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Abstract

Functionally graded materials (FGMs) are special composites in which the volume fractions of constituent materials
vary gradually, giving continuously graded mechanical properties. The aim of this paper is the evaluation of the strength
of structures composed by FGMs incorporating re-entrant corners – tending to the more common crack for vanishing cor-
ner angle. The end result is useful in engineering applications predicting the strength of the element corresponding to the
unstable brittle crack propagation in such innovative materials. To show the general validity of the method, heterogeneous
plates under tension and beam under bending containing re-entrant corners and by varying corner angle, depth and grad-
ing of the FGM are considered. Ad hoc performed numerical finite element simulations, by using the FRANC2D code,
agree with the theoretical predictions.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Non-homogeneous material systems with gradual variation in properties are collectively referred to as func-
tionally graded materials or FGMs. The spatial variation of the elastic and physical properties of the material
makes FGMs an attractive alternative to composite solids opening new possibilities for optimizing both mate-
rial and component structures to achieve high performance and material efficiency. Gradual variation of mate-
rial properties in FGMs, unlike abrupt changes encountered in discretely layered systems, is known to improve
failure performance while preserving the intended thermal, tribological, and/or structural benefits of combin-
ing dissimilar materials. Consequently, the concept of using FGMs, for improving material performance has
recently received considerable attention from the research community [1]. On the other hand, it also poses at
the same time challenging mechanics problems including the understanding of damage and fracture behavior
of such materials. The fracture behaviour of FGMs is an important design consideration. A crack in a FGM
may exhibit complex behaviour [2,3]. Significant efforts on FGMs have been made in the study of cracks but
the more general problem of a re-entrant corner [4] – tending to an edge crack for vanishing corner angle – has
not been treated until now. This represents the aim of the present analysis.
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Nomenclature

E Young’s modulus
N axial force
M bending moment
A* elastic cross-section area
S* elastic static moment
I* elastic inertia moment
r applied stress
rij stress-field
rC critical (failure) stress
ru material strength
KI stress-intensity factor (Mode I)
KIC material fracture toughness (Mode I)
r, u polar co-ordinates
y rectangular co-ordinate
a power of the stress singularity
Sij function describing the angular profile of the stress-field
f shape function for a crack
g generalized shape function for a flat angle
b structure height
a defect length
c re-entrant corner angle
l structure length
t structure thickness
P applied load
PC critical (failure) load
d0 fracture quantum
s brittleness number

Superscripts

* generalized quantities for re-entrant-corners (0 < c < p)
p generalized quantities evaluated for a flat angle (c = p)

ˆ generalized quantities for functionally graded materials (absence of superscripts denotes
homogeneous cracked structures, c = 0; if not differently specified)
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Some of the early works on the fracture mechanics of FGMs include those by Atkinson and List [2], and
Delale and Erdogan [3]. They show that the asymptotic crack tip stress field possesses the same square root
singularity as that in homogeneous materials. It was later confirmed by Eischen [5] using eigenfunction asymp-
totic analysis. According to this result the asymptotic stress field near the crack tip in FGMs can be expressed
as that in homogeneous materials. In particular, in [3] it has been studied analytically the behaviour of a crack
in an infinite FGM plate with the elastic material constants varying in the direction parallel to the crack. This
study indicates that Young’s modulus has a significant effect on the stress field, but the effect of Poisson’s ratio
can be ignored. More recently Erdogan and co-workers [6] propose the multiplication of the conventional sin-
gular stress at a given point by the ratio of the Young’s modulus evaluated at that point and at the crack tip.
This hypothesis satisfies the equations of compatibility exactly, although – being limited in its own region of
dominance – it obviously does not satisfy the conditions for equilibrium. In that paper [6] – summarizing
recent advances in fracture mechanics of FGMs – theoretical results for cracks oriented along the elastic gra-
dient and subjected to various loading conditions are also presented.
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Extensive research on various aspects of fracture of isotropic FGMs has been conducted not only under
mechanical loads, as previously discussed, but also under thermal loads [7–12]. Mixed-mode [4,13,14] crack
problems have been investigated. Ozturk and Erdogan [13,14] used integral equations to investigate Mode
I and mixed-mode crack problems in an infinite non-homogeneous orthotropic medium with a crack aligned
with one of the material directions considering constant Poisson’s ratio. Among the dynamic investigations on
FGMs, transient stress-intensity factors for a Mode III crack lying in an elastic media with spatially varying
elastic properties normal to crack surfaces has been studied analytically by Babaei and Lukasiewicz [15].
Experimental investigations into the fracture of FGMs are limited due to the high cost and elaborate facilities
required for processing FGMs. Relatively fewer experimental and numerical investigations of the fracture
behaviour of FGMs have been conducted. Among the few experimental mechanics investigations on FGMs,
Parameswaran and Shukla [16] have shown experimentally that increasing toughness in the direction of crack
growth reduces crack jump distance in discretely layered FGMs.

