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ABSTRACT: Nowadays, whenever is possible and as an
alternative to open spine surgery, minimally invasive procedures
are preferred to treat spinal cord injuries (SCI), with percutaneous
injections or small incisions, that are faster, less traumatic, and
require less recovery time. Injectable repair systems are based on
materials that can be injected in the lesion site, can eventually be
loaded with drugs or even cells, and act as scaffolds for the lesion
repair. The review analyzes papers written from 2010 onward on
injectable materials/systems used/proposed for the regenerative
and combinatorial therapies of SCI and discusses the in vivo
models that have been used to validate them.

KEYWORDS: spinal cord injury, injectable hydrogel, injectable smart hydrogel, injectable composite, injectable nanoparticles,
injectable self-assembling peptides

1. INTRODUCTION

The incidence of spinal cord injury (SCI) is approximately
17 730 new cases each year in the United States.1 The leading
causes of injury are vehicle crashes, followed by falls, and the
cases of violence. Damages of the spinal cord (SC) often lead
to permanent functional and sensory loss due to the limited
regenerative capacity of the central nervous system (CNS).
The clinical therapeutic guidelines of neurorestoration in the

case of SCI are focused on alleviating secondary injury. They
consist of restricting active and passive movement, early
fixation, combined extramedullary and intramedullary decom-
pression, suitable cell therapies, early rehabilitation, or electric
stimulation therapy.2 In particular, repetitive and rhythmical
movements during early rehabilitation activate the spinal
networks thanks to the sensorimotor information, which allows
functional recovery and remodels the function of the cerebral
cortex.3 The neuroprotection aims to minimize secondary
injuries by pharmacological therapy (i.e., erythropoietin,
ibuprofen, indomethacin, antioxidants)4 to avoid cellular
apoptosis or necrosis and promoting neuronal survival. These
clinical guidelines are very important to facilitate treatments by
using prostheses or scaffolds to promote the regeneration of
neural cells. The neuroregenerative therapies, instead, differ
from the neuroprotective ones since they aim to create the best
conditions for the neural tissue to maximally express its
regenerative potential. The neuroregenerative approach is a
younger discipline, and thus few clinical trials have been
performed. However, neuroregenerative methods seem to have

less side effects than neuroprotective techniques. Given the
advantages of both methodologies, the research is going
toward a combinatorial and interdisciplinary approach.5−7

Currently, most of the clinical trials are based on stem cell
therapy6 or in situ pharmacological treatments. The main
difficulty of the cell transplantation regards the inhospitality of
the environment at and around the damaged tissue: inhibitory
molecules and an inflammatory status prevent tissue
regeneration, limit the cell survival, and the clinical efficiency
of cell therapy. Instead, pharmacological treatments such as (i)
neuroprotective agents8 (i.e., sodium salicylate, polyphenols,
aspirin), (ii) growth factors, as well as (iii) suppressors of
inhibitory molecules of the inflammatory response (i.e.,
suppressors of NOGO-A, myelin-associated glycoprotein
(MAG), oligodendrocyte-myelin glycoprotein (OMgp), and
chondroitin sulfate proteoglycans (CSPGs) digestion with the
administration of chondroitinase ABC (ChABC) or hyalur-
onidase)9−12 are hindered by the blood-brain barrier or blood
spinal cord barrier (BSCB) that limit their diffusion.
Furthermore, high systemic doses to reach a therapeutic
concentration at the site of the injury could induce tumor
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formation, fibrosis, or other negative effects caused by the off-
target of the molecules injected.13

Researchers are pushing toward solutions avoiding further
damages to the tissue. Injectable biomaterials can be precisely
positioned in the lesion site and eventually repetitively injected
to obtain the complete regeneration of the tissue. Moreover,
the therapeutic advantages of directly injecting therapies in the
parenchyma of the SC were proven superior concerning the
systemic delivery of materials.14

Some examples of injectable systems are (i) self-assembling
peptide materials (SAPs), whose gelation process is charge
dependent; (ii) amphiphilic diblock copolypeptide hydrogels
(DCHs), which have a shear-thinning property, allowing the
injection; (iii) gel containing multiple tryptophans and proline-
rich peptide domains, which undergo a sol−gel phase
transition upon mixing; or (iv) injectable thermosensitive
hydrogel of PEG−PLGA−PEG triblock copolymers.15,16 The
aim of this review is to provide an overview on the in situ
injectable scaffold-systems. The possible injectable solutions
analyzed belong to four categories: hydrogels, nanoparticles,
self-assembly peptides, and composites.

