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Abstract

Starting from a material description involving only two parameters, the cohesion energy and the atomic size, all the
fundamental nanomechanical properties for a given chemical element are estimated. In particular, Young’s modulus,
Poisson’s ratio, critical normal and shear stresses and strains, fracture and fragmentation energies, fracture toughness
and coefficient of thermal expansion are deduced. Even if the approach partially recalls the classical solid state physics
treatment and gives estimations rather than exact predictions, new interesting aspects clearly emerge from the analysis.
According to the proposed simple but general model, a preliminary periodic table for the nanomechanical properties of
the elements is presented for the first time. The periodicity of the mechanical properties, similarly to the well-known peri-
odicity of the electronic properties, is clearly emphasized. A comparison between our approach and some data present in
the literature concludes this paper.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, the interest on the mechanical properties of materials at the nanoscale level has been remarkably
growing. Just in the last few decades, material scientists have been able to make direct measurements at such a
critical size scale, three orders of magnitude smaller than the more known and accessible microscale. An exam-
ple is given by the exceptional mechanical properties observed in nanotubes (Treacy et al., 1996; Ross, 1991;
Yakobson and Smalley, 1997; Yakobson et al., 1996, 1997), since their discovery by Iijima (1991) and other
scientists (Weng-Sieh et al., 1995; Chopra et al., 1995; Loiseau et al., 1996). To give an idea of the impact on
the scientific community caused by the discovery of nanotubes, it is sufficient to mention that a comparatively
recent review paper (Qian et al., 2002), dealing specifically with the mechanics of carbon nanotubes, quotes
349 references. The tremendous mechanical properties coupled with the exceptional electronic ones lead to
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consider nanoscale materials as optimal candidates for innovative materials (e.g., bio-inspired), for biome-
chanical applications (e.g., nanorobots) or electronics (e.g., nanoelectromechanical systems).

Following the increasing interest in nanomechanics, this paper intends to present new results in the study of
the mechanical properties of materials at the nanoscale. We show that only two parameters are needed to
describe the nanomechanics of materials: the cohesion energy and the atomic size. The proposed simple but
general model gives, as a result, a preliminary periodic table for the nanomechanical properties of elements,
in which the periodicity of the mechanical properties is clearly emphasized. A comparison between our esti-
mations and the data present in the literature concludes this paper.
2. Non-linear stress–strain relationship

Let us consider—for the sake of simplicity—a material arranged in the simple cubic lattice. The lattice is
spaced of a given size a—coincident with the average interatomic distance—obeying, around the mechanical
equilibrium position, to a linear elastic isotropic constitutive law. For larger displacements let a non-linear
response be considered. As we will show, the non-linearity in the constitutive equation has to be considered
for developing a general model including in particular also the effect of the coefficient of thermal expansion.
Anisotropy is not taken into account in our model, the aim of which is to give simple estimations of the nano-
mechanical properties of materials. However, different types of lattices could be treated by considering as a
first approximation an equivalent simple cubic lattice (e.g., by equating the atomic volumes).

The interatomic potential U between atoms depends substantially on their chemical bonding. The atoms do
not come into contact owing to Pauli’s and nuclei repulsions and reach their equilibrium positions. Even if
different chemical bonds imply different interatomic potentials (e.g., Lennard-Jones), we can consider a gen-
eral form (representing the interaction between one atom and all the others) according to the following series
expansion:
UðxÞ ¼
XN

n¼0

cnxn; ð1Þ
where x is the displacement around the equilibrium position, cn are unknown coefficients and N is the order of
the polynomial approximation. The force F between atoms will be:
F ðxÞ ¼ dUðxÞ
dx

. ð2Þ
We can assume c0 = 0, the energy being defined through its differential, and we must have c1 = 0, the net
force being vanishing at the equilibrium point x = 0. The classical harmonic approximation sets N = 2 and
gives a linear relationship between force and displacement, the so-called Hooke’s law. In addition, this sym-
metric form for the potential energy, related to small displacements, predicts vanishing thermal expansion, in
contrast to the experimental evidence. Thus, at least an additional term has to be assumed, so that a value of
N = 3 is here considered. According to the simplified hypothesis of isotropic regular lattice, a volume a · a · a

per each atom is considered (simple cubic lattice). The two unknown constants c2 and c3 can be obtained by
imposing the definitions of Young’s modulus and coefficient of thermal expansion, i.e.:
lim
x!0