In spite of these efforts, the understanding of the fracture process at the vertex of a crack tip in FGMs is still
limited and entirely absent for the more general re-entrant corner; fracture mechanics applied to sharp cracks
has been broadly developed in the last three decades, even if only as a special case of the more general problem
of re-entrant corners.

Since the pioneer paper [4] the problem of stress intensification at the vertex of re-entrant corners has not
been sufficiently addressed if compared with its considerable practical importance also in homogeneous struc-
ture [17–27].

The investigation on stress intensification at the vertex of re-entrant corners carried out at CSIRO Austra-
lian Forest Production Laboratory, Division of Building Research is very notable. In [17] the size scale effects
in structures with re-entrant corners due to the presence of a stress-singularity, noting that they occur only
when the member sizes are sufficiently large, have been emphasized. Consequently, such scale effects may
not appear in scaled-down laboratory testing. The work presented in [17] was continued in [18] extending con-
ventional finite element procedures to non-zero angle notch problems. The author considered also the problem
of crack initiation at corners of openings in walls and examined the effect of beam size on the sharp crack
propagation in concrete [19]. In [20] the determination of realistic measures for the peak local stresses occur-
ring at sharp re-entrant corners in plates under remote transverse loading has been considered. The authors
took up the singular character of re-entrant corners and carried out experimental investigation on classical
stress concentration. Then, the Reciprocal Work Contour Integral Method was used to obtain the stress sin-
gularity at the tip of corner configurations [21]. In this way, the numerical analysis of a lap joint with p/2 cor-
ner angles in mixed mode loading has been performed. In [22] the expression of the brittleness number to study
the transition between brittle and stress collapses and the stress-intensity factor at the vertex of a re-entrant
corner applying Buckingham’s Theorem have been generalized. In the same paper a shape function for gen-
eralized stress-intensity factor, assuming a combination of LEFM and ultimate strength function, is defined.
According to the last hypothesis and to the results of an experimental investigation, the values of stress-inten-
sity factors varying the corner angle are reported.

More recently some authors [23] have obtained numerically, by Finite Element Method (FEM), the shape
function for a re-entrant corner with particular angles (0,p/2,2p/3). In [24] the stress and strain fields at the
vertex of a corner subjected to different boundary conditions, in plane problems of elasticity have been stud-
ied. In [25] the problem of evaluating linear elastic stress fields in the area of cracks and notches by Muskhe-
lishvili’s method based on complex functions has been consider. The stress-intensity factors of angular corners
have been also calculated for various geometrical and loading conditions by numerical solutions of singular
integral equations [26].

In [27] a relation between the stress-intensity factor for a corner and that for a crack, obtained from the
Novozhilov’s brittle fracture criterion [28], is presented. It is taken into account in [29]. The criterion [28] is
based on the hypothesis that the fracture of solids is a discrete process. We note here that a powerful
theory, namely Quantized Fracture Mechanics [30], the energy analog of the stress-based Novozhilov’s
approach, has been recently proposed and demonstrated to be valid also at the nanoscale. Based on
this hypothesis the prediction of the failure load for a homogeneous structural member with a re-entrant
corner has been recently obtained from a theoretical viewpoint [31,32]. Experiments agree with that
predictions.
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The theory herein developed represents the natural extension of the previous approach – dealing with re-
entrant corners in homogeneous materials – for FGMs. The results are the predictions of stress-intensity fac-
tors, shape functions and strengths for FGMs composite structural elements with re-entrant corners. Numer-
ical FEM simulations agree well with our theory.

