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Abstract

We have previously reported that a universal growth law, as proposed by West and collaborators for all living organisms, appears to
be able to describe also the growth of tumors in vivo after an initial exponential growth phase. In contrast to the assumption of a fixed
power exponent p (assumed by West et al. to be equal to 3/4), we propose in this paper a dynamic evolution of p, using experimental data
from the cancer literature. In analogy with results obtained by applying scaling laws to the study of fragmentation of solids, the dynamic
behaviour of p is related to the evolution of the fractal topology of neoplastic vascular systems. Our model might be applied for
diagnostic purposes to mark the emergence of an efficient neo-angiogenetic structure if the results of our in silico experiments are

confirmed by clinical observations.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

In former times, tumor growth was simply described as
being exponential (‘slow’ or ‘fast’, or finally limited by a
saturation threshold), without any further attempt for a
quantitative description (Retsky et al., 1990). One would,
e.g. consider a growth from a few cells up to 1 liter tumor in
about 20 doublings and fit it with a Gompertzian curve
(Gompertz, 1825) on a pure phenomenological basis.
Presently, however, to explain the tumor growth dynamics,
one seeks for biological assumptions and/or physical
principles (e.g. energy conservation and scaling). In a
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previous paper (Guiot et al., 2003), we have proposed to
extend the universal growth law for all living organisms
(West et al., 2001; West and Brown, 2004) to include
neoplasies. West’s law conjectures that the incoming rate of
energy flow B is related to the mass m by a power law of the
type Bocm”, with p=3/4 as originally proposed by
Kleiber (1932). West et al. (1997) justified such a value
arguing that the distribution network (i) branches to reach
everywhere in any three-dimensional organism (according
to a fractal distribution), (ii) has terminal units (e.g.
capillaries or terminal xylems) independent of the body
size, and (iii) minimizes the total resistance and conse-
quently hence the energy required to distribute nutrients.
Also Banavar et al. (1999) approached the problem of
determining the exponent for a general distributive system,
showing that B is expected to scale as MP'' "2 if the
efficiency of the vascular network is maximized (D is the
dimensionality of the embedding space). Thus, in a three-
dimensional space, p = 3/4 follows from the condition of
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most efficient space-filling, without having to recur to
fractals. In a following paper (Banavar et al., 2002), the
value p = 3/4 is also obtained by requiring that the mass-
specific metabolic demands match the changing delivery
capacities of the network at different body sizes.

However, the “correct” value of p remains a controver-
sial issue as other values have also been proposed in the
literature. For instance, a recent paper (Dodds et al., 2001)
claims that p = 3/4 does not always yield a significantly
better fit for all the available data than p = 2/3, which is
based on a simple geometrical scaling of the body surface
area available for heat dissipation. Even the trivial
assumption p = 1 has been justified as the one leading to
the simplest hypothesis of direct proportionality between
incoming energy flow and mass.

In our opinion, the controversy reflects the rather
ambigous formulation of the question. Nature is of course
more complex than even the most sophisticated mathema-
tical model. Changing the ingredients of the model affects
the prediction of the p value and, in turn, may correspond
to different phases in the growth of the organism (or
tumor). Thus the universality, as defined, e.g. in the
framework of a recently proposed ‘black box’ formalism
by Hirsekorn and Delsanto (2004), would refer not to a
single value of p, but to a suitable range of values. In the
present contribution, we suggest that after an initial
exponential growth phase, p changes dynamically in the
range 2/3-1, reflecting the different developmental stages of
the vascular network and, more specifically, of angiogen-
esis. Our conjecture is supported by the prediction of
similar results by Carpinteri and Pugno (2002a) in a
completely different context (see Section 2) and by several
instances of observation of evolution of the fractal cancer
topology (Section 3). In Section 4, a mathematical model of
growth dynamics with variable p is presented and some
results are drawn and discussed in Section 5.

2. Correlation between scaling and fractal cancer topology

In a different context, Carpinteri and Pugno (2002a,b)
have developed universal scaling laws for energy dissipa-
tion during the fragmentation of solids by assuming a self-
similar size (i.e. fractal) distribution of fragments. Their
assumption implies a power law such as N o 2, where N
is the number of fragments with size larger than r, and D is
the so-called fractal exponent (a real positive number) of
the fragment size distribution. Accordingly, they obtain by
integration the total surface S of the fragments, as a
function of their total volume V, as S o VP, with
2<D<3.