2. PATHOPHYSIOLOGY

The SCI following trauma is characterized by four subsequent
stages: immediate, acute (0−7 days), subacute (7−14 days),
and chronic (months/years) (Figure 1).
In particular, a SC contusion leads to an inflammatory

reaction at the lesion site with the infiltration of leukocytes and
activation of glial cells which limit the damage by reestablishing
the blood−brain barrier and ionic homeostasis17 (Figure 2).
However, the dense scar and inhibitory molecules such as
chondroitin sulfate proteoglycans (CSPGs), Nogo-A, OMgp,
MAG, which appear at later stages, are detrimental toward
regeneration18−20 (Figure 2). In particular, CSPGs interact
with proteins in the extracellular matrix due to their negative
charges and these interactions could inhibit the neurite
outgrowth following CNS injury.20 Thus, the inhibition of
CSPGs by using the bacterial enzyme ChABC seems to be very
promising for enhancing axonal regeneration.21

In the CNS, microglial cells are much slower compared to
the peripheral nervous system (PNS) in clearing this debris,
which may be present as long as 3 years postinjury.15 External
to the CNS, macrophages derived from circulating monocytes
reach injured tissues and some of them seem to represent
controlled recruitment needed for repair22 (Figure 2).

M1 monocyte macrophages were found to derive from
monocytes that entered the injured SC via monocyte
chemoattractant protein 1 (MCP1) through the adjacent SC
leptomeninges.22 M1s possess proinflammatory, phagocytic,
and proteolytic functions, essential for damaged tissue
digestion and debris removal. M2 macrophages instead come
from monocytes that transit through the brain-ventricular
choroid plexus (CP) via VCAM-1-VLA-4 adhesion molecules
and epithelial CD73 enzyme.22,23 Along with the CP,
leukocytes extravasate across the endothelium, interact with
the tightly connected epithelial cells, and enter the blood-
cerebrospinal-fluid (CSF), facilitating the CNS immunosur-
veillance.22,24 M2s possess anti-inflammatory functions and are
involved in tissue regeneration, growth, angiogenesis, and
matrix deposition, supporting tissue remodeling.22,25

During these detrimental phenomena, the neuroplasticity of
the SC promoted in some cases spontaneous recovery of
locomotor function after SC contusion.3 The reasons could be
the variation of existing neuronal pathways, the formation of
new connections, dendritic arborization remodeling, and
axonal sprouting, regulating the expression of neurotrophin-
3/4 (NT-3, NT-4), brain-derived neurotrophic factor
(BDNF), and the glial cell-derived neurotrophic factor
(GDNF).26 The spontaneous recovery also involves the
presence of proliferating ependymal cells at early postinjury
times, which later may have contributed to the expansion of

Figure 1. Timeline of the events following a SCI. Four stages characterize the injury progression: immediate, acute (0−7 days), subacute (7−14
days), and chronic (months/years).

Figure 2. Pathophysiology model during the regenerative phase,
involving the polarization of the monocytes in anti-inflammatory M2
macrophages to start the healing process.
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the ependymal zone and the formation of cellular trabeculae
within the lesion cavity.27 The cellular trabeculae may serve to
guide fibers from the CNS (like the corticospinal tract) into
the center of the lesion. The dorsal roots likely represent the
main source for axons and Schwann cells which provide most
of the myelin.27 The presence of several regenerating axons
within the lesion matrix after severe contusion injuries strongly
suggests that under some conditions, the tissue repair response
in the adult provides a substrate for growth.

3. INJECTABLE MATERIALS FOR SCI TREATMENT:
DESCRIPTION AND RESULTS

A traditional surgery often requires a large incision with
intrinsic risks, pain for the patient, perduring functional
mobility, long hospital stay, long time of recovery, and large
costs for the healthcare system. Minimally invasive surgical
procedures have root in the middle of last century, with the
experimental use of arthroscopy, but only in the 80s minimally
invasive surgery emerged as a preferred alternative to open
surgery procedures, to reduce trauma, surgery associated risks,
pain for the patient, and also treatment cost. Nowadays, the
use of minimally invasive surgical procedures is considered of
paramount importance as also evidenced in international
research and innovation roadmaps and programs. For the SC
minimally invasive treatments, in situ injectable materials such
as nanoparticles,21 smart hydrogels,3,28 injectable lipid micro-
tubes,29 self-assembling peptides,30 and self-assembling nano-
fibers31−33 have been widely investigated and proposed.
Injectable materials allow minimally invasive implantation
procedures and present shape versatility; some of them can
have stiffness comparable to the human spinal cord and
possess water retention.15 Moreover, they can be injected
repeatedly until the complete functional tissue formation.
Many of them can be functionalized or combined with
adhesion ligands (i.e., IKVAV, RGD, CQAASIKVAV), growth
factors (i.e., fibroblast growth factor-2, FGF2, Neurotrophin-3,
NT3), enzymes (i.e., chABC), and anti-inflammatory mole-
cules (i.e., minocycline) to allow cell attachment, renewal,
sprouting, and extracellular matrix (ECM) regeneration.
However, several problems have been reported with the use
of injectable materials: for instance, the injected materials
could form aggregates, creating barriers to the tissue
regeneration, as observed for collagen gels stabilized by
carbodiimide that causes endogenous collagen deposition; an
excessive swelling of the material could increase the local
pressure causing secondary damages to the parenchyma.3,34