2. Functionally graded materials

In the study of structures composed by linear elastic FGMs under axial load and bending moment (Figs. 1
and 2), we assume the conservation of the plane sections, as proposed in the study of multi-layered beam, see
[33]. The result is that the stress is not linear (along y) and can be evaluated as
rðyÞ ¼ EðyÞ
Er

N
A�
þM

I�
y

� �
ð1Þ
where Er is an arbitrary constant reference value of Young’ modulus, N and M the axial load and the bending
moment applied at the considered section and
A� ¼
Z

A

EðyÞ
Er

dA ð2Þ
is the elastic area, as well as
I� ¼
Z

A

EðyÞ
Er

y2 dA ð3Þ
represents the elastic moment of inertia.
The origin of the reference system, the elastic centroid, is defined from the following relationship:
S� ¼
Z

A

EðyÞ
Er

y dA ¼ 0 ð4Þ
From these equations we can evaluate the stresses and predict the strength for uncracked heterogeneous mem-
bers. The physical meaning of the elastic quantities is clear: they intrinsically take into account the stiffness of
the structure, representing a generalization for the heterogeneous case of the homogeneous counterpart.
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Fig. 1. Functionally graded plate in tension.
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Fig. 2. Functionally graded beam under three-point bending.
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3. FGM composite plate in tension

Considering a linear elastic homogeneous plate with a boundary crack (Fig. 1, with c = 0), the symmetrical
stress field around the tip of the crack can be written as
rij ¼ KIr�1=2SijðuÞ ð5Þ

where KI is the stress-intensity factor for the Mode I, r and u are the polar co-ordinates represented in Fig. 1
and Sij is a function describing the angular profile of the stress field.

For every structure it is possible to express the stress intensity factor as
KI ¼ rb1=2f ða=bÞ ð6Þ

where r is the far field stress, b is a characteristic size of the structure, a is the crack length and f is a shape
function depending on the geometry of structure and on the ratio a/b. The stress of failure rC is achieved when
KI is equal to its critical value KIC
KIC ¼ rCb1=2f ða=bÞ ð7Þ

Eischen [5] studied the stress and displacement fields around the crack tip in a non-homogeneous structure
whose elastic moduli were specified by continuous and generally differentiable functions. Its results show that
the correlation between the asymptotic stress singular field at the crack tip r̂ij and the corresponding stress
intensity factor bK I for the non-homogeneous structure is of the same form as that for the homogeneous struc-
ture of Eq. (5)
r̂ij ¼ bK Ir�1=2SijðuÞ ð8Þ

The superscript ‘‘̂ ’’ here distinguishes the heterogeneous case from the homogeneous one.

The presented equations can be generalized to the case of re-entrant corner with angle c (Fig. 1).
When both the notch surfaces are free, the symmetrical stress field at the notch tip for the homogeneous

structure is [22]
r�ij ¼ K�I ðcÞr�aðcÞSðcÞij ðuÞ ð9Þ
where the power a of the stress singularity is provided by the eigen-equation
ð1� aÞ sinð2p� cÞ ¼ sin½ð1� aÞð2p� cÞ� ð10Þ

and ranges between 1/2 (when c = 0) and zero (when c = p). Note that for Mode II crack propagation the
same eigen-equation holds if one of the two sides is multiplied by the factor �1. Accordingly, three regions
can be deduced: (i) 0 < c < 0.51p, in which both the crack propagation modes I and II present stress-singular-
ities, (ii) 0.51p < c < p where only the mode I stress-field is singular and (iii) p < c < 2p for which both the
stress-fields are not singular.

The superscript ‘‘*’’ here describes generalized quantities from the classical case of a crack to re-entrant cor-
ners. Analogously, for FGMs is
r̂�ij ¼ bK �I ðcÞr�aðcÞSðcÞij ðuÞ ð11Þ
If Buckingham’s Theorem for physical similitude and scale modelling is applied and stress and linear size are
assumed as fundamental quantities [22], an equation analogous to Eq. (6) has to be written as
bK �I ðcÞ ¼ r̂�baðcÞf̂ �ðc;EðyÞ; a=bÞ; ½bK �I � ¼ ½F �½L�a�2 ð12Þ