F ðxÞ
xa
¼ E; ð3aÞ

hxi
aT
¼ a; ð3bÞ
hxi being the mean value of the displacement due to the thermal vibration at temperature T. The first condi-
tion implies c2 = Ea/2. On the other hand, the second one, evaluating hxi by means of the Boltzmann’s dis-
tribution, i.e.:
xh i ¼
Rþ1
�1 xe�bUðxÞ dxRþ1
�1 e�bUðxÞ dx

�
Rþ1
�1 xe�bc2x2ð1� bc3x3ÞdxRþ1

�1 e�bc2x2 dx
; ð4Þ
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Fig. 1. Nanostress vs. nanostrain relationship (for carbon). Young’s modulus E, critical stress rC and strain eC and energy density (or
fragmentation energy) wC.
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where b = (kBT)�1 and kB is Boltzmann’s constant, gives c3 = �E2a3a/(3kB). In terms of local stress r = F/a2

and strain e = x/a, the result is:
rðeÞ � Ee� E2a3a
kB

e2 for e 6 eC. ð5Þ
Even if the considered approach, based on the interatomic potential, is very simple, classical and well
known (Kittel, 1966), the result of Eq. (5) is original and describes a general form for the stress–strain rela-
tionship at nanoscale: for small displacements it recovers the well-known Hooke’s law, whereas for large dis-
placements a non-Hookean softening regime dominates. Note that the multi-body nature of the atomic
interaction is automatically taken into account in Eq. (5) via the Young’s modulus. However, more sophisti-
cated multi-body potential could be easily considered (Zhang et al., 2002). The cutoff at eC is analogous to the
cutoffs classically introduced in the interatomic potentials. This is imposed by the fact that, after the critical
(i.e., maximum) strain eC for which the stress vanishes, the approximation of Eq. (5) loses its validity. Eq. (5) is
general in the sense that the atomic (or electronic or chemical bonding) structure of the solid is traduced in
terms of global parameters.

According to Eq. (5), the critical (i.e., maximum) stress and strain are predicted to be:
rC �
kB

4aa3
; ð6aÞ

eC �
kB

Eaa3
. ð6bÞ
Note that eC represents the maximum strain assuming a displacement-controlled process. Vice versa, for a
force-controlled process, the critical strain is one half of the previous one and will be reached at the maximum
stress (e.g., see Fig. 1).

Finally, we note that, at atomic scale, the failure mechanisms could tend towards a unification: the sepa-
ration between two atoms can be considered a plastic deformation, a brittle fracture or also a melting process.
The ratio between the maximum amplitude xmax and its mean value hxi gives an estimation of the statistic
concentration Cx of the displacements. It is equal to Cx = xmax/hx i � e/(aT). Inverting the previous equation,
evaluated in critical conditions, would lead an estimation of the melting temperature as: TC � eC/(aCx), where
Cx is expected to be larger than one.
3. Fracture, fragmentation and cohesion energies

The energy dissipated per unit volume a3, that we could call fragmentation energy (Carpinteri and Pugno,
2002), can be calculated starting from the non-linear relationship of Eq. (5) as:
WC �
Z eC

0

rðeÞde � k2
B

6Ea6a2
. ð7Þ
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Thus, the energy dissipated per unit area a2, the so-called fracture energy is:
GC � WCa � k2
B

6Ea5a2
. ð8Þ
The fracture energy plays a fundamental role in the prediction of the resistance against brittle crack propaga-
tion for a structural element (Pugno and Carpinteri, 2003).

On the other hand, the energy to pull-out an atom from the lattice, the so-called cohesion energy (Kittel,
1966), must be equal to:
W C � GC6a2 � k2
B

Ea3a2
. ð9Þ
6a2 being the new surface area created after the pull-out of one atom from the lattice, according to our sim-
plified model.

4. Correlation between Young’s modulus and coefficient of thermal expansion

The Young’s modulus is an index of the stiffness of a material reacting to mechanical loadings, whereas the
coefficient of thermal expansion is an index of the compliance of a material in relation to thermal loadings.
The aim of this section is to give, by virtue of a simplified argument, an expression for a correlation between
them.