Likewise, if the biological clusters (fragments) distribu-
tion is fractal by nature, and the energy transportation
(dissipation) is proportional to the surface, neglecting the
variation of density during growth (V o« m) yields the
scaling law B ocm”, with p= D/3, with 2/3<p<]1, as
conjectured in Section 1.

It is interesting to note that, according to the interpreta-
tion based on the analysis by Carpinteri and Pugno
(2002a), the exponent p should be strongly related to the
fractal nature of cancer topology and thus susceptible of
independent measurements. The idea of a fractal topology
has been proposed in the past by several researchers (see
e.g. Baish and Jain, 2000). In particular, Baish et al. (1996)
have shown that in vivo estimations of the fractal
dimension of planar vascular networks based on the box-
counting method (see Bunde and Havlin, 1994) range
between 1 and 2. Starting from the 2D observed exponent,
stereological methods give an estimate of the correspond-
ing 3D value, close to the 2D fractal exponent plus one, i.e.
D ranging between 2 and 3. Correspondingly, the value of
p = D/3 is comprised between 2/3 and 1. In particular, in
normal tissues and in four different tumor lines, implanted
in the dorsal skinfold chamber in immunodeficient mice,
Baish et al. (1996) observed a value of 2 for the 2D fractal
exponent (corresponding to D =2 + 1 = 3 in three-dimen-
sions and p =1) for normal capillaries, 1.7 (D =2.7,
p=0.9) for arteries and veins, and 1.88 (D =288,
p = 0.96) for tumor vessels, showing that tumor vascula-
tures are more chaotic and inefficient than normal
capillaries (Carmeliet and Jain, 2000), which are almost
uniformly distributed. These observations are in agreement
with our conjecture and, more specifically, with the
prediction of a scaling exponent of 2 for the ‘space-filling’
growth model, 1.71 for the ‘diffusion limited aggregation’
model, and 1.90 for the ‘invasion percolation’ model (Baish
et al., 1996). Thus tumor vascularization does not fully
satisfy the condition of a ‘space-filling’ network, assumed
by West et al. (1997), but could perhaps be better described
by an ‘invasion percolation’ model. Accordingly, normal
tissues and tumors differ deeply in their vascular structure
and metabolism.

3. Evolution of the fractal cancer topology

We report here some instances of observed evolution of
the fractal cancer topology. The first work, by Gazit et al.
(1997) report changes in the vascular system changes
during growth of tumors implanted in mice. Both the
fractal dimension D and the vessel density were monitored
by two-dimensional images during normal development
from the 6th to the 12th day, showing an increase from
around 1.6 (D = 2.6 in three-dimensions) to a maximum
value of 1.73 (D = 2.73) on the 10th day, followed by a
decrease. Likewise, also the vessel density shows a large
increase, reaching its maximum on the 11th day, before it
decreases. The authors were able to estimate a nearly linear
increase in D of 0.06 per day correlated to a nearly linear
increase in vessel density of 138 cm™2 per day.

In another relevant paper, the extraembryonic vascular
network of the chick embryo was investigated by Vico et al.
(1998) with similar methods. They found that the vascular
fractal dimension increases continuously from about 1.3
(D = 2.3) by the 60th hour to about 1.68 (D = 2.68) by the



C. Guiot et al. | Journal of Theoretical Biology 240 (2006) 459-463 461

112th hour, when a plateau is reached and D remains stable
at approximately 1.7 (D = 2.7). Provided that the angio-
genetic process is antagonized with angiostatic factors, the
fractal dimensionality of the vascular network has been
proven to reflect the observed decrease in branching
patterns.

Also Guidolin et al. (2004) showed that after delivering
docetaxel to cultured HUVEC cells in Matrigel, the fractal
dimension decreases about by 10% from the starting value
of 1.20 (D = 2.20). Finally, a paper by Parsons-Wingerter
et al. (1998) shows similar effects after angiostatin
delivering in the quail chorioallontoic membrane.

