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The centenary of Griffith’s theory

Nicola M. Pugno1,2,*
The year 2021 marks the 100th anniversary of Griffith’s Fracture
Theory. Many scholars regard Griffith as the father of the linear
elastic fracture mechanics. Here, Nicola Pugno—who received the
Griffith Medal and Prize in 2017—reflects on some Griffith’s based
approaches and quantized-related extensions of the original theory,
as he has orally presented this year during his Plenary Opening Lec-
ture at the quadrennial 25th International Congress of Theoretical
and Applied Mechanics.
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In 1921, Sir Alan Arnold Griffith, an En-

glish mechanical engineer, published

his seminal paper describing the

theory of Linear Elastic Fracture Me-

chanics (LEFM)1 in the Philosophical

Transactions of the Royal Society (Fig-

ure 1). Today, 100 years later, this

elegant theory shows new implications

even in the standardization of the me-

chanical property measurements and

comparisons.

The ultimate failure of materials and

structures limits our current technolo-

gies and lives, and frequently, this fail-

ure is rooted in a phenomenon known

as fracture—the sudden and abrupt

cracking/breaking of a hard object or

material such as metals and glass, but

also bones and rock. Understanding

fracture mechanics in several disci-

plines, from nano-engineering to earth-

quake engineering including medicine

(e.g., bone fracture), is thus vital. Pre-

dicting the maximum loads a material

could take while avoiding fracture was

a critical mechanics challenge.

Prior to Griffith, the initiation of frac-

ture, however, was not easy to predict.

Consider a simple linear elastic sheet.

The nominal stress in a sheet can be

calculated as the applied force divided

by its cross-sectional area. Undergradu-

ate engineering students learn that

stress is simply load over an area. The

tensile strength of the sheet, however,
cannot be simply predicted assuming

failure when the stress reaches the crit-

ical strength value, as originally

thought. This is due to the fundamental

role played by defects—always present

in materials and structures and thus

governing their behaviors—in analogy

to what happens in human beings.

Let us assume the presence of a tiny

crack in the sheet. According to LEFM,

failure is governed not only by the

stress, s, but a combination between

the stress and the crack length a, formu-

lated as a geometry- and load-depen-

dent stress intensity factor, K (i.e., for

the classical Griffith case of linear

elastic infinite plate with a far field ten-

sile stress s and a perpendicular crack

of length 2a, then K = s
ffiffiffiffiffiffi
pa

p
). Failure

via fracture can then be reliably pre-

dicted when K reaches a critical value,

the so-called fracture toughness KC of

the material, which dictates the onset

of crack propagation. Thus, for the Grif-

fith case, the fracture strength (stress) is

predicted as sC =KC=
ffiffiffiffiffiffi
pa

p
(the reader

could verify this dependence with a

sheet of paper inserting cuts with

different lengths).

This result naturally emerges from the

Griffith’s idea of an energy balance

during crack growth, involving elastic

energy, external work, and dissipated

energy spent in the crack extension:

the so-called energy release rate, the
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opposite of the variation with respect

to the crack surface area of the total po-

tential energy (elastic energy minus

external work), has to reach a critical

value for crack propagation, i.e., the

fracture energy (per unit area) of the

material. The energy release rate is pro-

portional to the square of the stress in-

tensity factor divided by the Young’s

modulus (for a given fracture mode)2

and, similarly, their critical values (frac-

ture energy and toughness) so the two

criteria are equivalent. This theory has

thus revealed the mystery and dramatic

role of defects in the strength of

materials.

In order to solve some remaining limita-

tions of LEFM, including a paradox of

infinite strength for vanishing crack

length, we extended LEFM by intro-

ducing quantized fracture mechanics

(QFM3), substituting differentials with

finite differences in Griffith’s energy

balance. This corresponds to consid-

ering the onset of crack propagation

not when the energy release rate rea-

ches a critical value, but when its

mean value along a fracture quantum

of crack surface area DA—the previ-

ously introduced finite difference—rea-

ches the material fracture energy

(simply put, crack growth is not contin-

uous, e.g. at smaller and smaller scales,

but reaches characteristic discrete

steps of finite length, or fracture quan-

tum, during propagation). Equivalently,

it is not the stress intensity factor

KhKLEFM that must reach KC for crack

propagation, but instead the square

root of the mean value of the square
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Figure 1. Griffith and his seminal paper

Left: Sir A.A. Griffith. Right: The first page of his pioneering paper published 100 years ago: The

phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of

London. 221, 163–198, 1921.
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of the stress intensity factor along a

fracture quantum, which is by definition

the quantized stress intensity factor

KQFM (for example, for the Griffith’s

plate the QFM strength prediction

–from KQFM =KC� is

sC = KCffiffiffiffiffiffiffiffiffiffiffiffiffi
pða+qÞp ;q= DA

2t and t is plate thick-

ness). This theory is thus based on the

removal of the hypothesis of contin-

uous crack growth in the Griffith’s en-

ergy balance, i.e., on the existence of

a quantum of energy dissipation/crack

advancement. In dynamic fracture, and

considering the existence of a quantum

of action, the mean value must be

considered also along a quantum of

time Dt, thus defining the dynamic

quantized stress intensity factor

KDQFM
4 in dynamic quantized fracture

mechanics (DQFM).

