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a b s t r a c t

Using an analytical solution of the Euler’s Elastica, we stumbled upon peculiar shapes of a cantilever
beam subject to a large value of shear follower force at the free end. Intrigued by whether such
shapes existed or not, we set out to realise an experimental apparatus to validate our predictions.
Attaining such system, in reality, is not at all a trivial task. Indeed, it has represented an experimental
challenge for decades, due to the emergence of unstable configurations. After various attempts, we
were finally able to conceive and realise a device capable of generating a transverse follower force
to the beam via air-thrust. We compared the measurement of the forces and the deformation of the
beam obtained experimentally with the analytical solution of the Euler’s Elastica in dimensionless
form. Since the experiments are quasi-static, the aerodynamic effect induced by the air flow are
negligible; this is confirmed by the agreement between the experimental results and both theoretical
and numerical predictions. During the experiments, we observed a high susceptibility to perturbations
around a dimensionless load of 41.15. We used finite element simulations with an explicit time
integration scheme to carry out a stability analysis. Our analysis confirmed the appearance of an
unstable configuration for a load of 40.5. Therefore, by carefully tuning the apparatus, we could reach
load values higher than the unstable load, at around 120. For such levels of forces, the solution of the
Elastica prescribes hook-like shapes that we show experimentally in this paper. These results can find
several applications, for instance, the design of soft-actuators, the realisation of more efficient drilling
pipes for underwater, or underground, well or the design of biomedical equipment, such as catheters.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Follower forces are a kind of non-conservative force whose
irection depends on the deformation of the structure. Exam-
les of follower forces in engineering are, for instance, the wind
oading, the propulsive force of a rocket or the thrust induced
y water flow on a garden hose. Extensive literature is available
or tangential follower forces, although their existence is still the
entre of an animose controversy [1], and their practical reali-
ation challenged numerous researchers over the years. It is not
ur intent to participate in this debate; for the sake of this paper,
e consider follower forces as useful abstractions for a variety
f physical phenomena and engineering applications. Examples
ot just include structural mechanics, but cover rotordynamics
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and gyrodynamics [2], robotics and automatic control [3], aeroe-
lasticity [4], fluid–structure interactions [5], smart materials [6],
biomechanics [7], hydrodynamic peeling [8,9], cytoskeletal dy-
namics [10], molecular motors [11] and even astrophysics [12]
and geophysics [13]. Follower forces fall under the more general
umbrella of circulatory forces [14–16]. Even though only in recent
years researchers framed follower forces into a more general
and modern mathematical framework, early theoretical research
on follower forces dates back to 1950. The most famous works
include the Pflüger column [17–20], the Ziegler paradox [21–
25], the Beck’s column [26], the Reut’s column problem [27,28],
and the first monography on the stability of non-conservative
forces due to Bolotin [29]. One of the most challenging issues
related to the framework of follower forces was their actual re-
alisation. Numerous researchers tried several attempts to realise
follower forces experimentally through different methods. For in-
stance, [30,31] used fluid flowing from a nozzle. The experimental
setup proposed by [30] was used mainly to test mechanical sys-
tems made up of rigid bars (not of complaint elements), namely

https://doi.org/10.1016/j.eml.2020.101110
http://www.elsevier.com/locate/eml
http://www.elsevier.com/locate/eml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eml.2020.101110&domain=pdf
mailto:diego.misseroni@unitn.it
https://doi.org/10.1016/j.eml.2020.101110


