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In this paper a modification of the classical Weibull statistics is developed for nanoscale
applications. It is called nanoscale Weibull statistics. A comparison between nanoscale and classical
Weibull statistics applied to experimental results on fracture strength of carbon nanotubes clearly
shows the effectiveness of the proposed modification. A Weibull’s modulus of ~3 is deduced
for nanotubes. The approach can treat (also) a small number of structural defects, as required for
nearly defect-free structures (e.g., nanotubes) as well as a quantized crack propagation
(e.g., as a consequence of the discrete nature of matter), allowing to remove the paradoxes
caused by the presence of stress intensifications. © 2006 American Institute of Physics.
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I. INTRODUCTION

Weibull statistics' for strength (or time to failure, fatigue
life, etc.) of solids and deterministic linear elastic fracture
mechanics” (LEFM) do not apply properly at the nanoscale.
Weibull statistics assumes that the number of critical flaws is
proportional to the volume or to the surface area of the struc-
ture, whereas single-crystal nanostructures are anticipated to
be either defect-free or to have a small number of (critical)
defects. Recently LEFM, which assumes infinite ideal
strength of solids, as well as large (with respect to the so-
called “plastic zone”) and perfectly sharp cracks, has been
modified and a theory, quantized fracture mechanics® (QFM),
has been presented that quantizes the crack advancement.
QFM is intended for treating defects of any size and shape
(e.g., atomic vacancies and nanoholes). In this paper we
present a modification of the Weibull statistics for describing
the strength of solids (also) at the nanoscale. We apply this
statistical treatment to the largest collection of carbon nano-
tube strengths available.* The Weibull modulus for nano-
tubes is obtained as ~3; furthermore, the statistical data
analysis suggests that a small number of defects were critical
for such nanotubes. An application to different types of whis-
kers is also discussed. The proposed approach, coupled with
quantized fracture mechanics, can treat stress distribution
also if dominant stress intensifications are present, thus re-
moving the classical paradoxes related to the nonconver-
gence of the Weibull integrals.

Il. CLASSICAL WEIBULL STATISTICS

Classical Weibull statistics' assumes the probability of
failure P, for a specimen of volume V under uniaxial stress
o(P) (a function of the considered point P in the volume V)
as
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Plo)=1-exp —f [U(P)]mdv , (1a)
vL Gov
or equivalently,
Pf(a')=1—exp[— W(Ul)m], (1b)
ov

where oy, and m are Weibull’s scale (with anomalous physi-
cal dimension) and shape (dimensionless) parameters, re-
spectively, and V" is an “equivalent” volume that refers to a
reference (e.g., the maximum) stress o in the specimen,5 de-
fined by comparing Egs. (1a) and (1b). If the specimen is
under uniform tension o(P)=o0 and V'=V.

The surface-flaw-based Weibull distribution simply re-
places the volume V in Egs. (1) with the surface area S of the
specimen (and oy, with a new constant o),

Plo)=1-exp| - f {U(P)}mdS , (2a)
sL Oos
Plo)=1 —exp[—S*(UL)m]. (2b)
0s

Note that gy, or gys have the anomalous physical di-
mensions of a stress times a volume or a surface raised to
1/m, so that the exponents in Egs. (1) and (2) are evidently
dimensionless.

The cumulative probability P{a;) can be obtained ex-
perimentally as®

i-1/2
N

P f(a' )= > (3)
where N is the total number of tests and the observed
strengths o, ..., oy are ranked in ascending order.

The volume- and surface-based approaches become
identical for the case of fracture of the external wall of nano-
tubes under (nearly) uniform tension, such as for the 19
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TABLE I. Experimental results on strength of multiwalled carbon nanotubes
(only the external wall was fractured) and nanotube outer diameters and
lengths (Ref. 4).

Test Diameter Length Strength
No. (nm) (um) (GPa)
1 28.0 4.10 11
2 28.0 6.40 12
3 19.0 3.03 18
4 31.0 1.10 18
5 28.0 5.70 19
6 19.0 6.50 20
7 18.5 4.61 20
8 33.0 10.99 21
9 28.0 3.60 24
10 36.0 1.80 24
11 29.0 5.70 26
12 13.0 2.92 28
13 40.0 3.50 34
14 22.0 6.67 35
15 24.0 1.04 37
16 24.0 2.33 37
17 22.0 6.04 39
18 20.0 8.20 43
19 20.0 6.87 63

nanotubes experimentally investigated4 (Table I). This is true
because V=Str=mwDLt, where ¢ is the constant spacing be-
tween nanotube walls (~0.34 nm) and thus assigned as the
shell thickness, and D and L are the nanotube diameter and
length, respectively (V'=V, §*=5).

