signal is approx-
imately zero for frequencies above 500 Hz.
For the case of linear vibration analyses, force inputs are ap-

plied at the same points (i.e., where prey masses are added) and
the displacement response at the orb web center (defined here
“output”) is computed using a 1000 ms observation window (res-
olution frequency of 1 Hz).

3.3.1. Prey Localization Mechanism

Let us now consider displacements computed in 100 MPa pre-
stressed radial threads, using a central impact point (represented
using a black dot in Figure 5a). The computed input and output
transverse displacements at the orb web center as a function of
time and of the whole orb web at chosen time instants are shown
in Figure 6.
The displacement of the input point, shown in Figure 6a,

presents a characteristic damped frequency and decays to the
equilibrium position, thus resembling a one degree-of-freedom
damped mass-spring resonator with a first peak occurring at
10.7 ms. The displacements of the output points, shown in Fig-
ure 6b (with a restricted window of 100 ms for easier visualiza-
tion) show their first peaks at≈ 27.0ms. The high speed of trans-
verse wave propagation (in this case, 88 m s−1 for spiral and 277
m s−1 for radial threads, see Supporting Information) makes dif-
ferences between different outputs small. Thus, to aid in their
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Table 1. Comparison with literature values.

Spider species Signal source Time from prey impact to first response [s] Ref.

Nephila clavipes Electromagnetic vibrator <0.040 [16]

Zygiella x-notata Electromagnetic vibrator <0.70 [17]

Nephila clavipes Electromagnetic vibrator <0.60 [17]

0.055 (control)

Leucauge mariana Drosophila melanogaster 0.117 (3 radii cut) [45]

0.177 (all but 5 radii cut)

Agallia novella 0.0 (unfed), 0.2 (fed)

Cyclosa turbinata Drosophila robusta 0.5 (unfed), 0.4 (fed) [44]

Sitotroga cerealella 0.1 (unfed), 0.5 (fed)

Araneus diadematus Drosophila sp. 0.027 (Proposed model)

interpretation, we also indicate the instantaneous output dis-
placement mean, uout(t), given by

uout(t) =
1
N

N∑
i=1

u(i)out(t) (4)

where u(i)out(t) is the out-of-plane displacement at the ith output
node, computed considering all N output points. The deviation
of the output points with respect to the instantaneous mean
presents an inversion in their relative positions at 22.2 ms, thus
indicating that the orb web center undergoes a wave-like move-
ment, whichmay be indicative of the kind of stimulus that allows
prey localization. This behavior is further analyzed considering
the instantaneous displacement maps shown in Figure 6, which
represents the orb web at a short time instant after the impact
(13.7 ms) and close to the initial maximum andminimum values
of the output displacements (30.2, 49.3, and 62.0 ms). Both the
asymmetric displacement field profile displayed by the orb web
and the opposite displacement signs between the impact region
and the orb web center indicate an overall flexural mechanism of
wave propagation.
It is also interesting to compare the time needed for vibrations

to reach the orb web center to the values obtained from the litera-
ture (Table 1). The time intervals between the prey impact (or vi-
bration caused by an electromagnetic source) and the first move-
ments of spider legs present a large variation and depend on the
spider species, the individual type of prey (or signal source), and
structural conditions of the web. As a means of comparison, we
consider the time that computed vibrations take to reach their
maximum (around 27 ms). Thus, the time interval needed for
information to reach the orb web center is in agreement with lit-
erature values, in particular.[16,45] It is important to note that this
value is smaller in our case since in reality a delay is expected be-
tween the vibrations perceived by the spider and its neuromotor
response, which is not considered in our numerical experiment.
Let us now restrict our investigation to the orb web center.

Thus, we analyze the variations of the orb web center displace-
ments with respect to their instantaneous mean value (u(i)out(t) −
uout(t), for each of the ith output nodes), as shown in Figure 6d.
Soon after the impact (15.9ms), the two radial threads adjacent to
the spiral thread where the impact has occurred have the largest

relative displacements, while the opposing two radial threads
have the smallest relative displacements, thus indicating the im-
pact direction. This behavior is observed in the following time
instants, although with a smaller magnitude.
The correlation between the prey location and the displace-

ments of the orb web center relative to its instantaneous mean
value suggests the development of a metric capable of quanti-
fying the improvement of prey sensitivity considering a given
orbweb configuration.We therefore define an energy-likemetric,
E(t), which quantifies the energy associated with the inclination
of the ith output node relative to the orb web center mean dis-
placement, defined by

Ei(t) = 𝜃2i (t) (5)

where Ei(t) is the metric associated with the ith output node, and
𝜃i(t) is the inclination of this node, given by

𝜃i(t) = tan−1

(
u(i)out(t) − uout(t)

Lspider

)
(6)