4. A mathematical model

According to the ontogenetic growth law of West et al.
(2001) and its extension to neoplastic growths by Guiot et
al. (2003), the actual mass m() of the tumor and its rate of
growth, dm/d¢, are non-linearly related:

dm » m\ 1-p
— am [1 (M) ] 1)
where M is the asymptotic value of m(¢) and a is a
parameter related to the metabolic rate of the particular
tumor cell line considered. We have removed the assump-
tion of p = 3/4 replacing it with p € (2/3, 1), as conjectured
in Section 1. An unspecified value of p has also been
assumed in a paper by Delsanto et al. (2004), in which the
ontogenetic growth model is tested under controlled
conditions of malnourishment and applied mechanical
stress. From Eq (1), the universal growth law follows:

r=(m/M)"™" =1-¢7", )

where m and r( are the initial values (at ¢t = 0) of m and r,
respectively, and

t= (1 — p)bt —In(1 — rg) 3)
with
b=aM’". 4)

From Eq. (1), it follows that m(¢) exhibits an inflection
point at a certain time ¢ = ¢/, corresponding to m = n?/,
which depends on the value of p. The simplest way to
determine »7 is from the plot of the experimental values of
dm/dt vs. m. (see Fig. 1).

As the complex processes involved in angiogenesis
presumably take some time to occur and are expected to
modify the nutritive delivery system quite slowly, we
assume a slow dynamic evolution of the fractal exponent
p = p(), 1.e. we neglect dp/dt in the derivatives. It follows
that:

dp (1 1—p

where p = m/m’ and

m = p'/"P M. (6)
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Fig. 1. Plot of dm/dt vs. m based on data on khjj tumors (Steel, 1977).
The experimental points cannot be fitted by a single value of p but,
according to our assumption of dynamical variation, they can be fitted by
different values of p according to the different stages of growth.

From the plot du/df vs. u, we obtain the best fitting
values of b and p corresponding to the mass »/ (and time
). Then M and « can be immediately computed from Egs.
(6) and (4), respectively. At this point p, can be evaluated in
its dynamical evolution (i.e. for each value of m and ¢) by
means of Eq. (4).).

There are, however, many other influences that affect a
growing tumor, such as the immune system and the
interaction between cells and cells of the surrounding
tissue. A more comprehensive analysis is therefore needed
to confirm the validity of the proposed procedure.

As a first example of application of the procedure, we
consider the analysis by Torres et al. (1995), in which a
model for the investigation of angiogenesis is presented. It
consists in the implantation of a Lewis’s lung carcinoma
multicellular tumor spheroid into the dorsal skinfold
chamber of mice. The authors monitored both the
morphometric parameters of tumor growth and the
development of the vascular networks around the tumor
focus, using intravital microscopy. By applying our
procedure to their data, we obtain the results reported in
Fig. 2. After an initial decrease to about 0.45, p starts to
grow up to a value around 3/4, where the angiogenetic
process reaches a plateau. According to Parsons-Wingerter
et al. (1998) and Vico et al. (1998), p is expected to grow
with the vascular density. However, from our plot it
appears that p starts growing only when the vascular
density has already reached a considerable level. Unfortu-
nately, the latter authors do not consider the evolution
from its very beginning, but they show some delay in the
relationship between fractal dimension and vascular
density. We infer that the initial decrease of p may be
due to a combination of adaptation of the implanted cell
line to the recipient’s microenvironment and to the process
of transition from the original (optimal) network to the
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Fig. 2. Predicted values of the scaling exponent p vs. time, based on data
from Torres et al. (1995) referring to tumors implanted in CB6 mice. The
corresponding values of the vascular density are also reported.

subsequent pre-angiogenetic structure. A new vascular
network needs to be well established before inducing a
local growth in p. As the angiogenetic processes occur in a
rather inhomogeneous manner, virtually all large tumors
assume a ‘mosaic-like” appearance, with a combination of
well oxygenated and necrotic regions (see e.g. Carmeliet
and Jain, 2000).