in which appears a generalized shape function dependent on re-entrant corner angle and Young’s modulus
grading. When the heterogeneous structure becomes homogeneous (symbols without ˆ, E(y) = const) and
the angle c vanishes, Eq. (12) must coincide with Eq. (6), whereas when c = p the stress-singularity disappears
and the generalized stress intensity factor bK �I assumes the physical dimensions of stress and becomes propor-
tional to the nominal stress. The stress of failure r̂�C is achieved when bK �I is equal to its critical value bK �IC
bK �ICðcÞ ¼ r̂�CbaðcÞf̂ �ðc;EðyÞ; a=bÞ ð13Þ
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Three of four limit cases of Eq. (13) – concerning crack and flat angle in homogeneous structures and flat an-
gles in heterogeneous structures – are actually known. If the angle is close to zero in an homogeneous struc-
ture, the corner becomes a crack and Eq. (13) becomes Eq. (7), where f is the known corresponding shape
function, e.g. (a/b < 0.6) [31]
f
a
b

� �
¼ 2

a
b

� �1=2

� 0:4
a
b

� �3=2

þ 18:7
a
b

� �5=2

� 38:5
a
b

� �7=2

þ 53:9
a
b

� �9=2

ð14Þ
In the case of angle close to p in heterogeneous structure, Eq. (13) becomes
bK �ICðc ¼ pÞ ¼ r̂u ¼ r̂p
Cf̂ �ðc ¼ p;EðyÞ; a=bÞ � r̂p

CĝðEðyÞ; a=bÞ ð15Þ

where r̂u is the strength of the material at the crack tip and the function ĝ takes into account the reduction of
the resisting cross-section. It can be obtained by integration over the ligament area, as suggested by Eq. (2)
ĝðEðyÞ; a=bÞ ¼
R

A EðyÞdAR
Alig

EðyÞdA
ð16Þ
For flat angle in homogeneous structure it becomes
g
a
b

� �
¼ ĝðEðyÞ ¼ const; a=bÞ ¼ 1

1� a=b
ð17Þ
The other limit case of Eq. (13), concerning a crack in FGM, as well as f̂ ðEðyÞ; a=bÞ and the general form of
f̂ �ðc;EðyÞ; a=bÞ, is actually unknown.

4. FGM composite beam under three-point bending

The same considerations can be done for different geometries, e.g. a beam composed by FGMs under three-
point bending. A three-point bending FGM composite specimen with a re-entrant corner is now considered
(Fig. 2). The stress-intensity factor can be expressed as [22]
bK �I ðcÞ ¼ bP �l
tb2�aðcÞ f̂

�ðc;EðyÞ; a=bÞ ð18Þ
that, in critical condition, becomes
bK �ICðcÞ ¼
bP �Cl

tb2�aðcÞ f̂
�ðc;EðyÞ; a=bÞ ð19Þ
For a crack in an homogeneous beam Eq. (19) assumes the well-known following form:
KIC ¼
P Cl

tb3=2
f ða=bÞ ð20Þ
where the function f is well-known and can be expressed as follows (a/b < 0.6) [30]:
f
a
b

� �
¼ 2:9

a
b

� �1=2

� 4:6
a
b

� �3=2

þ 21:8
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b

� �5=2

� 37:6
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b

� �7=2

þ 38:7
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b

� �9=2

ð21Þ
If we consider a flat angle
bK �ICðc ¼ pÞ ¼ r̂u ¼
bP p

Cl

tb2
ĝðEðyÞ; a=bÞ ð22Þ
where the function ĝðEðyÞ; a=bÞ describes the reduction of the resisting cross-section and can be evaluated by
integration over the ligament area, as suggested by Eq. (3)
ĝðEðyÞ; a=bÞ ¼
bEtb2ŷ=4R

Alig
EðyÞy2 dA

ð23Þ
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where bE is the Young’s modulus evaluated at the crack tip, and ŷ being the co-ordinate of the crack tip with
respect to the reference system defined – as suggested by Eq. (4) – by

R
Alig

EðyÞy dA ¼ 0. For an homogeneous
structure it becomes
g
a
b

� �
¼ ĝðEðyÞ ¼ const; a=bÞ ¼ 3=2

ð1� a=bÞ2
ð24Þ
The other limit case of Eq. (19), concerning a crack in FGM is, as well as f̂ ðEðyÞ; a=bÞ and the general form of
f̂ �ðc;EðyÞ; a=bÞ, actually unknown.