The normalization provided by the angularmetric removes the
contribution of the mean displacement, which presents no di-
rectional information (transverse mode in Figure 4a), while the
energetic metric provides an absolute value associated with vi-
bration energy in a given direction. Also, whenever output nodes
have a similar displacement (flat web center), in which case no
directional information is available, u(i)out(t) ≈ uout(t) for each i =
1,… , N, which leads to 𝜃i(t) ≈ 0 and Ei(t) ≈ 0. It is also impor-
tant to note that the energy is not computed in an overall sense,
as usually done in the literature, to account for the time-decay of
vibrations due to damping mechanisms,[14] but instead, a novel
metric designed to quantify a perceived level of energy at the orb
web center is adopted. These metrics are illustrated in Figure 7
and computed using data from Figure 6.
Figure 7a illustrates the normalized metric 𝜃i(t) computed

for the output displacements following the numbering conven-
tion depicted Figure 7b, whose representative plot is shown in
Figure 7c. These curves show a frequency close to 28.8 Hz,
which corresponds to the frequency of the locally resonant trans-
verse mode associated with the prey impact (see Figure 5b),
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Figure 7. Angular and energetic metrics. a) The angle 𝜃i(t) is computed for the ith output node considering its out-of-plane displacement u(i)out(t), the
mean output displacement uout(t) and the spider characteristic dimension Lspider. b) Orb web center (showing only radial threads) and output node
numbering. c) Angular metric 𝜃i(t) and d) energy metric Ei(t) computed for outputs points 1 through 8 e) Energy metric for output nodes at the time
instant corresponding to its maximum.

suggesting it is sufficient to provide its directional information,
acting as a continuous source of vibration, while the modes of
the web itself (Figure 4) probably do not play a major role in
this sense.
The energy metric Ei(t) is also computed and shown in Fig-

ure 7d. The energy distribution at the central nodes for the time
instant corresponding to its maximum value is shown in Fig-
ure 7e, indicating that the energy associated with the pair of out-
put nodes corresponding to the radial threads closest to the im-
pact region (4 and 5) present the largest values, while the oppos-
ing nodes (1 and 8) correspond to the two next largest values. We
also note that the energy metric consistently indicates the pair
of output nodes corresponding to the radial threads adjacent to
the impact region (E4(t) and E5(t) in Figure 7d), thus providing a
reliable indication for the source of vibration.
It is also interesting to notice that even though spiders possess

a very complex and well developed sensing system,[39,46] these re-
sults suggest that monitoring the orb web center is sufficient to
allow for the localization of prey. When considering only the two
most energetic nodes, the precision of localization is probably
limited by the spatial resolution of the orb web provided by the
number of radial threads, in which case a larger number of radial
threads provide a more accurate location.[16,45] This also indicates
that the proposed energy metric can probably be used in the in-
vestigation of other phenomena associated with wave propaga-
tion in orbwebs, which has not been done in the literature before.
Henceforth, the envelope (maximum) of this metric will be used
to quantify the perceived level of vibration at the orb web center.

3.3.2. Model Robustness

To assess the validity of the proposedmetrics for varying web con-
figurations, we perform the previous analyses considering orb
webs obtained by i) doubling the number of radial threads, ii)
doubling the radius of the orb web, and iii) increasing by 50%
the mass density of the threads. For case i) the mass of the spi-
der is considered distributed at every two nodes. The considered
models, the maximum of the energy metric, and the energy com-
puted for the output nodes at the time instant corresponding to
its maximum are shown in Figure 8.
For the spider orb web with an increased number of radi-

als (Figure 8a) the maximum of the energy metric (Figure 8b)
presents a decrease in its period, which is associated with the
shorter length of the spiral thread corresponding to the impact
position, leading to an increased stiffness and corresponding res-
onance frequency. The energy distribution at the orb web center
(Figure 8c) is still indicative of the direction of prey impact, also
confirming that an increase in the number of radial threads may
improve the localization accuracy.
For the spider orb web with a larger radius (Figure 8d), the

maximum of the energy metric (Figure 8e) practically maintains
its period, indicating that the frequency of vibration of the prey
does not change, while also increasing its amplitude, which can
be explained by a reduction in the stiffness of the orb web cen-
ter, since it is now connected to longer radial threads. The corre-
spondingmaximum of the energy metric is shown for the output
nodes (Figure 8f), correctly indicating the prey direction.
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Figure 8. Computed results for varying orb web configurations. a) Orb web with increased number of radials, b) maximum of the energy metric, and
c) corresponding energy computed at output nodes for web configuration in (a). d) Orb web with larger radius, e) maximum of the energy metric, and
f) corresponding energy computed at output nodes for (d). For the case of threads with increased mass density, only the g) maximum of the energy
metric and h) corresponding energy computed at output nodes are shown. In each case, the computed energy at the output nodes at the orb web center
consistently indicate the prey impact position.

For the case of threads with an increased mass density, the
maximum of the energy metric (Figure 8g) presents only neg-
ligible changes, which are associated with the decrease in the
resonance frequency and rotation of the orb web center due to
the increase in mass. The corresponding energy computed at the
output nodes presents no noticeable changes (Figure 8h). Thus,
these results show that the energy metric can be used with dif-
ferent spider orb web configurations to consistently indicate the
location of prey vibration.