This exponent of 2 of the stress inten-

sity factor appearing in D/QFM can

in principle be generalized to a posi-

tive real number a, a unification origi-

nally proposed in reference 5,5 thus

proposing a Griffith/generalized dy-

namic quantized fracture mechanics

(GQFM), predicting crack propagation

according to:
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K ða;DA;DtÞ
GQFM hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

DADt

Zt

t�Dt

ZA+DA

A

KðA; tÞadAdta

vuuut =Kc

(Equation 1)

Note that K ða;DA=0;Dt =0Þ
GQFM = KLEFM,

K ða= 2;DA;Dt =0Þ
GQFM = KQFM, K ða=2;DA;DtÞ

GQFM =

KDQFM and K ða= 1;DA= 0;DtÞ
GQFM = KITFM, where

KITFM is the equivalent stress intensity

factor according to the incubation time

based fracture mechanics approach.6

Accordingly, all these limiting-case the-

ories, which have been proved to cap-

ture experimental observations that

LEFM cannot describe, are recovered

and thus the correspondence principle

is satisfied, as expected in the limit of

vanishing fracture energy and action

quanta. Equation 1 represents (by defi-

nition) an extension of all thementioned

theories of fracture.

The stress intensity factor (Equation 1)

could also extend stress intensity factor

based laws such as those of fatigue, as

proved for a= 2 to capture both long

and short crack behaviors even in fa-

tigue (thus from the Wӧhler to the Paris

regimes).7 With the criterion (Equa-
tion 1), so-called R-curve behaviors

and strain-rate effects emerge natu-

rally, rendering respectively fracture

toughness no longer/less crack-length3

and strain-rate4 dependent, and thus a

more realistic material property (e.g.,

using KLEFM = K 0
C in order to obtain the

same result of the more realistic predic-

tion KQFM = KC one must assume

K 0
C = KCffiffiffiffiffiffiffiffiffiffiffi

1+q=a
p thus a crack-length depen-

dent fracture toughness tending to a

constant value only for long crack

length; this is usually observed in exper-

iments). Accordingly, this could also

help in the standardization of mechani-

cal property measurements and

comparisons, for example using the

classical Ashby’s plots.

Indeed Asbhy’s plots, plots where ma-

terials are compared in terms of 2 me-

chanical properties of interest, e.g.,

fracture toughness and strength, are

fundamental for material selection. As

is well known, simply assuming in the

Griffith’s theory a crack length aflb,

where l is the structural size, would

result in a scaling law for the strength

of the power-law type sCfl�b=2, as

similarly predicted by Weibull’s statis-

tics or by other interpretations, e.g.,

fractal geometry.8 We do not wish to

comment here about the details of

size-effect laws, but rather to empha-

size that with the advent of nanotech-

nology, it is not infrequent to see

papers reporting the fabrication of a

new material using an Ashby’s plot to

prove its superior characteristics, even

if tested at a smaller size-scale. The

need to adopt different Ashby’s plots

at the micro- and nano-scales has

already been highlighted.9 Recently,

we have proposed5 to use 3D Asbhy’s

plots for a multiscale, thus complete,

representation.
As a simple example, we treat the case

reported in Figure 2, where nanotube

bundles are considered according to

Koziol et al.10 The Asbhy’s plot pre-

sented by the authors was inevitably



Figure 2. A multiscale 3D Asbhy’s plot

Originally proposed in ref.5, the modified Ashby’s plot depicts strength versus elastic modulus

versus gauge length. The black ellipses represent the strength versus elastic modulus data

collected by the authors10 corresponding to samples with 1-mm gauge length (their Figure 4B). The

overall average of this data is 4.4 GPa, while we have computed a total average of 2.6 GPa for the

data at 2-mm gauge length (their Figure 3A). The corresponding scaling law, considering in a first

approximation the independence of the elastic modulus, is of the type sCfl�b=2 with b= 2y 0:75

(blue dashed lines). This scaling law predicts strength values comparable to those taken from the

literature (green, purple or red areas, 10-mm gauge length). When considering the low- and high-

strength regions (peaks in their Figure 3A), the average for the ellipse centered at a strength of 6.2

GPa for 1-mm gauge length falls to 5.6 GPa for a 2-mm gauge length, thus giving a scaling law with

b=2y0:15 (black solid lines). The dashed ellipses are the projections at 10-mm gauge length of

those at 1-mm gauge length, as reported in their reference10, whereas our mean or maximal

predictions at 10-mm are those reported with the blue dashed or back continuous lines,

respectively, as previously described.
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classical, i.e., 2D, thus without

considering the role of the bundle/

gauge length. A 3D Asbhy’s plot,

with a new axis corresponding to the

size-scale, here gauge-length, could

thus be a better choice for comparison

with other experiments, as described

in Figure 2. The majority of the

experiments reported for comparison

in Koziol et al.10 where performed at

a gauge length of 1 cm, which we

have considered in the 3D plot. We

have also reported their experiments,10

not in the same plane but in their
correct positions (1-mm or 2-mm

gauge length planes). According to

the same authors’ experiments at

different gauge lengths and assuming

the simple mentioned scaling law

of sCfl�b=2, we could predict mean

or maximal strength values expected

at larger gauge-lengths, including

10-mm, as reported respectively with

the blue dashed or black solid lines.

Thus, the other references used for

comparison were nearly equally excep-

tional in terms of attained strength

values.
The need for generalized Griffith’s the-

ories, scaling laws and multiscale 3D

Asbhy’s plots is thus evident if we wish

to move toward a standardization in

material property measurements and

comparisons.

Concluding—100 years after its devel-

opment—the celebrated Griffith’s the-

ory has still something to teach us.
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