5. Stress intensity factor

In [27] a relation between the stress-intensity factor for a re-entrant corner and that for a crack is obtained
from the brittle fracture criterion presented in [28].

The brittle fracture criterion [28] should be written in the following integral form:
Z d0

0

r̂�ðyÞdy P r̂ud0 ð25Þ
where r̂u is a strength characteristic value for the material without defects and d0 is a finite length [28,30,31].
According to the Eischen solution [5], substituting the stress field around the vertex of the corner in FGMs –
given by Eq. (11) – into Eq. (25), we can rewrite the condition for brittle propagation as
bK �I ðcÞP ½1� aðcÞ�ð2pd0ÞaðcÞr̂u ð26Þ
where the right part of the inequality must represent the critical value of the stress-intensity factor
bK �ICðcÞ ¼ ½1� aðcÞ�ð2pd0ÞaðcÞr̂u ð27Þ
Evaluating Eq. (27) for a crack we obtain d0 (it is interesting to emphasize that d0 coincides with Irwin’s esti-
mate of the plastic zone diameter)
d0 ¼
2

p

bK 2
IC

r̂2
u

ð28Þ
Thus rather than a constant it is expected to vary with the structural size as the nominal strength and fracture
toughness of the material [34].

Substituting d0 into Eq. (27) yields
bK �ICðcÞ ¼ ð1� aðcÞÞr̂u
2bK IC

r̂u

 !2aðcÞ

ð29Þ
Erdogan [6] proposes the following extension to the Eischen solution [5] of Eq. (8):
r̂ij ¼
Eðr;uÞ
Eð0;uÞ

bK Ir�1=2SijðuÞ ð30Þ
that, in any case, for small r coincides with the Eischen’s solution [5] of Eq. (8). Eq. (30) can be rewritten for a
re-entrant corner as follows:
r̂�ij ¼
Eðr;uÞ
Eð0;uÞ

bK �I ðcÞr�aðcÞSðcÞij ðuÞ ð31Þ
Considering Eq. (31) instead of Eq. (11) into Eq. (25) gives a better estimation for the stress-intensity factor in
FGMs. On the other hand, it implies only very weak corrections, with exception for the cases of very high
Young’s modulus gradients.
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6. Shape function

The embrittlement of the structural response produced by the decrease in fracture toughness and/or by the
increase in strength ru and/or in the size b, can be described in a unitary and synthetic manner via the variation
in the dimensionless numbers [31] for FGMs
ŝ�ðcÞ ¼
bK �ICðcÞ
r̂ubaðcÞ ð32Þ
Larger the number ŝ�ðcÞ, larger the structure ductility. If it is over than a characteristic number ŝ�0ðcÞ the stress
collapse ðr̂� ¼ r̂uÞ precedes the generalized brittle collapse (bK �I ðcÞ ¼ bK �ICðcÞÞ for any relative corner depth a/b.
Eq. (32) shows that the brittleness and the ductility are structure-characteristics more than material-character-
istics: increasing the size b of the structure its embrittlement increases. Taking into account Eq. (29), relation
(32) may be reformulated in a generalized form:
ŝ�ðcÞ ¼ ð1� aðcÞÞð2ŝÞ2aðcÞ ð33Þ

In the opposite cases of crack or corner angle close to p (flat angle) we respectively obtain
ŝ ¼ ŝ�ðc ¼ 0Þ ¼
bK IC

r̂u

ffiffiffi
b
p ð34aÞ

ŝ�ðc ¼ pÞ ¼ 1 ð34bÞ
The last trivial equation has the meaning that for an uncracked structure the generalized brittle and the stress
collapses are coincident.