3.3.3. Angular Impact Point Variation

We now investigate the effects of varying the impact positions
along a single spiral thread, starting from its central position and

approaching one of its adjacent radial threads (Figure 9a) consid-
ering radial threads prestressed with 100 MPa.
Figure 9b shows an increase in the resonant frequencies (25–

50 Hz region) of the local modes (as previously shown in Fig-
ure 5c) and a negligible effect on the first natural mode (15.8 Hz),
which in fact does not aid in prey localization. Figure 9c shows
that the energy computed at output nodes presents a noticeable
increase for the input point CLK2, thus indicating that prey sensi-
tivity is significantly improved near radial threads. This, in turn,
again justifies that an increased number of radial threads may
by highly beneficial to increase the orb web’s efficiency in prey
localization and retention. Also, distinct oscillation periods are
associated with the corresponding locally resonant frequencies.
Figure 9d,f show the orb web transverse displacements fol-

lowing the impact at the points indicated by the black dots. The
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Figure 9. Effects of varying impact positions on a spiral thread. a) Input points are labeled as ( ) central, ( ) CLK1, and ( ) CLK2. b) Frequency com-
ponents of the output displacements show an increase in the resonant frequencies as the impact point approaches a connecting radial thread. c) The
maximum energy computed at output nodes increases significantly closer to the radial threads. d) Transverse displacements of the orb web and e)
energy computed at output nodes for impact position CLK1. f,g) Same as (d) and (e) for impact point CLK2.

variation of the impact point creates an asymmetric displacement
profile involving the center of the corresponding spiral thread,
thus suggesting it may be used by the spider to localize prey. Fig-
ure 9e,g show that the energy-like metric is able to capture the
uneven energy distribution between output nodes even for slight
changes in the impact positions, indicating that the output node
corresponding to the radial thread closer to the impact contains
most energy, followed by its corresponding opposing node.

3.3.4. Radial Impact Point Variation

Figure 10 presents the results computed considering impact
points varying radially with 100 MPa prestressed radial threads.
Figure 10a indicates the considered impact points, varying in

the radial direction. Figure 10b shows the additional resonance
peaks introduced by local resonances (see Figure 5c) in the 25–
50 Hz frequency range, which also implies an increase in their
intensities, as also shown in Figure 10c considering the energy
at the output nodes. Apart from the differences in intensities, no
distinguishable features are noticed at the orb web center follow-
ing the initial impact (Figure 10d,e).

It is interesting to notice that although local resonance mecha-
nisms are a recurring feature in nature which may allow the dis-
crimination between input signals,[47] our results indicate that
frequency information alone cannot be used as a single source
of information for position sensing, since an increase in the fre-
quency of vibration may occur due to approximating i) an adja-
cent radial thread (along a spiral thread) or ii) the orb web center
(along the radial orientation). Once again, these results indicate
that an increased number of radial threads is beneficial for local-
izing prey, since it improves the orb web spatial resolution and
consequently the likeliness of a radial thread being struck, thus
leading the spider directly to prey.[45]

3.3.5. Stress Increase

Next, we briefly discuss the influence of the increased value of
pre-stress in radial threads (150 MPa). Our results (not shown
here for the sake of brevity) indicate that this increase has no
detrimental effect on the frequency sensitivity of output displace-
ments, while a shift in resonant frequencies not associated with
the locally resonant vibration is also observed, which is due to the
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Figure 10. Effects of varying impact positions in the radial direction. a) Input points are labeled as ( ) RDI, ( ) central, and ( ) RDO. b) Frequency
components of the output displacements show an increase in the resonant frequencies as the impact point approaches the orb web center. c) The
maximum energy following the impact decreases as the impact points is located farther from the orb web center. The energy distributions at the output
nodes d) RDI and e) RDO present no distinguishable features apart from absolute values.

increase in the system stiffness. This increase in stiffness also
leads to a smaller level of relative displacements at the orb web
center, thus implying a smaller level of energy according to our
proposed metric, but also a smaller time delay needed to reach
the peak value. The increase in the speed of transverse waves
increases is caused by the increase in stresses (see Supporting
Information), which may be important for the spider’s overall
preying behavior. This is also supported by the fact that differ-
ent mechanisms may take place in tuning the threads stresses,
such as supercontraction.[24]

3.3.6. Influence of Mooring Threads

Our current spider orb web model considers rigid connections at
the outer edges of radial threads. However, the presence of moor-
ing and frame threads is a common trait that nearly always breaks
the geometrical symmetry in real orb webs and has been shown
to have a fundamental role in their structural behavior.[48]

As the design of these framing structures may greatly vary,
here we present results obtained considering a simple model as
an octagon in which the initial Archimedean spiral is inscribed,
connected to four anchoring nodes. Each vertex of the initial oc-
tagon and anchoring nodes are then shifted in both x and y di-
rections according to a random variable distribution in the range
[0, 50] mm, while the spiral is limited to the shortest connec-
tion between the radials and the framing threads, as shown in
Figure 11a. The frame and mooring threads (shown in green
in the figure) have the same material properties as the radial
threads, but with a radius of 5.0 μm.[20] The natural modes cor-
responding to the transverse displacement and bending modes
(see Figure 4), the energy metric computed at the output

nodes, and its representation at maxima points are shown in
Figure 11.
The inclusion of mooring and frame threads can significantly

change both the mode shapes and resonant frequencies of the
orb web, most notably leading to the breaking of symmetry
when considering the bending modes resonant frequencies (Fig-
ure 11b–d). However, the resonant mode and frequency associ-
ated with the prey vibration remains practically unchanged (Fig-
ure 11e). Likewise, the use of the energy metric (Figure 11f) is
still able to identify the prey direction, since the output node 4
is the most energetic, while its adjacent node 5 is more ener-
getic than node 3, which is also illustrated at the output nodes
at the time instant corresponding to the maximum energy (Fig-
ure 11g,h). This suggests that the proposed metric is proba-
bly unaffected by variations in the attachment conditions of
the orb web, due to its locally resonant mechanism, mainly in-
fluenced by the local stiffness and mass characteristics of the
spiral thread where the prey is located and its adjacent radial
threads.