The electrical stimulation of neuronal cells35,36 and the
formation of a controlled 3D structure along the longitudinal
axis of the spine seem to be important requirements for (i)
surviving and maintaining the cells active,37,38 (ii) promoting
long-distance axonal elongation,39 and (iii) achieving oriented
axons regeneration40 for a natural tissue structure. It is still a
challenge for injectable materials.
Injectable biomaterials-based systems that have been used

for SCI therapies can be classified in hydrogels, smart
hydrogels, nanoparticles, composites, and self-assembling
peptides often combined with cells and specific signals.
These systems are discussed below, summarized in Table 1,
and the achievements obtained are represented in Figure 3.
3.1. Hydrogels. They are materials characterized by a

three-dimensional network with a hydrophilic structure that
holds large amounts of water. Hydrogels can be injected before
cross-linking with it happening in situ in some seconds/

minutes. Some hydrogels can display the so-called “smart”
behavior, with a nonreversible or reversible transition from the
state of sol to the state of gel following the application of
external stimuli. The main component of the extracellular
matrix of the SC is hyaluronic acid (or hyaluronan HA),64 thus
this natural polymer is widely used in SCI regenerative
medicine. For example, hyaluronan-methylcellulose (HAMC)
hydrogels, first studied by Gupta et al.,65 loaded with
oligodendrocyte progenitor cells (OPCs), platelet-derived
growth factor receptors (PDGF-R), and RGD promoted the
survival, integration, and differentiation of cells.41 However,
teratoma formation was not avoided but attenuated concerning
the cell-therapy (Figure 4).
Other problems could also derive from a “not well cleaned”

(full of debris) lesion site, which may impede the gelation of
the material.34 Moreover, considering some injectable hydro-
gels such as gelling agents (i.e., β-glycerophosphate disodium
salt hydrate, β-GP)45 blended with chitosan, imidazole-poly
(organophosphazenes) (I-5),44,66 or poly-N-isopropyl acryl-
amide-based thermoresponsive hydrogels, the sol−gel tran-
sition could be preferentially promoted by physical factors (i.e.,
temperature, physiological pH) to avoid inflammatory
response, generally caused by chemical cross-linkers.3

To avoid the harmful mechanisms activated by reactive
astrocytes after SCI, a PEG (polyethylene glycol)-PEI
(poly(ethylene imine)) NanoGel (NG) delivering Rolipram
(antidepressant drug) was injected in a mice compression
model.42 The results showed a selective internalization of NG
in activated astrocytes, a few in microglia, and none in neurons.
Motor functional improvement was possibly caused by a
reduced production of inflammatory molecules by astrocytes
and its consequent neuroprotective effect. This result was
observed in the early stage after injury.42

A biopolymer largely proposed in regenerative therapy
strategies is silk fibroin. Chen et al.51 produced a material
coupling the silk fibroin with the quinone structure of oxidized
dopamine (DA). DA is a mussel adhesion protein recently
studied as a cross-linking medium to obtain injectable
hydrogels.67 Indeed, DA goes toward a self-polymerization of
free DA generating an injectable silk fibroin/polydopamine
(SF/PDA) hydrogel. This material has favored neurite growth
and neuronal differentiation. This scaffold presents tunable
properties by varying the concentration of DA. In vivo tests
showed repair of SC tissue after hemisection in rats, but further
investigation is needed to evaluate possible clinical studies.
Recently, a synthetic smectite clay (Laponite XLG,
Na+0.7[(Si8Mg5.5Li0.3)O20 (OH)4]

−0.7) was also used for SCI

Figure 3. Achievements reported in the cited papers.
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repair due to its capacity to aggregate in solution. Laponite
XLG consists of interlayer cations (Na+) that balance the net
negative charge of a single crystal of Laponite. Its ability in
binding heparin is exploited in regenerative medicine
applications. Indeed, Wang et al.43 produced an injectable
heparin-Laponite hydrogel loaded with a novel neuroprotective
factor, the fibroblast growth factor 4 (FGF4). The results
showed a motor functional recovery, reduced fibrotic scar
tissue, and the inflammatory response with consequent
remyelination.
Smart hydrogel polymers present a sol−gel transition

responsive to different external stimuli: temperature, light,
pH, ionic concentration, magnetic and electrical fields, and
chemicals.68 For thermoresponsive polymers, the transition
occurs at specific threshold points: above the critical solution
temperature (i.e., LCST polymers) or below (i.e., UCST
polymers). The most common smart hydrogels used in SCI
repair are thermoresponsive, such as poly(N-isopropyl
acrylamide) (PNIPAAm)3 or triblock copolymers based on
poly(ethylene oxide), polyethylene glycol, polypropylene
glycol, or polylactic acid (i.e., PEO−PEG−PEO or PLA
grafted on PPG−PEG−PPG).69