Let us consider the differential of the free energy u, given by (Kittel, 1966) du = �pdV � SdT, where the
pressure p and the entropy S are defined as p ¼ � ou

oV

� �
T
; S ¼ � ou

oT

� �
V

, and V is the volume. At the thermody-

namical equilibrium it is du = 0, so that p ¼ �S dT
dV ¼ ou

oT

� �
V

dT
dV . For one atom, the contribution to the free

energy due to the thermal vibrations can be classically considered equal to �3/2kBT. Assuming constant pres-
sure, the coefficient of thermal expansion being defined as a = (3V)�1 dVdT, the previous relationship would
give p ¼ kB

2V a. On the other hand, assuming constant temperature, differentiating and introducing the stress r
and strain e under hydrostatic pressure p, for one atom of volume V � a3, we have:
dp ¼ �dr ¼ � kB

2a
dV

V 2
¼ � kB

2aa3
3de. ð10Þ
Isotropic linear elastic constitutive laws (see Carpinteri, 1997) are expected for small strains, implying under
hydrostatic regime the following relationship:
dr
de
¼ E

1� 2m
; ð11Þ
m being the Poisson’s ratio of the material. The combination of the two previous equations provides the fol-
lowing correlation between Young’s modulus and coefficient of thermal expansion as:
E � 3kBð1� 2mÞ
2aa3

. ð12Þ
As expected, they are inversely related. This result coincides with Grüneisen’s relation evaluated for one atom,
in which the thermal capacity is assumed to be equal to 3kB (the classical value for T around room temper-
ature) and Grüneisen’s experimental constant is assumed to be equal to 3/2, close to its experimental value for
many chemical elements (Slater, 1940). Using Grüneisen’s relation instead of Eq. (12) would give more precise
results although introducing a new experimental parameter. For this reason, we prefer to consider the simple
correlation reported in Eq. (12). However, note that the thermal expansion coefficient and the Young’s mod-
ulus are functions of the temperature (Jiang et al., 2004).
5. Non-linear shear stress–strain relationship and Poisson’s ratio

In Eq. (12) a new elastic constant appears, i.e., the Poisson’s ratio m that, with Young’s modulus E, allows
one to describe the elastic properties for isotropic materials. What is the expected value for m at the nanoscale?
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To evaluate this coefficient, that thermodynamically must be comprised between �1 and 1/2, we can alterna-
tively evaluate the shear elastic modulus G.

For small displacements, the shear stress s is connected with the displacement y (perpendicular to the pre-
viously introduced x co-ordinate) by Hooke’s law, i.e.:
s ¼ G
y
a

. ð13Þ
Due to the periodicity of the lattice with respect to shear, the relation shear stress vs. displacement can be
assumed as (Frenkel, 1926):
s � G
2p

sin 2p
y
a

� �
; ð14Þ
showing a non-Hookean region for large displacements. Obviously, for small displacements it becomes the
Hooke’s law of Eq. (13). As a consequence, the maximum value of the shear stress is:
sC �
G
2p

. ð15Þ
The ideal shear strength is predicted to be approximately only one order of magnitude smaller than the shear
elastic modulus (Frenkel, 1926). Even if the correct coefficient of proportionality remains unknown, depending
on the adopted model, this result is experimentally verified and represents an interesting tool to discriminate if
the measurements on material strength are close or not to the ideal material strength. The simple approach
reported in Section 2 can be considered the extension of this approach for the normal stress–strain
relationship.

The shear strain c is defined by tanc = y/a, so that the non-linear shear stress vs. strain relationship at the
nanoscale is predicted as:
s � G
2p

sin 2p tan cð Þ. ð16Þ
The critical value of the shear strain c will be reached, in a displacement-controlled process, when the shear
stress vanishes, for:
cC ¼ atan1=2 � 27�. ð17Þ

On the other hand, if the process is force-controlled then the critical value of the shear strain will be reached

when the stress equals its critical value. The corresponding shear strain level is atan1/4 � 14�. This parameter
is very large if compared with the measured values at human size scale (of the order of the meter). In addition,
it is material independent. This means that, at nanoscale, the ductility—that is not a material property but a
size dependent parameter—seems to ‘‘universally’’ prevail over brittleness, independently of the considered
material.