Considering a three point bending specimen and substituting Eq. (32) into Eq. (19) we obtain the dimen-
sionless failure load as a function of the generalized brittleness number and of the shape function
bP �Cl

tb2r̂u

¼ ŝ�ðcÞ
f̂ �ðc;EðyÞ; a=bÞ

ð35Þ
This kind of failure, when bK �I ðcÞ ¼ bK �ICðcÞ, is always intermediate between brittle ½bK I ¼ bK IC� and stress
½r̂� ¼ r̂u� collapses. We here refer to the ‘‘stress collapse’’ for stress-controlled failure, i.e., when the maximum
stress reaches the material strength, in contrast to the brittle collapse arising when the stress-intensity factor
equals the material fracture toughness. We do not consider here plastic reserves, assuming for each point of
the heterogeneous structure an isotropic linear elastic law.

Eq. (35) can be evaluated for a crack, as
bP Cl

tb2r̂u

¼ ŝ

f̂ ðEðyÞ; a=bÞ
ð36Þ
and for a flat angle
bP p
Cl

tb2r̂u

¼ 1

ĝðEðyÞ; a=bÞ ð37Þ
For a structural element with a crack of a given relative depth, the transition between brittle and stress col-
lapse [22,31] arises when the failure loads (36) and (37) are equal for
ŝ0 ¼
f̂ ðEðyÞ; a=bÞ
ĝðEðyÞ; a=bÞ ð38Þ
If the angle is different from zero, the crack becomes a re-entrant corner and the transition arises when the
failure loads (35) and (37) are equal for
ŝ�0ðcÞ ¼
f̂ �ðc;EðyÞ; a=bÞ

ĝðEðyÞ; a=bÞ ð39Þ
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The competition between the two kinds of collapses (35) and (37) is shown in the diagrams of Fig. 3 for the
case of homogeneous structures. The value of the brittleness number for which the corresponding generalized
fracture curve (35) is tangential to the curve of stress collapse (38) represents its characteristic value; for
higher values of ŝ� the stress collapse precedes the generalized brittle collapse for any relative corner depth
and thus a ‘‘flaw-tolerance’’ behaviour is observed.

Substituting Eqs. (38) and (39) into Eq. (33) we obtain the generalized shape function for the re-entrant
corner
f̂ �ðc;EðyÞ; a=bÞ ¼ ð1� aðcÞÞĝðEðyÞ; a=bÞ 2
f̂ ðEðyÞ; a=bÞ
ĝðEðyÞ; a=bÞ

 !2aðcÞ

ð40Þ
Exactly the same result can be found for plates in tension. It is to underline that, at the moment, function
f̂ ðEðyÞ; a=bÞ is our last unknown. This function, for a specified variation of the Young’s modulus E(y), can
be easily obtained numerically, as done by function f for homogeneous structures. An analytical solution
for this shape function will be proposed in the next section.
7. Strength

The result of Eq. (40) is important permitting, via Eqs. (29) and (13) or (19), to obtain the strength for a
structure composed by FGMs with a re-entrant corner.

The stress intensity-factor (for a crack) and the ultimate tensile strength of the material of the element in
object, can be respectively obtained as functions of the failure loads in the cases of angle equal to zero and flat
angle. Substituting the generalized stress-intensity factor (29) and the shape function (40) into Eq. (13) or (19)
we can obtain in a very synthetic form the failure load for a FGM composite member with a re-entrant corner
bP �CbP p
C

¼
bP CbP p

C

 !2aðcÞ

ð41Þ
where, for a plate in tension bP � r̂. It is to underline that, at the moment, f̂ and consequently bP C are un-
knowns. Eq. (41) is formally identical to that derived for homogeneous structures [31].

To have an analytical form for f̂ ðEðyÞ; a=bÞ, we can start noting that the ratio
bP �

C

P�
C

is, as a first approxima-
tion, independent from the corner angle. In particular
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bP �C
P �C
�
bP p

C

P p
C

ð42aÞ
or equivalently
R ¼
bP �CðEðyÞ; c; a=bÞ � P p

Cða=bÞ
P �Cðc; a=bÞ � bP p

CðEðyÞ; a=bÞ
� 1 8EðyÞ; c; a=b ð42bÞ
Eq. (42b) is satisfied by the known limit cases – crack in homogeneous structure and flat angle in heteroge-
neous/homogeneous structures – and it appears verified for the other cases (crack and re-entrant corners in
heterogeneous structure).