PNIPAAm-g-PEG (poly(N-isopropyl acrylamide-g-polyethy-
lene glycol), introduced by Comolli et al.,70 was investigated in
contusion SCI cases and results showed an unvaried
inflammatory response.3 The locomotor recovery improved
when PNIPAAm-g-PEG was combined with an exercise
training program. The electrophysiological recordings indi-
cated reduced spasticity of treated animals, but this benefit was
not recorded when the polymer treatment was coupled with
exercise.
PPG(polypropylene glycol)−PEG−PPG (P10R5) has been

used to deliver a chemotherapic agent (Cabazitaxel) to the
injured area.46 Besides the inhibiting role of Cabazitaxel on
prostate cancer, this chemotherapeutic drug was proven to be
capable of supporting the neurite extension of cortical neurons
in vitro. The treatment creates a protective environment
leading to an improvement of bladder and locomotor
functions.
Different delivery systems based on PNIPAM are produced

to allow cells to reach the target site. Marquardt et al.56

synthesized an engineered protein (C7), composed by
repetitive motives CC43WW (Figure 5, left). The motives
were separated by a multiarm of 8-armed PEG tethered with
proline-rich peptides, PNIPAMs, and cell-adhesive peptides

Figure 4. Morphology and immunohistochemistry of spinal cord tissue suggests (1) muscle, (2) cartilage, (3) intestinal-like, epithelium, and (4)
epithelium (arrow) within the teratoma. The graphic on the right, parts A and B, was reproduced with permission from ref 41. Copyright 2016
Elsevier.

Figure 5. SHIELD design (left) and scans of fluorescent images (right) of spinal cord sections display cavity areas across all groups: untreated
lesion (injury), injury treated with saline medium (saline), and Schwann cells (SC in saline), injury treated with SHIELD and Schwann cells (SC in
SHIELD), Cyan, GFAP (right). Reproduced with permission from ref 56. Copyright 2020 American Association for the Advancement of Science.
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(IKVAV, RGD, YIGSR). The system, called SHIELD (Shear-
thinning Hydrogel for Injectable Encapsulation and Long-term
Delivery),71 represents an example of injectable hydrogel for
autologous human Schwann cells transplantation. The cell
membrane protection promoted by the SHIELD encouraged a
decrease of the cystic cavity and an increase of the functional
recovery (Figure 5, right).
3.2. Nanoparticles. Given the small dimensions, nano-

particles can be injected in the affected area through the needle
of a syringe. The fabrication methods (i.e., double emulsion/
solvent evaporation technique, thermal decomposition) used
to produce these particles give the opportunity of embedding

specific signals or cells. Azizi et al.21 studied the use of
poly(lactic-co-glycolic acid) PLGA nanoparticles (diameter
273.5 ± 36.4 nm) embedding chABC in a rat contusion model.
The anti-inflammatory response was promoted by the
enhancement of regenerative M2 macrophages (in a process
described above) and caused axonal regrowth (Figure 6). The
improvement of locomotor functions and the enhancement of
circuit plasticity were also observed. However, the PLGA
nanoparticles failed in obtaining an extensive axonal regener-
ation and the complete cleavage of the CSPG, MAG, OMgp,
and Nogo. These results were obtained through an “extrinsic”
approach, different from the “intrinsic” one44 described in

Figure 6. Injected drugs such as ChABC delivered by nanoparticles (NPs) showed a local action/extrinsic strategy of CSPGs removal. The
remaining inhibitory molecules are not completely removed, and a pathological status is partially present (left), while a regenerative process
(plasticity increasing, axonal growth and elongation) can be observed. Luxol fast blue (LFB) (A−D) and Bielschowsky (E−H) staining of
longitudinal sections of the injured spinal cord within 8 weeks after treatment (right). The samples observed are (A, E) the sham group, (B, F)
untreated spinal cord after injury, (C, G) PLGA NPs injected without ChABC, and (D, H) the ChABC particle-treated groups. In the Bielschowsky
staining, the axons appear brown to black in color. W and G stand for the white and the gray matter of the spinal cord, respectively. The graphic on
the right, parts A−H, was reproduced with permission from ref 21. Copyright 2020 Elsevier.

Figure 7. Injection of I-5 hydrogel stimulates an “intrinsic” mechanism of MMP-9, and M2 macrophages recruitment come from the surrounded
tissue. The imidazole rings located in the hydrogel matrix interact with the histamine receptors on macrophages that linger for a prolonged time
enhancing a wound healing mechanism (left). On the right (a−d), the effects of I-5 injection can be evinced: a cystic cavity reduction, ECM
remodelling, and inflammatory response decrease. Representative images of transverse spinal cord sections stained with eriochrome cyanine and
eosin (a, b) or GFAP antibodies (c, d). Spinal cord sections were obtained from animals 4 weeks after PBS (a, c) or I-5 injection (b, d). The
sections shown are from the epicenter and 1.2 mm rostral (+1.2 mm) or caudal (−1.2 mm) to it. Asterisks indicate cystic, and the cystic boundaries
are indicated by black arrows (b). Scale bars represent 200 μm. The graphic on the right, parts a−d, was reproduced with permission from ref 44.
Copyright 2017 Springer Nature.
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Figure 7. Additionally, Zhang et al.72 used nanoparticles to
track the position of mesenchymal stem cells (MSCs),
investigating their optimal number to transplant in the post-
traumatic syrinx caused by SCI. Nanoparticles with diameter
53 ± 9 nm made of ferric oxide (Fe3O4) cores were coated
with bovine serum albumin (BSA) covalently conjugated with
monoclonal antibodies against vascular endothelial growth
factor (mAbVEGF). The results showed a precise trans-
plantation strategy of MSCs thanks to the magnetic resonance
imaging (MRI) visualization of magnetic nanoparticles.
3.3. Composites. The term refers to the combination of