3.3.7. Nonlinearity Effects

Wenow investigate the effects of nonlinearmaterial properties in
wave propagation considering varying input force intensities. We
consider the same central impact point indicated in Figure 5a, re-
stricting our analysis to a 50ms time window to assess the effects
of the increase of amplitude. The computedmaximum input dis-
placements for 10, 500, and 1000 μN are, respectively, 0.53, 24.7,
and 44.3 mm, thus indicating the effects of nonlinearity.
The energy computed at the orb web center outputs (with the

angular metric 𝜃(t) normalized to account for each input value,
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Figure 11. Results computed considering a simple model for mooring threads. a) Orb web including mooring and frame threads (green lines). The
transverse displacement and bending vibration modes considering the orb web and spider mass b,c,d) presents a large variation when compared to
the configuration without mooring threads, while e) the resonant mode associated with the inclusion of prey does not change significantly. The energy
metric f) is consistent in indicating the prey location, which is also shown for the output nodes at the first two time instants that present g,h) maximum
energy.

Figure 12. Effects of material nonlinearity. a) The effects of nonlinearity on the energy at the orb web center output nodes substantially increase for
sufficiently large force values. b) For sufficiently large force values, the frequency response presents a larger decrease up to 120 Hz, after which it
maintains a relatively uniform response up to 500 Hz.

that is, 1∕50 for the 500 μN and 1∕100 for the 1000 μN in-
put forces) and the displacement transmissibility (TR(𝜔), com-
puted considering the frequency components of the mean out-
put displacements, ûout(𝜔), and input displacements, ûin(𝜔), as
TR(𝜔) = ûout(𝜔)∕ûin(𝜔)) are shown in Figure 12.
Figure 12a shows that the nonlinear material behavior can

both proportionally increase the energy at the orb web center out-
put nodes and decrease the time to peak response, thus providing
a twofold positive effect and improve the prey sensing behavior.
Also, it is possible to notice a change in the orb web filtering ca-
pability, as shown in Figure 12b. The increase in the input force
produces a monotonic decrease up to 120 Hz, while above 140
Hz, the response remains somewhat constant. It also shows an
enhancement in frequencies below 40Hz, thus indicating an im-
provement in sensitivity at lower frequencies, which are associ-
ated with prey vibration local resonances (see Figure 5). The lo-
cations of prey impacts associated to lower resonant frequencies
also have lower output energies at the orb web center (see Fig-
ures 9 and 10). Thus, the resulting transmissibility curve also sug-

gests the enhancing of sensitivity at frequencies which present
lower energy output.

3.4. Prey Location Estimation

The question of whether the prey direction can be properly es-
timated by the spider using instantaneous information obtained
from the vibration at the orb web center is fundamental.[16] It is
important to note that vibration sensing is only one of the prey
localization methods employed by spiders since several other
senses such as high angular vision[49] and olfaction[50] are also
used, thus creating amulti-sensory prey detection system. To this
end, we propose ametric to estimate the direction of the vibration
source due to prey impact. We denote such metric by 𝜓 , which is
given by

𝜓(t) =
Ep(t)𝜓p + Eq(t)𝜓q

Ep(t) + Eq(t)
(7)
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Figure 13. Quantities used in prey location estimation. a) Sections defined
as regions between two adjacent output nodes and their corresponding
radial threads. b) Heading angle associated with the ith output node, 𝜓i,
and estimated heading angle, 𝜓 .

where𝜓i andEi(t) are the heading angle and the energy (see Equa-
tion (5)) of the ith output node. Indexes p and q are the ones that
maximize the energy-like function given by

Sij(t) = Ei(t) + Ej(t) (8)

which represents the combined energy of output nodes at the orb
web center, thus indicating the region whichmost likely contains
the source of energy. Such concepts are illustrated in Figure 13.
Although some time intervals may present small levels of overall
computed output energy (instants with 𝜃 very close to zero, see
Figure 7c,d), soon after the impact the output energy presents
considerable levels, which makes it a reliable metric.
The results computed using the direction estimation metric

given in Equation (7) considering different impact positions (Fig-
ures 9a and 10a) are shown in Figure 14 restricted to 0–50 ms for
better visualization. We also present the maximum of the energy
per section (metric given in Equation (8)) and the relative errors
between the estimated direction and the actual prey location di-
rection.