Considering the derived strength of Eq. (6a), and replacing a by Eq. (12), gives rC � E
6ð1�2mÞ. Thus, the model

confirms that the ideal strength is expected as a significant fraction of the Young’s modulus: such result can be
considered a proof of consistency for the simple model that we are proposing. Assuming the well-known ten-
sional Tresca’s or energetic von Mises’ criteria (see Carpinteri, 1997) (usually considered in plasticity but still
applicable if a brittle collapse is assumed):
rC � kT;vMsC; ð18Þ
where kT = 2 or kvM ¼
ffiffiffi
3
p

. By comparison between the normal and shear strengths, noting that G ¼ E
2ð1þmÞ, we

deduce an estimation of the Poisson’s ratio at the nanoscale as:
m � 3kT;vM � 2p
6kT;vM þ 2p

� 0. ð19Þ
According to Tresca’s criterion, the prediction is of mT = �0.015, as well as for von Mises’ criterion of
mvM = �0.065. Practically both criteria suggest Poisson’s ratio close to zero. A prediction of m outside its ther-
modynamical domain [�1,1/2] would show an inconsistency of our model. On the contrary and in spite of its
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simplicity, it appears self-consistent. Obviously, the prediction of Poisson’s ratio close to zero has to be taken
with caution, representing only an estimation of our simplified model. However, a surprisingly close to zero
Poisson’s ratio of m � 0.07, has been recently measured for nanotubes by means of Brillouin light scattering
(Casari et al., 2001).
6. Nanomechanical property estimations

Eliminating the coefficient of thermal expansion by Eq. (12) in the derived nanomechanical properties, and
assuming a Poisson’s ratio equal to zero, gives the following estimation for the nanomechanical properties, as
a function of the cohesion energy WC and of the atomic size a:
GC �
W C

6a2
; WC �

GC

a
; ð20aÞ

m � 0; E � 27

2
WC; ð20bÞ

rC �
E
6
; sC �

E
4p
; ð20cÞ

eC �
2

3
; cC � atan

1

2
. ð20dÞ
Better estimations could be deduced relaxing the simplified hypothesis of m � 0. Note the large general value
(around 67%) of the critical strain that, as suggested also by the critical shear strain, implies a very large duc-
tility at the nanoscale, independently of the considered material. Such a result seems to be confirmed by the
large ductility shown by classically brittle materials (if considered at the human size scale) like glass or carbon,
e.g., glass whiskers or carbon nanotubes (Yakobson et al., 1997).
7. Can our estimations be considered in reasonable agreement with the data reported in the literature?

The most well-known prediction for the ideal strength of crystals was derived by Orowan (1948) in the fol-
lowing form:
rðOrowanÞ
C �

ffiffiffiffiffiffiffiffiffi
EGC

2a

r
. ð21Þ
A detailed comparison between the Orowan’s prediction and a large number of experimental observations was
reported by Macmillan (1983), demonstrating that, in spite of its simplicity, Eq. (21) can reasonably predict
the ideal strength of materials. Thus, if our approach agrees with such a prediction, we conclude that it has
to be considered in agreement with the experimental observations on ideal strength of solids. Obviously,
our approach as well as the Orowan’s estimation have to be considered as reasonable estimations rather than
as exact predictions. Rearranging Eqs. (20) we find:
rC �
ffiffiffiffiffi
27

36

r ffiffiffiffiffiffiffiffiffi
EGC

2a

r
� 0:9rðOrowanÞ

C . ð22Þ
Thus, the two estimations are in reciprocal agreement.
Finally, we note that, applying quantized fracture mechanics (Pugno and Ruoff, 2004) considering the frac-

ture quantum as coincident with the atomic size, the prediction of the ideal strength is:
rðQFMÞ
C �

ffiffiffi
4

p

r ffiffiffiffiffiffiffiffiffi
EGC

2a

r
� 1:1rðOrowanÞ

C ð23Þ
again in agreement with the previous model.
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Now, let us focus the attention on carbon (graphitic form), for which a � 1.54 Å and WC � 7.36 eV/atom
(Kittel, 1966). Correspondingly, from Eqs. (20) we estimate:

(1) m � 0; experiments on carbon nanotubes seem to confirm this prediction: a surprisingly close to zero
value of m � 0.07 has been recently measured (Casari et al., 2001).