two or more materials with different physical properties
resulting in a new material with improved tailored character-
istics. Injectable composites for SCI repair are generally made
of nanotubes/nanoparticles/nanofibers/microtubes embedded
in hydrogels. In particular, microtubes are generated by self-
assembly of glycolipids, phospholipids, and other amphiphilic
molecules. Variations in concentration, pH, or temperature
influences the supramolecular assembly, which is driven by van
der Waals, electrostatic forces, or hydrogen bonding. Micro-
tubes embedded in hydrogels are investigated as drug carriers
for SCI repair applications. For example, hemisectioned
chronic severe SCI in dogs was treated with a hydrogel-lipid
microtube based delivery system of chABC combined with
trehalose,29 TS-ChABC. Trehalose was found to stabilize
chABC activity at 37 °C, but the mechanisms are not well-
known.19 The thermal stabilization of chABC demonstrated
sustained drug delivery, CSPG inhibition, improvements in
locomotor function in dogs with chronic severe SCI, and some
sensory recovery, which increased if chABC and NT3 were
combined. The chABC long-distance diffusion required into
the injured human SC could be a limitation. Generally, chABC
is administrated continuously by invasive pumps implanted in
vivo, but TS-chABC via the hydrogel-microtube system could
be a less invasive option.
Lipid microtubes associated with different axonal growth

cones factors (Cdc42, Rac1, and BDNF) were also coupled
with agarose hydrogel by Jain et al.50 In a dorsal over-
hemisection lesion, the treated rats showed a reduced number
of reactive astrocytes in the injured area, a reduced CSPG
deposition, the presence of neurofilaments across the lesion,
and a higher percentage of axons in the CSPG-rich regions.
The dosage of the three growth factors was not optimal for
stimulating the axonal growth in the CST.
Specific molecules proven to be useful in healing and

regenerating the spinal cord can also be loaded in nano-
particles, which are eventually embedded in hydrogels to allow
a sustained release of drugs or factors. A composite of HA and
methylcellulose (MC) hydrogel with PLGA nanoparticles was
used to localize the nanoparticles in the specific site of
injection and for the sustained release of neurotrophic factors
and inflammatory molecules suppressors (embedded in the
nanoparticles).47 The Basso, Beattie, and Bresnahan (BBB)
locomotor score of treated rats with a score of treated rats with
a compression injury increased with respect to controls, but
the inflammatory response was notable. The same composite
structure was also coupled with FGF2.48 Thanks to the
degradation kinetics of the materials, a sustained and long-term
release of FGF2 was obtained. Results showed improved
angiogenesis, a decrease of the cavity volume, and proliferative
lesion, but functional improvements were not recorded.
Ansorena et al.49 demonstrated that a composite scaffold

made of alginate, fibrinogen, and PLGA microspheres

increased the number of neurofilaments, gained functional
recovery, and more homogeneous and dense regenerated
tissues through the slow release of glial-derived neurotrophic
factor (GDFN). However, the functional recovery in hemi-
sected rats was higher with free-microsphere hydrogels.
Instead, a nanofiber-hydrogel composite was produced by

mixing fragments of polycaprolactone (PCL) fibers with
surface grafted maleimide (MAL) groups, and a gel of
thiolated hyaluronic acid (HA-SH) and polyethylene glycol
diacrylate (PEGDA).52,73 The material provided mechanical
support for SC regeneration and a suitable porosity for cell
infiltration. The SC thinning because of the progressive loss of
neural tissue following contusion was controlled by the
presence of the composite. The authors reported a shift of
M1 macrophages to M2, limited to the lesion site, possibly
linked to the presence of the PCL fibers. The role of fibers
needs to be further investigated, but their presence seemed to
encourage neo-vascularization and differentiation of endoge-
nous stem cells in immature neurons.
A minimally invasive method to deliver mouse embryonic

stem cell (mESC) in the injury site was studied by Wang et
al.53 They embedded an aligned electrospun nanomesh of poly
(D,L-lactic acid-co-trimethyl carbonate (P(DLLA-co-TMC))
in gelatin-acrylated β-cyclodextrin (β-CD) polyethylene glycol
(GCP) hydrogel, which was formed by the photo-cross-linking
process. The high stretchability of this material allows it to be
injected. Motor neurons derived from embryonic stem cells
(MN-ESC) were also embedded in the composite. Results
showed an oriented neurite growth, a dendritic development, a
decreased loss of tissue and inflammatory response, synapses
formation, and motor function recovery. The material filled the
injury cavity, but the degradation kinetics was not optimal.
A hydrogel of hyaluronic acid and methylcellulose enriched