D. Misseroni, E. Barbieri and N.M. Pugno Extreme Mechanics Letters 42 (2021) 101110

w
s
p
f
b
l
m
t
o
r
c
2
i
c
b
i
r
p
l
f
v
r
t
b
d
t
s
W
m
e
b
(
t
s
l
a
d

w
e
A
t
l
S
c
p
p
s
A
b
i
r
c
i
c
b

ith a finite number of degrees of freedom, suspended with
ome elastic springs. On the contrary, the setup by [31] was
roposed to test flexible columns subject to tangential follower
orces, but a huge nozzle box was mounted at the top of the
eam. Instead, [32–34] used a solid motor rocket to induce fol-
ower forces on structures. Still, the non-negligible mass of the
otor and the very short duration of the experiments made

his method very complicated to be used. As correctly pointed
ut by Elishakoff in 2005 [1], none of the methods correctly
ealised a tangential follower force as postulated in the Ziegler
olumn problem. A significant breakthrough was achieved in
011 by [35], who designed and tested a device capable of realis-
ng a follower tangential force exploiting dry friction. The idea
onsists of mounting a freely rotating wheel at the top of the
eam constrained to slide against a moving surface. In this paper,
nstead, we present the experimental realisation of a cantilevered
od under large shear follower forces at the free tip (Fig. 1a). The
roblem is very complicated as the investigation of the hook-
ike shape of the Elastica produced by the orthogonal follower
orce requires that the angle included between the applied force
ector and the axis of the unformed configuration ∈ [−π, π]. We
ealised a setup that provided an ‘‘approximate’’ follower force
o the beam via air-thrust, as the experimental setup proposed
y [35] cannot be used. Being aware that this method intro-
uces some complication in the modelling, we carefully tuned
he pressure of the air flow to reduce as much as possible the
purious effects associated with the fluid/structure interaction.
e have validated the experimental apparatus by estimating
ost of the discrepancies between the theoretical model and the
xperiments. Among these the main are (i) friction between the
eam and the substrate, (ii) frictional dissipation along the tube,
iii) sudden changes in flow area, (iv) stiffening of the deformable
ube due to the internal air pressure. By contrast to the Herrmann
etup, we have been able to avoid the presence of the nozzle, to
ower the required air pressure to deform the mechanical system
nd to remove the two suspending cables that can change the
eformed Elastica dramatically. To assess the goodness of the

experimental setup, we compared the deformation with an an-
alytical solution of the Elastica. The excellent agreement between
the experimental results and both theoretical and numerical pre-
dictions suggests that, in this specific kind of experiments, the
provided orthogonal force is an acceptable approximation of a
follower force. Even though analytical solutions already exist [36],
here we provide a reformulation of the Elastica in terms of the
curvatures [37]. This reformulation has one significant advantage.
The phase-portrait of this equation leads to discover the spatial
periodicity of the solution that explains the loop-like appearance
of its shapes. Multiple loops are known to appear in the Elastica
ith fixed forces [38]: we show in this paper how similar shapes
merge mutatis mutandi also for rods loaded by follower forces.
lso, we performed Finite Element (FE) simulations to capture
he instability onset. The use of FE is necessary since systems
oaded by follower forces do not admit a potential of the type
train Energy-External Work [16,39] since follower forces are non-
onservative. The external work done by such a kind of forces is
ath-dependent and a non-zero work can be extracted in a closed
ath, as shown in Fig. 1(b). Thus, a stability analysis based on the
tudy of the second variation of the Lagrangian cannot be used.
lthough the experimental setup presented in this article could
e further improved, the observed outcomes can find application
n several fields. For instance, these results can play a crucial
ole in the description and in the understanding of pressure-fed
ompliant mechanisms (e.g. in the design of soft-actuators). To
ncrease the positioning precision or to achieve more compli-
ated shapes, a pneumatically pressurised soft robot arm could

e realised with one or more small voids that open and close on

2

demand. Such a mechanism could be exploited to compensate
for the dynamic effect that can reduce repeatability and accu-
racy of movements. Moreover, hook-shaped configurations could
permit to fold/unfold a compliant mechanism and thus penetrate
narrow spaces. The present experimental setup could be used to
realise more efficient flexible devices and better understand, for
instance, the deformation mechanism.