Figure 14 shows that the proposed metric is consistent in es-
timating the actual direction of prey impact. The metric fails at
very small values of output node energies, which indicate almost
zero differences in transverse displacements at the orb web cen-
ter and therefore present no relevant directional information. In
the remaining time intervals, the error in the estimated angles is
generally kept below 5%. The worst result is observed for an im-
pact point very close to a radial thread, which implies in a source
of vibration with a higher frequency, thus yielding a larger num-
ber of time intervals with small energy levels.
These results suggest that even with a small number of ra-

dial threads (compared to much larger numbers reported in the
literature[16]), it may be possible for the spider to localize prey
with considerable precision. This observation is also in agree-
ment with the literature, where a small number of radial threads
is shown to be sufficient for the spider to monitor prey.[45] This
also indicates that an increase in the number of radial threads
are not strictly necessary for prey localization, although it is cer-
tainly beneficial, especially for prey retention and for dissipation
of energy.[14]

4. Concluding Remarks

In conclusion, we have numerically analysed the prey detection
mechanism in a spider orb web. The presence of the prey does
not affect the existing modes of vibration of the system consti-
tuted by the spider and orb web, most noticeably introducing lo-
cally resonantmodes. The frequencies of thesemodes increase as
the prey impact position approaches the orb web center or radial
threads, and are thus probably not sufficient to indicate prey lo-
cation.
The prey vibration continuously transmits energy to the radial

threads and allows detection at the corresponding nodes at the
orb web center, which is asymmetrically distributed toward the
direction of the vibration source. To quantify this behavior, we
have proposed a metric to compute the perceived energy at the

Figure 14. Maximum energy per sector, estimated prey direction (- - indicates actual prey location), and corresponding relative errors for a) central, b)
RDI, and c) CLK2 impact points.
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orb web center, which can be used to consistently determine the
region between radial threads that contains the vibration source,
also discriminating angular variations. The proposed metric can
consistently indicate the radial threads that are excited by prey
impact also when considering different orb web configurations,
including variations in the number of radial threads, length of
the radial threads,mass density, and the presence ofmooring and
frame threads. We have also demonstrated, through a proposed
angle estimation approach, that a large number of radial threads
are not strictly necessary for the angular localization of prey, al-
though an increase in their number may be beneficial, especially
in the radial direction.
We have also shown that an increase in the prestress value of

radial threads decreases the rotation of the orb web center toward
a given vibration source direction, while also decreasing the time
to peak response due to stress stiffening.Most notably, the effects
of material nonlinearity are shown to produce a twofold effect,
both increasing the maximum energy at the orb web center and
decreasing the time to reach peak values, consequently improv-
ing prey localization.
The functioning of prey sensing based on locally resonant

mechanisms and the proposed metrics of energy outputs at the
orb web center and prey location estimation are thus presented
as new paradigms, which may be used for the analysis of spider
behavior and in the development of novel sensing technologies
based on spider web-like structures.
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1 Thread properties

The modeling of both dragline and viscid silks are directly taken from the empirically parameterized
data presented by Cranford et al. [1], corresponding to threads of the species Araneus diadematus. Dragline
silk threads have stress-strain relations modeled using the relation

σd(ε) =















E1ε , 0 ≤ ε < εy ,
eα(ε−εy) + β(ε− εy) + C1 , εy ≤ ε < εs ,

E2(ε− εs) + C2 , εs ≤ ε < εb ,
0 , ε ≥ εb ,

(1)

where the strain ε is given by ε(L) = (L−L0)/L0, L0 is the initial thread length and L is the final thread
length, E1 is the thread initial stiffness, α is an exponential parameter, β is a tangent stiffness parame-
ter, E2 is the final stiffness, and the limits of distinct strain regions are given by the yielding strain εy,
the softening strain εs, and the ultimate strain εb. Numerical values of these parameters are given by
E1 = 10, 000 MPa, α = 43.1, β = 1, 000 MPa, E2 = 2, 087.4 MPa, εy = 0.02, εs = 0.17, and εb = 0.27.
Constants C1 and C2 ensure the continuity between distinct regions and are given by C1 = E1εy − 1 and
C2 = eα(εs−εy) + β(εs − εy) + C1.
Viscid threads are modeled by the stress-strain relation

σv(ε) = aeε + bε+ c , (2)

where a is an exponential parameter, b is a tangent stiffness parameter, and c is a continuity constant.
Numerical values of these parameters are given by a = 44 MPa, b = −41 MPa, and c = −44 MPa. The
validity of this model lies in the range 0 ≤ ε < 2.7, which corresponds to the ultimate stress σb = 500
MPa. The resulting stress-strain relations for both dragline and viscid threads are presented in Figure

1.
Another important property is the tangential Young’s modulus, which can be obtained for each type of
thread by the relation Et =

dσ
dε
, which remains valid for each specific strain region, but presents disconti-

nuities at the transition strains (εy, εs, and εb).
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Figure 1: Stress-strain relations for (a) (–) dragline and (b) (–) viscid threads.

2 Continuum mechanics definitions

2.1 Strain energy

Consider an infinitesimal element undergoing a displacement field u =
{

ux uy uz

}T
using a Cartesian

coordinate system. The Green-Lagrange strain associated with displacements (ε) of one-dimensional ele-
ments undergoing general three-dimensional displacements is given by [2]

ε =
∂ux

∂x
+

1

2

[(

∂ux

∂x

)2

+

(

∂uy

∂x

)2

+

(

∂uz

∂x

)2]

. (3)

Assume a generic stress-strain relation given by σ = σ(ε), and a given equilibrium state (ε0, σ0). Addi-
tional displacements applied with respect to this initial strain ε0 induce additional strains, denoted here
as ∆ε, which imply in an additional strain energy density (per unit volume) U0, given by

U0 =

∫ ε0+∆ε

ε0

σ(ε) dε . (4)

It is important to stress out that this term does not represent all of the medium stored elastic energy
(which was previously stressed at the equilibrium state), but rather an energy increment.
Considering the tangential Young’s modulus Et, given by