In order to perform an assessment of the presented theoretical formulation for FGMs, the parameter R of
Eq. (42b) which represents a hypothesis of mechanical similarity was computed according to a numerical pro-
cedure based on generalized isoparametric finite elements by Lim and Lee [35]. The public domain FEM code
FRANC2D (FRacture ANanlysis Code 2D) (developed by Wawrzynek and Ingraffea [36]) is used as a basic
framework for this parametric study. Assuming a two-layer three-point bending beam, the simulations have
been performed by varying the relative depth and the angle of the re-entrant corner as well as the grading of
the FGM. In particular a two-layered element is analysed by varying the thickness of the two layers and the
ratio of the Young’s moduli. Stress-intensity factors are worked out by applying a displacement correlation
technique, as also proposed in [35]. In these analyses, special attention is devoted to the proper representation
of the singular stress field near the singular points. Therefore, in the case of re-entrant corners, as well as for a
crack perpendicular to a bi-material interface, the order of the stress-singularity is preliminary worked out by
performing an asymptotic analysis. Then, by varying the placement of the mid-side node between quarter-
point and the mid-point position, the given order of the stress-singularity is modeled. The displacement cor-
relation technique is also generalized for treating these particular situations. More details about the numerical
method can be found in [37]. As theoretically predicted, parameter R appears very close to the unity [37],
showing that the hypotheses made for the derivation of the theoretical formulation are basically correct.
The larger but still contained (of the order of 10%) discrepancies with respect to the FEM simulations are
found for corner tips close to interface planes, for which a stronger stress singularity is expected.

Thus the numerical analysis clearly confirm that Eq. (42b) is valid and consequently, we have – see Eq. (13)
or (19)
f̂ �ðc;EðyÞ; a=bÞ
f �ðc; a=bÞ ¼ ĝðEðyÞ; a=bÞ

gða=bÞ
ru
bK IC

r̂uKIC

 !2aðcÞ

ð43Þ
Eq. (43) gives an identity for the limit case of flat angle. On the other hand, considering the limit case of a
crack, we obtain the function f̂ ðEðyÞ; a=bÞ
f̂ ðEðyÞ; a=bÞ ¼ ru
bK IC

r̂uKIC

ĝðEðyÞ; a=bÞ
gða=bÞ f ða=bÞ ð44Þ
and by Eq. (40), the shape function for a re-entrant corner in FGM composite structures can be determined. In
addition, from Eq. (42) derives
bP �C

P �C
¼ r̂u

ru

gða=bÞ
ĝðEðyÞ; a=bÞ ð45Þ
and as limit cases
bP C ¼ P C

r̂u

ru

gða=bÞ
ĝðEðyÞ; a=bÞ ð46aÞ

bP p
C ¼ P p

C

r̂u

ru

gða=bÞ
ĝðEðyÞ; a=bÞ ð46bÞ
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From Eq. (41) we can evaluate bP �C starting from the known values of bP C and bP p
C of Eqs. (46) simply evaluating

ĝ by Eq. (16) for a plate in tension or (23) for a beam under bending moment. The stress-intensity factor is
given by Eq. (29), as well as the shape function is given by Eq. (40) in which we have to substitute Eq.
(44). As a consequence – for a specified grading – we can easily solve the problem simply evaluating ĝ.

Note that the analysis assumes a notch tip with vanishing radius. On the other hand a simple correction to take
into account the presence of a blunting can be derived according to Quantized Fracture Mechanics, see [30].

These theoretical results are very useful allowing to predict in a very simple manner the failure load for a
structure composed by FGMs having re-entrant corners. The theory is applicable, as shown by the two exam-
ples of plates and beams, to different schemes and also with re-entrant corners not subjected only to Mode I:
the generalization (29), as well as the extension of the Eischen result of Eq. (11) are also true for Modes II and
III, considering the ultimate shearing stress and the stress-intensity factor for the corresponding Mode.

Introducing a characteristic maximum value bmax of the structure, from the generalized brittleness number
(32), we can rewrite Eq. (13) emphasizing the attenuation of the size effects on the failure load when increasing
the angle of the corner
ln
r̂�C
r̂u
¼ ln

ŝ�ðbmaxÞ
f̂ �ðc;EðyÞ; a=bÞ

� aðcÞ ln b
bmax

ð47Þ
It shows that for a 5 0, the failure load decreases with size b. For an uncracked structure (a = 0) the size
effects vanish.