2. Material and methods

2.1. Experimental apparatus

The experimental setup, shown in Fig. 1(c), was specifically
designed to apply a tunable transverse follower force at the top
of the beam. The actual realisation of a follower force acting
on a structure has always been considered a very complicated
problem. A straightforward way to provide this kind of force to
a system is to exploit the reaction force generated by a fluid
(air) flowing from a small circular void orthogonal to the beam
axes as reported in the inset (a) of Fig. 1b. The void (diameter
dout=0.8 mm) was realised by a 0.8 mm in diameter biopsy
punch. A very flexible silicone tube of length Ltube=170 mm and
weight Ptube=13.8 mN, inner and outer diameters dint=1.5 mm
and dext=2.5 mm, respectively, is used in the experiments. The
clamped end of the flexible tube is fixed to a rigid metal tube
where the air that produces the shear force flows. During the
experiments, the applied shear follower force is linearly increased
by changing the air flow immediately upstream of the flexi-
ble tube. The air pressure, and accordingly the end-thrust, was
raised through a solenoid valve (pressure gauge, internal diame-
ter din=8 mm) connected to a NI CompactRio acquisition system. A
LabVIEW algorithm permitted to adjusts the air flow to a wanted
value via a closed-loop control. The pressure rate was always
kept under 0.04 bar/s, and to overcome instabilities, we had to
carefully reduce and tune it manually. An air condensate filter
was mounted before the pressure gauge for draining conden-
sate and for cleaning the air. The whole apparatus, arranged
horizontally to prevent the gravitational effect, is mounted on
an optical table (Nexus from ThorLabs). A Teflon (PTFE) sheet
was also used to reduce the friction between the experimental
support and the flexible beam. A friction coefficient (µf ) Silicon
on PTFE (Teflon) surface of about 0.48 ± 0.05 has been estimated
via specific frictional experiments. Five preliminary tension tests
were performed on the silicone tube to determine its mechanical
properties. A mean value of 12.95 MPa was estimated for the
Young’s modulus (E) of the tube by analysing the stress–strain
curves recorded during these experiments. The effect of the air
pressure on the bending stiffness of the tube was estimated
through an indirect method as explained in Section 4.1. Alongside
the execution of the experiments, pictures were taken by a Sony
Alpha 6300 camera whereas movies were taken with a Sony
PXW-FS5 video camera (30 fps).

2.2. Numerical and theoretical methods for the deformation and
instabilities

Abaqus simulations were performed with the purpose to con-
firm the theoretical findings and complementing the experi-
ments. The circular elastic rod, clamped at one end and subject
to the transversal follower force at the other end, was modelled
with about 400 2D beam elements (B23). The same geometrical
and mechanical properties used in the experiments were also
considered in the simulations to approximate the real behaviour
of the structure better. Two types of simulations were carried out
to mimic the experiments. In one case, Dynamic/Explicit simu-

lations were performed to capture the first instability onset. In
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Fig. 1. (a) The scheme of the problem. (b) A 2 degree-of-freedom structure, made up of 2 rigid bars connected by elastic hinges, is subject to an orthogonal
follower force. The external work done by such force is path-dependent and therefore a positive work can be extracted in a closed path (1→2→3→4) [39]. (c) The
experimental setup exploited in the experiments. The transverse follower force is provided to the end of the cantilever tube by a fluid (air) flowing from a small
void orthogonal to the beam axis.
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the other case, Static Riks Analysis were exploited to circumvent
instabilities and achieve large deformation. A similar approach
was also used experimentally by carefully tuning the pressure
of the air flowing from the small circular void orthogonal to
the beam axis. The applied load was increased very smoothly
(Smooth-step type) as done experimentally.

3. Theory

The equations of equilibrium of forces and moments of a bent,
unshearable and inextensible elastic rod are [40,41]

Q ′
− µN − q = 0, N ′

+ µQ = 0, M ′
− Q = 0, (1)

where (·)′ = d/dS with S being the arc length, Q is the shear
force, µ is the curvature, N is the axial force, M is the bending
moment and q is a distributed normal load. The kinematics of the
elastica is given by

θ ′
= µ, x′

= cos θ, y′
= sin θ, (2)

with θ being the rotation and x and y the Cartesian coordinates.
We further assume a linear elastic constitutive model, a homoge-
neous material and uniform cross-section along the whole rod