Et =

[

dσ

dε

]

ε=ε0

, (5)

the variation in stress ∆σ can be approximated using

∆σ = Et∆ε . (6)

Thus, the additional strain energy can be approximated by U 0, yielding

U0 ≈ U 0 = σ0∆ε+
1

2
∆ε∆σ = σ0∆ε+

1

2
Et∆ε2 . (7)

These concepts are illustrated in Figure 2.
The additional strain is caused by the displacements of elements measured with respect to the state equi-
librium (i.e., displacements are zero at ε0), which means that these are suitably substituted by the ex-
pression given in Eq. (3) (i.e., ∆ε = ε), yielding

U0 = σ0

{

∂ux

∂x
+

1

2

[(

∂ux

∂x

)2

+

(

∂uy

∂x

)2

+

(

∂uz

∂x

)2]
}

+

1

2
Et

{

∂ux

∂x
+

1

2

[(

∂ux

∂x

)2

+

(

∂uy

∂x

)2

+

(

∂uz

∂x

)2]
}2

,

(8)
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Figure 2: Stress-strain relation given by σ = σ(ε). Starting from an equilibrium state (ε0, σ0), an additional strain energy
density is associated with additional strains ∆ε, which can be related to an approximate increase in stresses σ using ∆σ =
Et∆ε, with Et being the tangential Young’s modulus at (ε0, σ0).

which can be approximated, considering terms up to O(x2), yielding

U0 ≈ σ0
∂ux

∂x
+

1

2
σ0

[(

∂ux

∂x

)2

+

(

∂uy

∂x

)2

+

(

∂uz

∂x

)2]

+
1

2
Et

(

∂ux

∂x

)2

. (9)

3 Finite element definitions

3.1 Stiffness and mass matrix

In the case of a two-node isoparametric finite element with length L and linear interpolation functions
[3], if one considers element nodes i and j, the displacement field can be interpolated as

up(x) =

(

1− x

L

)

upi +
x

L
upj (10)

where p = {x, y, z}, which can be summarized in matrix notation as

u = Nue , (11)

where u the interpolated displacements, N is an interpolating matrix, and ue are the nodal displace-
ments, given respectively by

u =
{

ux uy uz

}T
,

N =





1− x
L

0 0 x
L

0 0
0 1− x

L
0 0 x

L
0

0 0 1− x
L

0 0 x
L



 =
[(

1− x
L

)

I3
x
L
I3
]

,

ue =
{

uxi uyi uzi uxj uyj uzj

}T
,

(12)

where I3 is the order 3 identity matrix.
The strain vector ε can also be written using nodal displacements as

ε =







∂ux

∂x
∂uy

∂x
∂uz

∂x







=
∂

∂x







ux

uy

uz







=
∂

∂x
Nue = Bue , (13)

where the strain-displacement matrix B is given by

B =





− 1
L

0 0 1
L

0 0
0 − 1

L
0 0 1

L
0

0 0 − 1
L

0 0 1
L



 =
[

− 1
L
I3

1
L
I3
]

. (14)
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3.1 Stiffness and mass matrix

The increase in strain energy density given by Eq. (9) can be written in matrix notation by first rewrit-
ing as

U 0 = σ0
∂ux

∂x
+

1

2
σ0







∂ux

∂x
∂uy

∂x
∂uz

∂x







T 





∂ux

∂x
∂uy

∂x
∂uz

∂x







+
1

2

(

∂ux

∂x

)T

Et

(

∂ux

∂x

)

, (15)

which becomes, after using Eq. (14),

U 0 = uT
e σ0

[

− 1
L

0 0 1
L

0 0
]T

+
1

2
uT
e σ0B

TBue+

1

2
uT
e

[

− 1
L

0 0 1
L

0 0
]T

Et

[

− 1
L

0 0 1
L

0 0
]

ue .
(16)

Equation (9) represents the increase in strain energy density in a one-dimensional element subjected to
a general three-dimensional displacement field in terms of its nodal displacements. Thus, its associated
total strain energy increase is given by

U =

∫

V

U0 dV , (17)

which becomes, for an element with constant cross section A and length L,

U =

∫ L

0

∫

A

U 0 dA dx =

∫ L

0

AU 0 dx , (18)

which becomes, after substituting Eq. (16),

U = −uT
e F0 +

1

2
uT
e kcue +

1

2
uT
e krue , (19)

where terms F0, kc, and kr are given by

F0 = Aσ0

[

1 0 0 −1 0 0
]T

,

kc = Aσ0

∫ L

0

BTB dx =
Aσ0

L

[

I3 −I3
−I3 I3

]

,

kr = AEt

∫ L

0















− 1
L

0
0
1
L

0
0





























− 1
L

0
0
1
L

0
0















T

dx =
AEt

L















1 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0















.