8. Simplified useful formulas

The formulas here deduced can be simplified noting that (1 � a(c))22a(c) � 1 for each value of c (maximum

error lower than 6% – see [31]) and rubK IC

r̂uKIC
� 1 (invariable finite length d0). The generalized stress-intensity fac-

tor, can be simply obtained from the values of the strength r̂u and fracture toughness bK IC of the material at the
tip of the re-entrant corner and from the corresponding power of the singularity a (from Eq. (10))
Stress-intensity factor: bK �IC � r̂u

bK IC

r̂u

 !2a

ð48Þ
The generalized shape functions can be obtained from the well-known values of f, g (Eqs. (14) and (17) for the
plate, or (21) and (24) for the beam) as
Shape function: f̂ � � ĝ
f
g

� �2a

ð49aÞ
where
Plate in tension: ĝ ¼
R

A EðyÞdAR
Alig

EðyÞdA
; ð49bÞ

Beam under three point bending: ĝ ¼
bEtb2ŷ=4R

Alig
EðyÞy2dA

; Reference system:

Z
Alig

EðyÞy dA ¼ 0 ð49cÞ
Finally, the strengths for FGM composite elements with re-entrant corners can obtained as
Strength, plate in tension: r̂�C ¼
bK �IC

baf̂ �
; ð50aÞ

Strength, three-point bending beam: bP �C ¼ bK �ICtb2�a

lf̂ �
ð50bÞ
Even if the theory is quite complex, the results are simple. An example of application is given in the next sec-
tion. Thus, the proposed analytical approach could represent a key step towards an optimal design of FGM
composite structures against crack propagation.
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9. An example of application

The developed theory shows that to predict the strength of FGM structures containing re-entrant corners,
we have to obtain the function ĝðEðyÞ; a=bÞ for the specified grading. In this Section, an example is reported.
We assume a Young’s modulus (as well as the other material properties) linearly variable between two given
values, E1 (at the fiber where the re-entrant corner is placed) and E1 (at the other external fiber). According to
the formula reported in Section 8, for a plate in tension
Z

A
EðyÞdA ¼ tb

2
ðE1 þ E1Þ ð51aÞZ

Alig

EðyÞdA ¼ tðb� aÞ
2

ðbE þ E1Þ ð51bÞ
so that
ĝðEðyÞ; a=bÞ ¼
R

A EðyÞdAR
Alig

EðyÞdA
¼ E1 þ E1bE þ E1

1

1� a=b
¼ k1g

a
b

� �
ð52Þ
On the other hand, for three-point bending
ŷ ¼
bE þ 2E1

3ðbE þ E1Þ
ðb� aÞ ¼ k̂ðb� aÞ ð53ÞZ

Alig

EðyÞy2 dA ¼ ½1þ 6k̂2 � 4k̂� þ E1bE ½3þ 6k̂2 � 8k̂�
� �bE tðb� aÞ3

12
¼ k̂2

bE tðb� aÞ3

12
ð54Þ
so that
ĝðEðyÞ; a=bÞ ¼
bEtb2ŷ=4R

Alig
EðyÞy2 dA

¼ 2k̂

k̂2

3=2

ð1� a=bÞ2
¼ k2g

a
b

� �
ð55Þ
It is important to note that the value of the Young’s modulus bE at the crack tip is it-self a function of the ratio
a/b, i.e., bE ¼ ðE1 � E1Þ a

bþ E1. Introducing this law in Eq. (52) or (55), from Eqs. (48), (49a) and (50) the
strengths of the structure can be quantified.
10. Concluding remarks

The results of the paper are simple analytical laws to evaluate the strength of structures composed by
FGMs incorporating re-entrant corners – tending to the more common crack for vanishing corner angle.
The end findings are useful in engineering applications predicting the strength of the element corresponding
to the unstable brittle crack propagation in such innovative materials. To show the general validity of the
method, heterogeneous plates under tension and beam under bending, containing re-entrant corners, are con-
sidered. Propagations in different crack Mode conditions can be also treated. Ad hoc performed numerical
FEM simulations, by varying corner angle, depth as well as grading of the FGM and by using the FRANC2D
code, agree with the theoretical predictions.
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