M = E I µ, (3)

with E the Young modulus and I the second moment of area of
the cross-section. We now introduce the following dimensionless
variables

S∗
=

S
L

, µ∗
= µ L, (4)

with L being the length of the rod. We obtain the following
dimensionless variables for the boundary conditions, where (·)0
refers to variables at S = 0

M∗

0 =
M0 L
E I

, Q ∗

0 =
Q0 L2

E I
, N∗

0 =
N0 L2

E I
, q∗

=
q L3

E I
,

(5)

with M0 being a moment applied to the free end, Q0 a terminal
shear force, N0 an applied terminal axial force and q a distributed
load. Eqs. (1) can be combined in the single equation

µ′′
+

1
2

µ3
− Aµ − q = 0, (6)

with

A = N0 +
1

µ0
2. (7)
2
3

In the equation above, µ0 is an applied curvature or bending
moment at the free end of the rod. We have removed the (·)∗
or ease of reading. Multiplying both sides of Eq. (6) by µ′ and
considering q uniform (independent from S), after integrating
between 0 and S we obtain

µ′2
+

µ4

4
− Aµ2

− 2 qµ = B, (8)

with

B = N0
2
+ Q0

2
− A2

− 2µ0 q. (9)

Eq. (8) is the most general form that includes all the possible
boundary conditions. We consider µ0 = N0 = q = 0, therefore
we get

µ′2
= −

µ4

4
+ Q0

2. (10)

.1. Calculation

The phase portrait of Eq. (10) is shown in Fig. 2a. By examining
uch plot, we find a priori some properties of the solution µ(S)
Fig. 2b). For example, the µ − µ′ curve is closed, which means
hat the solution µ(S) must be periodic in space, with period
Smax, and oscillates between −µmax and µmax. Also, five points
f the solution are known. The first one is the initial condition
(0) = 0 with initial slope µ′

= µ′
max = Q0 equal to the

aximum possible slope. Assuming that Q0 > 0, the solution
roceeds clockwise from the initial condition. The second known
oint is a maximum for S = Smax, where µ′

= 0 and µ = µmax;
he third one is a zero of the solution at S = 2 Smax with maximum
egative slope −µ′

max; the fourth point is a minimum for S =

Smax, where µ′
= 0 and µ = −µmax; finally, the last known

oint is a zero at S = 4 Smax with slope µ′
max. Because of the

ouble symmetry of the phase portrait (Fig. 2a), µI−II = −µIII−IV
nd µI and µII are symmetric with respect to the µ axis. The value
f µmax can be easily computed from Eq. (10) by setting µ′

= 0

max =

√
2Q0, (11)

hile the value of µ′
max is obtained from Eq. (10) by setting µ = 0

′

max = Q0. (12)

The full details of the solution of Eq. (10) can be found in
ppendix A. We recall here the main results. The solution µ(S) is a
eriodic solution with quarter-period Smax that oscillates between
µmax and µmax

max =
2 K (−1)

=

√
2

K (−1), (13)

µmax Q0
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ith K (−1) being the complete elliptical integral of the first kind
f argument −1. Let us then normalise the curvature and the
urvilinear abscissa

¯ =
S

Smax
, µ̄ =

µ

µmax
. (14)

he solution is then

¯ (S̄) = sn
(
K (−1) S̄|−1

)
, (15)

¯
′(S̄) = K (−1) cn

(
K (−1) S̄|−1

)
dn

(
K (−1) S̄|−1

)
, (16)

ith sn, cn and dn being respectively Jacobi sn, cn and dn elliptic
unctions.