(20)

The first term in Eq. (19) refers to the load vector produced by internal stresses (F0), and the second
and third terms refer, respectively, to stiffness matrices related with stress stiffening (kc) and longitu-
dinal (rod-like) stiffness (kr) of the one-dimensional element. These components also indicate that the
stiffness is dominant in the longitudinal behavior, while string tension is responsible for transverse be-
havior, as pointed out in [4].
In the case of dynamic analyses, inertia effects must be accounted. Thus, the instantaneous kinetic en-
ergy T can be written for the one-dimensional element with constant mass density ρ using the time deriva-
tive notation u̇ = ∂u

∂t
and Eq. (11) as

T =

∫

V

1

2
|u̇|2 dm =

∫

V

1

2
u̇T u̇ dm =

∫ L

0

∫

A

1

2
u̇T
e N

TNu̇e ρ dA dx ,
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3.2 Damping matrices

which leads to

T =
1

2
u̇T
e mu̇e , (21)

where m is the consistent mass matrix, given by

m = ρA

∫ L

0

NTN dx =
ρAL

6

[

2I3 I3
I3 2I3

]

. (22)

3.2 Damping matrices

The introduction of damping is accomplished by considering damping ratios relative to a chosen vibra-
tion mode. This can be done by writing the orthonormal matrix Ψ, obtained using a base relative to in-
phase and anti-phase modes, described by

Ψ =
1√
2

[

I3 I3
I3 −I3

]

. (23)

This matrix can be used to obtain diagonal stiffness (k̃) and mass (m̃) matrices, which represent vibra-
tion in a modal basis, respectively given by

k̃ = ΨT (kc + kr)Ψ = diag
(

0, 0, 0, 2A(Et + σ0)/L, 2Aσ0/L, 2Aσ0/L
)

,

m̃ = ΨTmΨ = diag
(

ρAL/2, ρAL/2, ρAL/2, ρAL/6, ρAL/6, ρAL/6
)

.
(24)

Computing the i-th natural frequency using ω2
i = k̃i/m̃i, where i indicates the i-th component of ma-

trices k̃ and m̃, respectively, three zero-frequency (rigid body) modes are obtained, while the remaining
three frequency values are related with one longitudinal and two transversal body modes, respectively
given by

ωl =

√

12(Et + σ0)

ρL2
, ωt =

√

12σ0

ρL2
. (25)

The damping ratio of a single degree-of-freedom system with a particle of mass m, subjected to forces
yielded by a spring-dashpot system with stiffness k and damping coefficient c is defined as [5]

ξ =
c

2
√
km

. (26)

Assuming structural damping, the diagonal damping matrix can be written as

c̃ = αm̃+ βk̃ , (27)

where α and β are proportional factors. By considering the i-th term of diagonal matrices k̃ and m̃, one
has

ξ =
αmi + βki

2
√
kimi

=
1

2

(

α

ω
+ βω

)

, (28)

which can be solved to yield given ξ values as ωl and ωt, yielding

α =
2ξωlωt

ωl + ωt

,

β =
2ξ

ωl + ωt

.

(29)

Thus, the damping matrix in the original coordinate system can be obtained as

c = Ψc̃ΨT = αm+ βk =
2ξωlωt

ωl + ωt

m+
2ξ

ωl + ωt

(kc + kr) . (30)

The general form of the damping matrix expressed in Eq. (30) allows to consider distinct damping ra-
tio values for radial and spiral threads, which can be obtained from the literature. In our case, we have
considered the value of 0.12 damping ratio for spiral threads and 0.075 for radial threads [6].
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4 Finite element time series procedures

4.1 Structure stabilization

Prior to time series computations, the structure needs to be checked for stability in terms of residual in-
ternal forces which may arise due to imposed initial stresses which possibly are not in equilibrium at a
given geometric configuration. In this case, a static procedure is adopted, which corresponds to letting
the structure adjust its geometric configuration to achieve force balance for all elements.
To account for nonlinear material characteristics, we adopted a Newton-Raphson static method in the
form [2]

K
(i−1)
t ∆U(i) = Fext − F

(i−1)
int ,

U(i) = U(i−1) +∆U(i) ,
(31)

where Kt corresponds to the tangent stiffness matrix obtained by the usual assembly process [3] of ma-
trices shown in Eq. (20) computed for a given geometric configuration and stress distribution, Fext is the
load vector of external forces, Fint is the load vector of forces necessary to produce the current state of
stress (opposite sign as F0 in Eq. (20)), and ∆U is the increment in displacement in consecutive itera-
tions. This process is repeated until convergence is reached, i.e., |Fext − Fint|(i−1) < Ftol. In the case of
initial stabilization procedures, Fext = 0, U(0) = 0, and Ftol = 2.22× 10−16 N was adopted.

4.2 Time series computation

For the computation of time responses, two distinct approaches are considered. In the purely linear ap-
proach, stiffness and mass matrices K and M are assembled [3] at the current geometric configuration
and stress state of elements using the element stiffness matrices (kc and kr) given by Eq. (20) and the
element mass matrix (m) given by Eq. (22). In this case, the nonlinear stress-strain curves are disre-
garded throughout the time steps, being considered only for the initial state. Then, an implicit integra-
tion scheme such as the Newmark method [2, 7] is applied to obtain displacements at the time instant
t+∆t in the form

(

K+
1

α∆t2
M+

δ

α∆t
C

)

U(t +∆t) = Fext(t+∆t)

+M

(

1

α∆t2
U(t) +

1

α∆t
U̇(t) +

1− 2α

2α
Ü(t)

)

+C

(

δ

α∆t
U(t) +

δ − α

α
U̇(t) +

∆t

2

δ − 2α

α
Ü(t)

) (32)

where ∆t is the time step, constants used for approximations of accelerations are given by δ = 1
2
and

α = 1
4
, Fext(t) is the external load vector at time t, and U(t), U̇(t), and Ü(t) correspond to the nodal

displacement, velocity, and acceleration vectors at time t. Velocities and accelerations are updated ac-
cording to

U̇(t+∆t) = U̇(t) + ∆t(1− δ)Ü(t) + δ∆tÜ(t +∆t) ,

Ü(t+∆t) =
1

α∆t2

(

U(t+∆t)−U(t)

)

− 1

α∆t
U̇(t)− 1− 2α

2α
Ü(t) .