with PLGA microparticles and BDNF was tested in a rat
transection model.54 This material had tunable mechanical
properties, gelation, and biological activity by changing the
molecular weight of HA. The inflammatory response was not
investigated, but the scaffold improved the adaptive plasticity.
Nazemi et al.55 used microspheres of PLGA for the delivery

of hydrophobic drugs such as the paclitaxel (PTX). PTX is an
anticancer drug that leads to axonal growth, functional
outcomes, and a reduction of the fibrotic scar when injected
at the lesion site of a rat’s SC. The microspheres loaded with
PTX were included in an alginate hydrogel that interacted
electrostatically and by metal-ion chelation with minocycline
hydrochloride (MH). This composite showed a prolonged
drug release (2 months), a decrease of the inflammation
response and scar tissue, and an increase of axonal
regeneration, protection, and functional improvement.

3.4. Self-Assembling Peptides (SAP). Amphiphilic
molecules can show self-assembly capacity through non-
covalent interactions forming 3D structures. Amphiphile
peptides (AP) can be designed alternating hydrophilic and
hydrophobic amino acids or positively and negatively charged
amino acids that can undergo self-complementary assembly.
For example, Sun et al.63 presented a strategy to create
nanofiber hydrogels using two oppositely charged SAPs
conjugated with bioactive peptides motifs such as IKVAV74

or RDG. The use of peptide amphiphile coupled with IKVAV
in rat SC transection gave many beneficial results: axon
elongation, functional recovery, suppression of the progression
of astrogliosis, facilitated remyelination of axons inside the
lesion, regeneration of corticospinal motor and sensory fibers,
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increasing the number of serotonergic fibers caudal to the
lesion, and decreased cells apoptosis. Unfortunately, there was
a small number of regenerating dorsal column fibers. Tysseling
et al.32,75 verified also the effect of IKVAV peptide conjugated
with amphiphile peptide (PA) on the rat SC compression
model with similar results. This SAP-based scaffold was first
studied by Silva et al.,74 obtaining an efficient differentiation of
stem cells into neurons. PA nanofibers were also studied when
displaying the heparan sulfate mimetic and laminin mimetic
epitopes.33 The in vivo studies showed this injectable scaffold
as a valid ECM substitute after SCI. Indeed, an overall tissue
integrity was obtained, and the locomotor functions of the
treated animals improved.
Cicognini et al.31 investigated the use of two SAPs B24 and

biotin-LDLK12 for the treatment of a contusion injury in rats.
The SAP B24 is derived from the functional motif of the bone
marrow homing peptide 1 (BMHP1), whereas biotin-LDLK12
is an ionic SAP (motif, biotin-LDLKLDLKLDLK-CONH2). At
the same concentration (1.12 mM), B24 resulted in less
viscosity than the biotin-LDLK12, which was less permissive to
water, free radicals, and immune cell infiltration than B24.
Thus, Biotin-LDLK12 formed a dense scaffold after injection
without diffusing within the injured tissue as opposed to B24
and showed a slower degradation rate. For these reasons, the
hematoma reabsorption was faster where biotin-LDLK12 was
injected (Figure 8). However, SAPs swelling caused the
compression of the surrounding tissue.
Self-assembling peptide (RADA16) nanofiber containing

IKVAV motif were also studied for central nervous system
applications.76,77 Cicognini et al. functionalized RADA 16-I to
BMHP1 by using a 4-glycine bridge and observed an increase
of vascularization and migration of glial precursor cells, a
remodelling of the ECM with consequent decrease of cyst
area.62

Tran et al.61 investigated instead the use of pH-responsive
self-assembly hydrogel, RADA-16I (Ac-RADA4-CONH2), to
primarily provide a favorable environment for capillary
formation. Indeed, the damage of the BSCB causes
inflammation and glial scar formation that inhibit tissue
regeneration. The results showed the presence of microvessels
with diameters from 9.0 ± 3.1 μm to 100 ± 46 μm within the
RADA-161 hydrogel, depending on the cell density conditions.

The formation of the BSCB within the RADA-161 hydrogel
reduced inflammatory response and scar formation and
increased axon infiltration into the SCI site. An improvement
of this system could be the control of microvessels orientation
because the axon growth specifically in the rostral-caudal
direction could be essential for SCI treatment. Arginine−
alanine−aspartic acid−alanine (RADA)4 SAP was used by
Tavakol et al.57 in combination with IKVAV or with a longer
laminin motif (CQAASIKVAV (CQIK))57 to form a hydrogel-
based material with a nanofiber structure. CQIK resulted in
improved cellular response compared to IKVAV peptide due
to the greater similarity to the laminin active site. In both cases,
neurite outgrowth, myelination, and inhibited astrogliosis were
observed. The locomotor recovery was significantly less than
(RADA)4 combined with bone marrow homing peptides
(BMHP).
Ye et al.59 cultured isolated primate Neural Stem Cells