(2) E � 725 GPa; it is well known that the Young’s modulus for ideal carbon nanotubes, or graphite, is
expected to be of the order of E � 1 TPa (Qian et al., 2002). Values close to 800 GPa were measured
by Yu et al. (2000).

(3) GC � 8.3 N/m (and WC � 54 GPa); a reference value for carbon nanotubes is GC � 8.4 N/m (Lambin
et al., 1998).

(4) eC � 67% (and cC � 27�); based on molecular dynamics atomistic simulations (Yakobson et al., 1997), a
value of eC � 40% is locally predicted in monoatomic chains due to high strain fracture of carbon
nanotubes.

(5) rC � 121 GPa (and sC � 58 GPa); strength of ideal carbon nanotubes, or graphite, is expected to be of
the order of rC � 100 GPa (Qian et al., 2002). Values up to 64 GPa were measured by Yu et al. (2000).

Eventually, the toughness at the nanoscale is predicted by definition as KIC ¼
ffiffiffiffiffiffiffiffiffi
GCE
p

� 2:45 MPa
ffiffiffiffi
m
p

, and,
from Eq. (12), the coefficient of thermal expansion is a � 8 · 10�6 K�1, whereas, considering TC � 4000 K
would give a displacement localization (ratio between maximum and mean values of the displacement during
thermal vibrations) Cx � 20.

The nanoscale stress–strain relationship of carbon (Eq. (5)) is reported in Fig. 1.
It is important to note that the predicted values substantially agree with the experimental results at the

nanoscale and that they are completely different from the corresponding values at the macroscale. In fact,
strong size-effects on material properties are expected (Carpinteri and Pugno, 2004).

8. Nanomechanics as the borderline between classical and quantum mechanics: Young’s modulus and

crack propagation

The last considerations are on brittle crack propagation at the nanoscale. The velocity of the crack prop-
agation, as well as of the elastic waves, is of the order of

ffiffiffiffiffiffiffiffiffi
E=q

p
, q being the density of the considered material.

According to special relativity, it must be smaller than light velocity c, so that the corresponding maximum
value of the Young’s modulus results to be ESR

max
� qc2, e.g., and therefore around 1020 Pa for q � 103 kg/m3

(thus, much larger than the observed values).
A more interesting upper-bound for Young’s modulus is imposed by quantum mechanics, considering frac-

ture propagation at the nanoscale coupled with the Heisenberg’s principle. In one of its forms, the principle
states that DWDt P �h, DW and Dt being respectively the energy and the time spent in the process, and
�h ¼ h=2p, where h is the Planck’s constant. With reference to fracture propagation, evaluating the time as
Dt � a=

ffiffiffiffiffiffiffiffiffi
E=q

p
, and the energy as DW � GCa2, we obtain:
EQM
max

� qG2
Ca6

�h2
; ð24Þ
that, for q � 103 kg/m3, GC � 10 N/m and a � 1 Å, results to be around 10 TPa and of the same order of mag-
nitude (TPa) observed for example in carbon nanotubes. This very simple argument is intended to show that
nanomechanics can be considered at the borderline between classical and quantum mechanics (and, obviously,
outside the domain of special relativity). This is the reason why both classical and quantum mechanics have
been successfully applied in nanomechanical treatments.

9. A preliminary periodic table for the nanomechanical properties of elements

According to Eq. (22), and based on the values of the interatomic distances in the stable lattice reported
(table of periodic properties of the elements by Sargent-Scientific Laboratory Equipment Catalog Number
S18806) and of the cohesion energies (Kittel, 1966; referred to 0 K), the nanomechanical properties of the
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elements (for which both the interatomic distance and cohesion energy are known) as functions of their atomic
number are depicted in Figs. 2–8. A preliminary periodic table for the nanomechanical properties of elements
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Table 1
A preliminary periodic table for the nanomechanical properties of the elements

m = Poisson’s ratio (material-independent), E = Young’s modulus, rC = critical normal stress, s = critical shear stress, eC = critical normal
strain (material-independent), cC = critical shear strain (material-independent), GC = fracture energy (per unit area), wC = fragmentation
energy (per unit volume), KIC ¼

ffiffiffiffiffiffiffiffiffiffi
GCE
p

¼ fracture toughness, WC = cohesion energy, a = interatomic distance, Z = atomic number
(material properties referred to 0 K).
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is reported in Table 1. We have focused our attention on the main mechanical properties of materials, i.e., the
Young’s modulus, the strength and the fracture toughness. The periodicity in the nanomechanical properties
appears in a very clear way. Carbon—the chemical foundation of life—appears to be the strongest
element.
10. Model limitations and conclusions