(33)

For the nonlinear cases, a explicit time integration is performed in the form

MÜ(t) = Fext(t)− Fint(t) , (34)

where the nodal internal forces vector Fint(t), which considers the nonlinear stress-strain curves of mate-
rials, corresponds to the loads necessary to produce that state of stress at time t. Accelerations are then
computed using a central difference approximation as

Ü(t) =
1

∆t2

(

U(t−∆t)− 2U(t) +U(t +∆t)

)

. (35)
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Equation (34) and (35) can be combined to yield the time series increment scheme

U(t+∆t) = 2U(t)−U(t−∆t) + ∆t2M−1(Fext(t)− Fint(t)) . (36)

For the tested cases, using sufficiently small time steps, this iteration scheme has yielded the same re-
sults as other (iterative) implicit integration methods, such as the nonlinear Newmark method (see refer-
ences [2, 8, 9] for details).

5 Dispersion relation

To compute the dispersion relation (i.e., relation between wavenumbers and frequencies), let us initially
consider a two-node (nodes i and j) finite element whose stiffness and mass matrices K and M, previ-
ously presented in 3, relate to displacements u and external applied forces f as

Mü+Ku = f , (37)

which, assuming time-harmonic displacements u = ûeiωt and forces f = f̂eiωt lead to

(K− ω2M)û = f̂ . (38)

Partitioning displacements and forces using indexes relative to nodes i and j, respectively, yields

([

Kij Kij

Kji Kjj

]

− ω2

[

Mii Mij

Mji Mjj

]){

ûi

ûj

}

=

{

f̂i

f̂j

}

. (39)

Considering such an element of length L subjected to periodic boundary conditions, Bloch-Floquet con-
ditions [10] may apply, yielding

ûj = λûi , (40a)

f̂i + λ−1f̂j (40b)

where λ = eikL, with i =
√
−1, and k is the complex wavenumber.

Combining Eqs. (39) and (40) yields

[

I λ−1I
]

( [

Kii Kij

Kji Kjj

]

− ω2

[

Mii Mij

Mji Mjj

])[

I

λI

]

ûi =
[

I λ−1I
]

{

f̂i

f̂j

}

= 0 , (41)

which leads to the eigenvalue problem stated as
(

(Kii + λ−1Kji + λKij +Kjj)− ω2(Mii + λ−1Mji + λMij +Mjj)

)

ûi = 0 , (42)

which admits nontrivial solutions for

det

(

(Kii + λ−1Kji + λKij +Kjj)− ω2(Mii + λ−1Mji + λMij +Mjj)

)

= 0 . (43)

Recalling matrix definitions from Eqs. (20) and (22), matrix partitioning yields

Kii = Kjj =





A(Et + σ0)/L 0 0
0 Aσ0/L 0
0 0 Aσ0/L



 , Kij = Kji = −Kii , (44a)

Mii = Mjj =
ρAL

3
I, Mij = Mji =

ρAL

6
I , (44b)

(44c)
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.
Solving Eq. (43) for λ under the assumptions σ0 ≫ ρL2ω2 and Et ≫ ρL2ω2, valid for low frequencies,
yields the approximated solutions

λ1,2 = −1± i

√

ρ

σ0
Lω , (45a)

λ3,4 = 1± i

√

ρ

Et + σ0
Lω , (45b)

which yields the approximated dispersion relations

k1,2 =

√

ρ

σ0

ω , k3,4 =

√

ρ

Et + σ0

ω , (46)

which indicate a non-dispersive relation [11], thus indicating waves are purely propagating, not present-
ing an evanescent behavior [12]. Also, the transverse (ct) and longitudinal (cl) wave speeds are given by

ct =
ω

k1,2
=

√

σ0

ρ
, cl =

ω

k3,4
=

√

Et + σ0

ρ
. (47)

6 Glue degradation

To evaluate the effect of the degradation of the connecting elements between radial and spiral threads,
we have also performed vibration analyses concerning the baseline impact point (Section 3.3.1) and de-
graded mechanical behavior for the connection elements. Since we initially considered glue as having the
same properties as spiral threads, we now model glue degradation using a softening behavior, considering
it having only 25% of the stress-strain relation of viscid threads. Results are shown in Figure 3.
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Figure 3: Results for assessing the effects of glue degradation. (a) The degradation in (�) glue is modeled as a propor-
tional factor of the stress-strain behavior of (�) spiral threads. (b) The results of considering this soft glue are not notice-
able in the output displacements.

Figure 3a show the stress-strain curves for the gluing elements, considered as a softer version of the spi-
ral threads to model its degradation. Figure 3b shows the variation of output displacements. Changes
in such computed displacements are barely noticeable, thus indicating that this orb web architecture is
likely robust against variations in the connections between radial and spiral threads.
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