The rotation is

(S) = β1 − β(S) , β1 = β(1) = θ0 , (17)

with

β(S̄) = arcsin
(
µ̄2) sign

(
µ̄′

)
+ π

(
n↓(S̄) − n↑(S̄)

)
, (18)

here n↓(S̄) is the number of times µ′ changes sign from positive
o negative between 0 and S̄, while n↑(S̄) is the number of times
′ changes sign from negative to positive

↓(S̄) = 1 +

⌊
S̄ − 1
4

⌋
, n↑(S̄) = 1 +

⌊
S̄ − 3
4

⌋
, (19)

here

x⌋ = x − {x} , (20)

ith {x} = mod (x, 1) and mod being the module function.
The deformation is

(S̄) = 1 − Icθ (µ̄1) + Icθ (µ̄) ,

(S̄) = −Isθ (µ̄1) + Isθ (µ̄) ,
(21)

ith
Icθ = cosβ1 Icβ (µ̄) + sinβ1 Isβ (µ̄) ,

Isθ = sinβ1 Icβ (µ̄) − cosβ1 Isβ (µ̄) ,
(22)

nd

Icβ =

√
2
Q0

µ̄,

Isβ =

√
2
Q0

(
sign

(
µ̄′

)
I2(S) + 2 I2(1)

(
n↓ + n↑

))
.

(23)

n the previous equation

2(µ̄) =

∫ µ̄ µ̄2√
4
dµ̄ = E(arcsin µ̄ | −1) − F (arcsin µ̄ | −1),
0 1 − µ̄

4

(24)

where E is the elliptic integral of the second kind and F is the
elliptic integral of the first kind not to be confused with the Young’s
Modulus.

4. Results and discussion

By using the aforementioned experimental setup, we exe-
cuted both qualitative and quantitative experiments to test the
validity of the proposed theoretical model. Eventually, specific
experiments were executed to capture the unstable mode of the
cantilever beam. To compare the theory with the experiments the
relation between the pressure pin and the follower thrust Qexp,th
acting at the top of the beam has been derived exploiting the
continuity equation, the momentum equation and the energy equa-
tion on each Control Volume Element (CVE) reported in Fig. 6a.
Such a relation has been determined for: (i) the ideal case with
no-dissipations and (ii) the real case with the presence of all the
sources of dissipation such as the wall friction and the sudden
contraction of the flow area. The pressure/thrust relation is given
in a closed-form expression for the ideal case, Eq. (68). When the
dissipations are introduced into the model, a specific numerical
algorithm has been developed to compute iteratively the mass
flow and, thus, the generated end thrust. For a specific value
of the recorded pressure, the discrepancy between the follower
thrust Qexp,th for the ideal case (black/dashed line in Fig. 6b) and
the real case (black/continuous line in Fig. 6b) gives a quantitative
assessment of the mass flow losses affecting the experiments.
In the investigated pressure range, the average decrease of the
follower thrust associated to mass flow losses is of about 9.35%
± 3.79% with a minimum value of 5.91% for a pressure of 2 bar. It
is worth to mention that the mass flow losses are in percentage
higher for low pressure. The relation between the transversal fol-
lower force Qexp,th and the air pressure pin, expressed by Eq. (67),
s of the type Qexp,th ∝ kpcin, with k ∈ ℜ and 1 < c < 2.
n the previous expression, the non-linear behaviour is related
o the fact that air is a compressible fluid whose density and
emperature deeply depend on the pressure. In fact, if the fluid
as incompressible, such as water, the relation between Qexp,th
nd the air pressure pin would be linear. See Appendix B for the
etails.

.1. Quasi-static experiments

The comparison between theory and experiments was accom-
lished as follows. First, a deformed configuration of the structure
as computed analytically integrating the equation of the Elastica

or increasing values of the follower force, Qtheory. Then, the fol-
ower thrust Q , function of the air pressure, needed in the
exp,th
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experiments to match the predicted deformed configuration (for
each of the given Qtheory) was evaluated. In Fig. 3a, each of the
blue/disk markers depicts the relation between the (dimension-
less) theoretical, Qtheory, and experimental, Qexp,th, follower force
that yields to the same deformed configuration of the structures.
In the graph, the markers and their relative bars represent, re-
spectively, the mean value and the standard deviation of the
results collected performing four different experiments.