As a second example (Fig. 3), we investigate three out of
five cell lines of tumors growing in mice, as reported by
Steel (1977). The data from the other two cell lines cannot
be used for this purpose as the short duration of the
corresponding experimental series does not allow a proper
estimate of the tumor mass at the inflection point. Note
that, regardless of the cancer type, the power exponent p is
observed to change dynamically, i.e. after an initial
decrease (related to the implantation process as previously
discussed), it eventually rises up to saturation.

5. Discussion and concluding remarks

In this paper, we have studied the correlation between
tumor topology and the scaling exponent p, which we have
conjectured to vary dynamically in the range (2/3,1).
Consequently, we have modified the ontogenetic growth
model of West et al. (2001) and its extension to neoplastic
growths by Guiot et al. (2003) in order to develop a model
for the prediction of the dynamic behaviour of p. For the
application of the model to the analysis of experimental
data (tumor masses m), we have considered the plot of dm/
dz vs. m, which allows to evaluate p in the simplest way. We
found that, in general, after an initial decrease due to the
‘adaptation’ of the implanted tumor to the new environ-
ment in the avascular phase, p starts increasing. We
conjecture that this point marks the switch in the dominant
nutrient-replenishment mechanism from passive diffusion
to active perfusion conferred by the extent of vascular
density and distinct level of angiogenesis it yields.

This transition occurs in the three cell lines investigated
by Steel (1977) at an average tumor diameter of 6.6 mm
(£1.6 STD), clearly beyond the threshold of 2-3mm

'in vivo' tumors
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Fig. 3. Predicted values of the scaling exponent p vs. time, based on data
from Steel (1977) referring to three different tumor cell lines implanted in
mice. Noise in the data may be responsible for the final slight decrease of p
observed particularly in the khjj case.

which, according to Folkman (1971), should prompt the
onset of angiogenesis.

Values of p beyond 0.75 may suggest that active
perfusion is complemented by other supply mechanisms,
such as passive diffusion, when vascular density ap-
proaches its plateau. For the analysed data, this dynamic
p behaviour appears to be independent of the in vivo
cancer type. It is also interesting to note that the time at
which p starts growing, supposedly following the onset of
efficient angiogenesis, ranges between 5.3 and 14.2 days
after implantation. By rescaling it to the dimensionless time
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7 defined in Eq. (2), this temporal interval falls into a much
narrower range (from about 0.21-0.39). The t range might
be further reduced with a proper analysis of the implanta-
tion mechanism.

Based on the presented results, we argue that the scaling
exponent p shows distinct dynamic patterns in vivo and
that a monitoring of p may be of interest for diagnostic or
therapeutic purposes if the correspondence of the minimum
of p with the emergence of a neoangiogenetic structure is
confirmed (although currently, most of the clinical tumors
are detected long after the onset of angiogenesis). For
instance, in an effort to gain clinical input data for specific
cancer types such as brain tumors, one could imagine to
measure both tumor volume and its perfusion with distinct
magnetic resonance imaging (MRI) techniques (see e.g.
Cha, 2003).

In conclusion, from a merely computational point of
view, many of the current models for tumor growth could
fit the observational data satisfactorily by assuming that
one or more of their parameters might evolve in time. In
our case, however, to the variation of p can be given a
direct physical meaning, i.e. it can be related to the
occurrence of a variation in the topology of the nutrient
supply system, which can be measured indepedently.

To validate the model, in vivo experiments should
monitor, in parallel, the evolution of the fractal dimension
of the neovascular network and the tumor growth rate. The
estimation of the tumor volume should be very accurate,
giving a definite error bar, which allows a correct
estimation of the changing p values and of the sensitivity
of the above variation. Current contrast-enhanced in vivo
MR-imaging techniques are capable to study both volu-
metric tumor growth and vessel architecture in parallel,
dynamically and at a relatively high spatial resolution
based on the MR-setting available and the animal model
chosen. The control experiment would use standard histo-
pathological methods and assess vascular density and
tumor diameter through a process of selective labeling and
image-analyses of tissue sections. Contrary to the afore-
mentioned non-invasive imaging methods, the latter would
be an endpoint assessment, hence require multiple experi-
ments terminated at consecutive time points.
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