A thorough discussion of the experimental configuration
and method of tensile loading is provided by Yu et al*’
Briefly, the method involves a nanomanipulator device that
operates in a scanning electron microscope. We also note the
supplemental information,* which provides the geometry of
each of the 19 multiwalled carbon nanotubes (MWCNT’s)
tested (http://www.sciencemag.org/feature/data/
1046083.shl).

The standard Weibull statistics applied to this set of frac-
ture strength data is shown in Fig. 1. The Weibull modulus is
found to be ~3. However, the correlation is very poor, show-
ing a coefficient of correlation R>=0.67. Perhaps such a sta-
tistics does not describe the real nature of strength of mate-
rials at the nanoscale.

Welibull statistics on nanotubes

-
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FIG. 1. Weibull statistics for strength of carbon nanotubes (Table I).
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lll. NANOSCALE WEIBULL STATISTICS

According to QFM (Ref. 3) a quantized crack propaga-
tion has to be considered. QFM yields a better understanding
of the experimental results and agrees with numerical simu-
lations based on molecular mechanics and ab initio quantum
mechanics.® The existence of a fracture quantum suggests
that just a very small defect can cause the failure of a nearly
defect-free structure. For example, a single atomic vacancy
(a very small hole) in an infinitely large graphene sheet re-
duces its strength by ~20% from the ideal strength.3 Thus, at
the nanoscale just a few defects can be responsible for the
failure of the specimen, regardless its volume or surface. In
addition, the tensional analog of the energy-based QFM sug-
gests that not the stress ¢ but its mean value o along a
fracture quantum has to reach a critical value to cause the
failure of the specimen. Note that replacing o with ¢ in the
Weibull approach is sufficient to remove the classical para-
doxes associated with the nonconvergence of the Weibull
integrals at stress intensifications (where the integral of o
diverges whereas the integral of o is finite).

Correspondingly, taking into account directly the num-
ber n of critical defects and the quantized stress ¢, from
Egs. (1) and (2) we can formulate the nanoscale Weibull
statistics (NWS) as

Po)=1-exp 2[?} , (4a)
n 0
Plo")=1 —exp[—n*(i)m], (4b)
9o

where n” is defined by comparing Egs. (4a) and (4b) and can
be considered an equivalent number of defects; oy, and m are
two constants.

As an example we apply NWS to the experimental re-
sults on fracture strength of nanotubes.® As previously de-
scribed, the application of the Weibull statistics (identical for
surface- or volume-based defects, as a consequence of the
two-dimensional nature of the experimentally stretched ex-
ternal nanotube walls) is shown in Fig. 1.

The nanotubes were basically in uniform tension, thus
o' (n)=0"=0 and n"=n, where o is the applied load and n
is the number of critical defects. By applying NWS simply
considering n=1, we find m~2.7 (and o,~31 GPa, see Fig.
2) with a significantly better correlation of R*=0.93 with
respect to the interpretation based on the classical Weibull
statistics (please also compare Figs. 1 and 2).

IV. COMPARISON BETWEEN CLASSICAL AND
NANOSCALE WEIBULL STATISTICS

Let us assume fibers with circular cross-sectional area
(e.g., nanotubes) under uniform tension, i.e., o' (n)=0 =0
and n"=n. The Weibull statistics assumes that n=kD®L5,
with @=2 and B=1 if volume flaws are considered, or «
=1 and B=1 if surface flaws are considered (and k is a con-
stant). On the other hand, we have noted that for nearly
defect-free structures, one may assume “point-flaws” defects,
i.e., that failure occurs at n=1 (or equivalently at a value of
n independent from the specimen size) for which =0 and
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2.  Nanoscale Weibull statistics on nanotubes
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FIG. 2. Nanoscale Weibull statistics for strength of carbon nanotubes (Table

L 0 (n)=0"=04ppiea and n" =n=1).

B=0, so that, in general, it may be more appropriate to ex-
pect 0= a<2 and 0<B=1. Note that this corresponds to
substituting the volume/surface in the Weibull integrals with
a fractal volume, always intermediate between a geometrical
point and an Euclidean volume.” For example, if “length-
flaws” defects are considered =0 and B8=1, i.e., n>*L; for
example, for the nanotubes previously investigated this as-
sumption would lead to m~2.7 and R*>=0.74. Thus, in our
hypotheses, NWS considers n=kD“L? with 0<a<2 and 0
<pB=<1 (or n=kH*LPW? for rectangular cross-sectional ar-
eas WX H, with 0<a,fB,y<1, e.g., nanowires). Accord-
ingly, it is clear that NWS can be applied not only at nanos-
cale. We note that for such an example Eq. (4) would
correspond, for the limiting case of B=1, to the modified
Weibull distribution proposed by Zhu et al.'’ in the study of
the strength of sapphire whiskers and Nicalon SiC fibers.
They showed that such a statistics includes all the three ef-
fects that have to be incorporated” for a correct description
of the strength of solids: (i) extreme value statistics,'? (ii)
fracture mechanics,” and (iii) material characterization (e.g.,
dependence between length of the critical defect and speci-
men geometry). Thus, evidently, such effects are also in-
cluded in our generalization, in which fracture mechanics is
replaced by QFM.