(NSCs) in polypeptide RADA16 (AcN-RADARADARADAR-
ADA-CNH2) that can be assembled at physiological pH. The
in vivo tests on the rat compression model showed differ-
entiation of NSCs to neurons, oligodendrocytes and astrocytes,
myelin production, and motor function recovery.
A type of SAP used to minimize SCI damages is also

represented by K2(QL)6K2 or QL6.58 It is characterized by
alternating ionic hydrophilic and hydrophobic amino acids that
self-assembly into a β-sheet at physiological pH. After the acute
stage, QL6 was injected into the center of the lesion, whereas
the neural precursor cells (NPC) were injected into adjacent
dorsal columns. The cell survival is promoted by continuous
subdural administration of growth factors through an osmotic
micropump for 7 days. The presence of the scaffold improved
the inhibitory environment, reducing the scar tissue and the
inflammation with consequent cell survival and differentiation
up to functional recovery.
Amphiphilic peptides (CH3(CH2)14CO-AAAAGGGEIK-

VAV PA) functionalized with the laminin motif IKVAV were
investigated by Hassannejad et al.30 in order to produce an
injectable hydrogel for a sustained release (21 days) of brain-
derived neurotrophic factor. This latter neuroprotective
protein-enhanced neurite outgrowth from the dorsal root
ganglion (DRG) explants, and the presence of the hydrogel
resulted in considerable axon preservation at 6 weeks

Figure 8. Quantification of the hematoma: (A) at 3 day post injury (dpi) both SAP-treated groups had a significant lower leakage of red blood cells
in comparison with the controls. At 7 dpi, biotin-LDLK12-treated animals showed the lowest content of red blood cells while B24 the highest one.
(B) Longitudinal sections stained with hematoxylin/eosin showed the presence of extravasated red blood cells (red-brownish colored). Scale bar:
700 μm. Reproduced with permission from ref 31. Copyright 2014 American Scientific Publishers.
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postinjury. The functional recovery was not statistically
significant between IKVAV-PA hydrogel injected and saline-
injected animals.

4. SPINAL CORD INJURY MODELS
Different types of trauma can be simulated in vivo, generally on
the SC of adult rats. These injuries are contusions,
compressions, hemisections, or complete sections of the spinal
cord and they are performed following standard protocols to
obtain reproducible results.
4.1. Severe and Moderate Contusion Model. A

reproducible contusion model on rat SC via the weight-
dropping method could be performed by using a stereotactic
frame and computer-controlled impactor. A severe contusion
is, generally, caused by an impactor tip of 3.0 mm at a speed of
4 cm/s with a depth of 2 mm and a dwell time of 0.3 s toward
an exposed and well stabilized SC surface.78−80 A severe
contusion induces the highest gray matter loss, a few white
matter sparing, and biochemical changes such as free radicals,
prostaglandins, calcium-activated proteases, loss of myelin
proteins,81 and extracellular potassium and calcium concen-
trations changes. Blight and Decrescito82 had observed that
large myelinated axons are more damaged at the nodes of
Ranvier than the axons closest to the pial surface. Damaged
axons caused calcium entry through tetrodotoxin-sensitive
channels and consequent secondary reactions due to the
calcium entry.83,84 A moderate contusion model, instead,
preserves most of the ventral and ventral-lateral descending
pathways that led to postinjury locomotor recovery in both
trained and untrained animals.3

Mechanical disruption via weight-dropping method was
universally accepted to be clinically relevant78,79 because it
simulates human contusion due to its ability to mimic both
primary mechanical damage and the secondary reactive phase
of injury.
4.2. Compression Model. The compression is generally

induced by an aneurysm clip closed around the exposed spinal

cord of rats for 1 min until the generation of an extradural
compression of 30 xg pressure. This model also simulates
clinical conditions observed in several human cases but causes
moderately severe acute compression injury.85

4.3. Unilateral and Hemisection Model. The unilateral
and hemisection of the SC simulate an injury clinically
observed in human cases and allow one to compare injured
and healthy fibers in the same animal78 but show disadvantages
concerning model uniformity.86

4.4. Complete Model. The complete SCI model is
generally performed at the T9-T10 segment, and a gap of 2
or 4 mm allows the insertion of the scaffold.64 The complete
transection interrupts axon fibers and propriospinal neurons
resulting in permanent paralysis. This model is considered by
many researchers as the gold standard for validating axonal
regeneration, but it is not clinically relevant and it shows high
variability in the results.86,79

5. SEVERE CONTUSION MODEL AS THE NEW GOLD
STANDARD: HOW?

During the past decade, the complete transection SCI model
has been used for validating axonal regeneration, but this
model is far from a real case of human SCI.87,78,83 A contusion
model, instead, reflects a traumatic human SCI, but it is
unsuitable for validating axonal regeneration because it is
difficult to discriminate the contribution of the scaffold to the
axonal regeneration from the spontaneous regeneration of the
tissue.78,86 Thus, matching a reproducible and reliable axonal
regeneration with the use of a realistic SCI model is still a
challenge. Some researchers proposed studies based on the
contusion model to have clinical relevance (as described
above) and in vitro models to obtain reliable results on the
neuronal regeneration.
The commonly used in vitro cell culture models of SCI

include (i) primary isolated neurons, oligodendrocytes,
astrocytes, or microglia cells; (ii) coculture of neuronal cells
with different cell types, which are present in the glial scar; (iii)