The values that we have reported in the ‘‘preliminary periodic table for the nanomechanical properties of
elements’’, Table 1, are affected by different uncertainties. In particular, we have simply assumed the Poisson’s
ratio equal to zero, as suggested by the considerations reported in Section 5; however, zero represents an inter-
mediate value between its thermodynamic limits of �1 and 1/2. Furthermore, we have to note that the Pois-
son’s ratio is an anisotropic parameter, depending on the crystallographic direction along which it is
measured: thus, different values should be considered for each different crystallographic direction. For the sake
of simplicity, to present a preliminary periodic table, we have chosen to ignore anisotropy. Note that the clas-
sical periodic table of the elements itself ignores anisotropy, reporting mean values, as for example for the elec-
trical or thermal conductivity, as well as for the atomic radius. The ‘‘atomic radius’’ itself has a degree of
uncertainty, that affects our predictions. In fact, different types of atomic radii can be defined through different
models, e.g., Hartree–Fock approach, rigid spheres, and so on. A few of them are reported in the periodic
table of elements in terms of atomic (or also covalent or ionic) radius or volume. We note that the atomic
radius and volume are independent parameters, thus representing a first reason of uncertainty. In addition,
as previously emphasized, we have neglected anisotropy. However, in our approach different values for each
crystallographic direction of the parameter a could allow us to roughly take into account anisotropy, as well as
a ‘‘mean value’’ (e.g., the cubic root of the volume per atom) would allow us to consider not only simple cubic
lattice. Finally, our model ignores plastic deformations.

To clarify the previous points, we can treat as a simple example the case of sodium, considering its lattice
parameter (BCC, 0.42906 nm) and applying the rigid sphere model (2 atoms per cell in BCC). The Young’s
modulus of the sodium usually reported in the literature is close to 10 GPa, against our preliminary prediction
of 14 GPa. According to the periodic table of the elements, the atomic radius of the sodium (that we have
used) is 0.190 nm, whereas the atomic radius that we calculate, remembering that the closed packed direction
is [111] (diagonal), is 0.186 nm. The same value is deduced starting from the volume of the unit cell (cube of
the lattice parameter for BCC) and taking into account the packing factor for BCC (0.68). Thus, considering
0.186 nm instead of 0.190 nm would yield E � 14 · 0.1903/0.1863 � 15 GPa. On the other hand, removing the
approximation of a vanishing Poisson’s ratio, E

ð1�2mÞ � 15 GPa, so that to capture the correct value of
E � 10 GPa, a value of m � 0.17 is deduced.

We conclude that our preliminary predictions must be considered only simple estimations; however in spite
of its limits, the approach reported in this paper could be of interest due to its simplicity and generality.
References

Carpinteri, A., 1997. Structural Mechanics—A Unified Approach. E&FN Spon, New York.
Carpinteri, A., Pugno, N., 2002. One-, two- and three-dimensional universal laws for fragmentation due to impact and explosion. J. Appl.

Mech. 69, 854–856.
Carpinteri, A., Pugno, N., 2004. Scale-effects on average and standard deviation of the mechanical properties of condensed matter: an

energy based unified approach. Int. J. Fract. 128, 253–261.
Casari, C.S., Li Bassi, A., Bottani, C.E., 2001. Acoustic phonon propagation and elastic properties of cluster-assembled carbon films

investigated by Brillouin light scattering. Phys. Rev. B 64, 85417/1–85417/5.
Chopra, N.G. et al., 1995. Boron nitride nanotubes. Science 269, 966–968.
Frenkel, J.Z., 1926. Zur theorie der elastizit. atsgrenze und der festigkeit kristallinischer körper. Z. Phys. 37, 572–609.
Iijima, S., 1991. Helical microtubules of graphitic carbon. Nature 354, 56–58.
Jiang, H., Liu, B., Huang, Y., Hwang, K.C., 2004. Thermal expansion of single wall carbon nanotubes. J. Eng. Mater. Technol. 126,

265–270.
Kittel, C., 1966. Introduction to Solid State Physics. John Wiley & Sons, New York.
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