Defining the nominal strength oy of the material for a
specified value of Py, e.g., PAo=0y)=(1-¢")=0.63 (oy is
thus defined as the strength corresponding to the 63% prob-
ability of failure; n=kD®LP) the corresponding size/shape
effect is predicted according to Eq. (4) as

oy= O_Ok—l/mD—a/mL—B/m. (5)

Strictly speaking Eq. (4) is defined for o< o (here o
=¢), where o, is the (finite) ideal strength of solids,
whereas obviously P{o=0oc)=1. Accordingly, in Eq. (5)
oy is limited by .. We note that the size effect (thus assum-
ing self-similar structures, i.e., Do L) predicted by Eq. (5) is
a power law, in agreement with the fractal size-effect law
proposed by Carpinteriw’14 (for a unified approach see also
the works of Carpinteri and Pugnog’ls). Note that the ratio
between the exponents of D and L is equal to a/f. In the
classical Weibull statistics this ratio is set equal to 2 (volume
flaws) or 1 (surface flaws). As emphasized by Zhu et al.,"’
the ratio a/ 8 was observed to be significantly different for
sapphire (a-Al,03) whiskers.'®!” These whiskers were
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chemically polished to remove surface flaws, so that accord-
ing to Weibull a/B=1 was expected. On the other hand,
such a ratio was observed as even larger than 2 (that corre-
sponds to volume flaws): 7.0 for A type (fiber axis orienta-
tions (1120) and (1010), oo D™O21L~003) again 7.0 for C
type (axis orientation {(0001), oo D=*14L=092) or 15.4 for
A-C type (axis orientation (1011), oy D~247L016)_ Further-
more, only for unpolished A-type sapphire whiskers a value
of a/B~1.43 (oy*D L% thus in the range expected
by the Weibull statistics, was observed.'*!” For unpolished C
type they observed no length dependence at all, and oy
o« D70 A similar strength dependence, as oy*D™!, was
observed in iron or copper whiskers.'® Thus, it is clear that
such size/shape effects cannot be explained by Weibull sta-
tistics, whereas Eq. (5) is compatible with the observations
reported in the whisker literature (see also Levittlg), as em-
phasized by Zhu et al. 19 to demonstrate on sapphire whiskers
the effectiveness of their Weibull modification (limit case of
NWS for o'(n)=0"=0 and n* =n=kD®LP with B=1).

As a final example, we consider the «@-Si;N, whiskers
investigated by Iwanaga and Kawai and Ogata and
Shibutani;*’ they observed a maximum value of the strength
equal to 59 GPa (evidently close to the expected ideal mate-
rial strength, see the first-principles calculations™'). A linear
dependence for the whisker a-Si;N, strengths on their diam-
eter was clearly observed (the whisker lengths were approxi-
mately constant and around 1-2 mm). We first assume the
volume-flaw-based Weibull statistics, fitting their data yields
m~3.3 (R*=0.89) and oD %! Assuming surface flaws
we find m~2.9 (R?=0.89) and o<D%3* Even if the ob-
served dependence between strengths and diameters suggest
that here considering n=1 is not realistic, since it would
correspond to a size-independent strength such a case would
correspond to m~2.5 (R*=0.88). Furthermore, fitting their
experimental results on size effects, we find oo D04 sug-
gesting that these failures were probably surface dominated.
The example shows that for larger structures in general n
=kD®LP has to be consider in the NWS rather than simply
n=1 (we note that the availability of only six strength values
means that one should be cautious in “overinterpreting” the
statistical fits).

V. CONCLUSIONS

The comparison between classical and nanoscale
Weibull statistics applied to nanotubes clearly shows the ef-
fectiveness of the proposed modification (also) for nanoscale
applications. The Weibull’s modulus for nanotubes is de-
duced as ~3. Comparing classic and nanoscale Weibull sta-
tistics makes clear the role of the fracture quantization: this is
crucial to treat stress intensifications in the specimen, for
which the classical Weibull integrals do not converge, in con-
trast to what happens in our treatment. Finally, the nanoscale
statistical data analysis suggests that a small number of de-
fects, perhaps simply one critical defect in each of the 19
different carbon nanotubes that were fractured, were respon-
sible for breaking of these nanotubes.
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