Figure 9. The first day of OTS-SC culture (A) is compared with the slice observed 7 days post injury (DPI:7) (B) and its uninjured counterpart
(DIV:14) (C). In part D is reported the expression of βIII tubulin in spinal cord slices. Reproduced with permission from ref 91. Copyright 2019
Elsevier.
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cocultivation with meningeal cells in in vitro scar formation
model, called scratch model; (iv) rat SC cells onto a confluent
monolayer of neurosphere derived astrocytes for investigating
the CNS axonal myelination; and (v) neurite outgrowth assays
for the phenotypic expression of regeneration progress.88

However, the in vitro evaluation lacks the complexity and
physiological relevance of the in vivo system, but the results are
reliable and reproducible. Unfortunately, animal studies offer
complexity, which is very difficult to model in vitro, and high
variability, which prevents reproducible studies.89,90 For this
reason, organotypic cultures of SC explants could be an option
to obtain reproducible results after a contusion injury.88,91 The
SC explants are cut to obtain slices, called organotypic slices
(OTSs), that preserve the basic structural and connective
organization of their original tissue (organotypic). OTSs
represent an interim system sharing the properties of the cell
culture in vitro and an animal in vivo model. Organotypic spinal
cord slices (OTS-SC) are generally cultivated on a semiporous
membrane at the air−medium interface to allow nutrition and
gas exchanges, and under appropriate conditions, the slices can
survive for a week to months.88

The OTS-SC model is suitable for axonal growth evaluation
because the typical ventrodorsal polarity of the SC is
maintained after a culture period of 2 weeks, and intrinsic
SC axons formed a strong fiber tract extending along the
longitudinal axis of the slice88,91 (Figure 9).
A well-defined in vitro evaluation could contribute to

understanding the results of in vivo analysis, for example, the
BBB score, ladder climbing test, electrophysiological record-
ings such as the rate-dependent depression (RDD) of the
Hoffmann’s reflex (H-reflex), defined as “the decrease in reflex
magnitude relative to repetition rate”,3 suitable for evaluating
sensorimotor improvements and spasticity. Moreover, this
model could highlight the real contribution to the neuro-
regeneration of the material implanted, because the mechanism
leading to postlesional adaptive plasticity might be
avoided.3,50,91 Mechanical disruption via weight-dropping was
also tested on OTSs.91 The results confirmed the use of this
model as a simulation of a human contusion due to their ability
to mimic both primary mechanical damage and the
pathophysiological mechanisms after SCI. However, OTSs
are harvested from animals and their treatment is expensive
and time-consuming.88,92 These few limitations allow the use
of OTS as a relevant platform before in vivo testing.91,93

The validation of injectable biomaterials for an eventual
advanced therapy medical product (ATMP) or medical device
passes through different levels, including a period of non-
clinical and preclinical research studies, involving a parametric
data collection and analysis in well-defined systems.94 In the
future, we will need to establish high-throughput test platforms
for biomaterials that comprise of standardized testing protocols
for ex vivo, in vivo, preclinical, and clinical testing. In the case of
the SCI contusion model, there is a standardized method to
elicit the lesion,78,79,83,95 but the effects of biomaterials are not
completely understood once tested in vivo due to the high
neural tissue complexity. To reach the application of
biomaterials on patients, OTC-SC or 3D neural cell culture
models could be used to validate the results obtained from the
BBB locomotor score, ladder climbing test, electrophysio-
logical recordings and acquire reliable data in a well-defined
system.

6. CONCLUSIONS

Injectable materials for SCI treatments have gained interest
due to their in situ safe procedure of administration, which
might be done more than once until the complete ECM
formation. Repetitive injections, still now, are expected just for
cell therapy, failing the cooperation with supporting materials.
Future studies might be focused on the optimization of

injectable material production such as (i) swelling control,
which may cause secondary damages; (ii) use of nontoxic
cross-linkers; (iii) gradients applied on the deposited scaffold
to induce a growth directionality; (iv) more precise mimicking
of the ECM composition and mechanical properties; (v)
combination of multiple fabrication methods; (vi) control of
the 3D structure; and (vii) noninvasive electrical stimulation.
These injectable systems are generally injected during the

subacute stage, when the injured site is characterized by a
cystic cavity surrounded by a glial scar of ECM material,
macrophages, cell, and inhibitory debris and a spontaneous
regeneration process begins. In vivo models show the variability
of outcomes even if the defects are standardized. Moreover, the
SCI pathology in this model is sensibly different from humans,
and the regeneration shows distinct differences in terms of
axon elongation and mechanisms of sprouting.34 Thus, in vivo
results could be accompanied by ex vivo validation such as
OTC-SC after compression model or 3D neural cell culture
models that might give more reliable data. Clinical trials are
difficult to reach mainly due to the high cost and variability of
in vivo testing and the complexity of the biological environ-
ment where materials are tested.
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