If theory and experiments were in perfect agreement, each
Qexp,th estimated experimentally would be equal to the corre-
sponding Qtheory imposed to solve the equation of the Elastica.
herefore, the experimental results depicted in Fig. 3a should
e well fitted with a straight line of slope 1. Instead, a two-
arameters non-linear model of the type

Q exp,th = a Q b
theory, where a ≈ 2.785, b ≈ 0.839, (25)

epresents the best fit for the experimental data reported in
ig. 3a over the whole investigated Qtheory range. In the previous
quation, Q exp,th represents the value of Qexp,th provided by the
on-linear fit (blue/dashed line in the figure). As expected, the
xperimental results show some deviation from ideality. Firstly, a
arger force is needed in the experiments to achieve the deformed
onfigurations computed theoretically at first. Since the air flow
issipations have been taken into account in the calculation
Appendix B), the discrepancy between Qexp,th and Qtheory has to
e referred mainly to (i) the tube/substrate interaction and to
ii) the flexural rigidity increase due to the internal air pressure. In
act, the Elastica has been solved neglecting the friction between
the tube and the substrate and considering a constant bending
stiffness EI for the flexible tube, namely independent from the in-
ternal air pressure. Hence, a Qexp,th greater than Qtheory is required
n the experiments to overcome friction (that always opposes
he motion) and to deform the flexible tube which stiffens as
he internal air pressure increases. The order of magnitude of
riction effect was determined via the following approximate
alculation. The resultant friction force, R̂f , that opposes to motion
s µf Ptube=6.62×10−3 N which correspond to a dimensionless
f = R̂f L2tube/(EI) ≈8. Such a resultant force acts at Ltube/2 and
enerates a reactive couple Rf Ltube/2 at the clamped end of the
ube. For simplicity, we have imagined frictional effect equivalent
o a concentrated force Qf acting at the top of the beam that

educes the applied air-thrust. This force, equal to Qf Rf /2, was

5

etermined by imposing the equivalence between the gener-
ted reactive couples at the clamped end of the beam, namely
f Ltube/2 = Qf Ltube. Of course, this value is purely indicative
s it is realistic only at the beginning of the experiments when
he tube is almost straight. In fact, the very complicated shapes
ssumed by the Elastica undergoing large deformations lead to
non-constant reactive couple (evaluated at the clamped end
f the tube) as the beam deforms. Hence, the effect of friction,
hat opposes to motion, is not constant during the evolution of
he experiments. Moreover, we have observed that the applied
nd-thrust does not remain entirely on the plane of motion but
ends to assume a slightly out-of-plane direction. This aspect
eads to the occurrence of the stick–slip phenomenon. To provide
n exact quantification of this phenomenon is not a trivial task.
e have decided to take this into account through a concentrated

orce applied at the free end of the same order of magnitude of
reviously determined Qf , namely Qstick−slip ≈4. Eventually, fric-
ion and stick–slip have been assumed equivalent to a Qfric,tot =

f + Qstick−slip ≈8, acting at the top of the flexible tube that
pposes motion. Assuming for simplicity constant and equal to
fric,tot ≈ 8 the detrimental effect of friction and stick–slip, we
ave decided to combine the remaining discrepancies between
he theoretical model and the experiments into a non-constant
oefficient η(pin) that counts the bending stiffness increase due
o internal air pressure. Such a coefficient permits to define an
ffective dimensionless end-thrust Qexp,ef as a function of an
ffective elastic modulus E(pin) = η(pin)E,

exp,ef =
Qexp,th

η(pin)
=

Q̂exp,thL2

η(pin)EI
=

Q̂exp,thL2

E(pin)I
, (26)

here Q̂exp,th is the dimensional end-thrust. The experimental
follower end-thrust purified from all the dissimilarities between
the theoretical model and the experiments (friction between the
beam and the substrate, frictional dissipation along the tube,
sudden changes in flow area, bending stiffness increase due to
air pressure) is estimated via the relation

Qexp =
Qexp,th

η(pin)
− Qfric,tot . (27)

Each ηi value is determined in post-processing by exploiting the
trend line (Eq. (25)) and by imposing Q = Q in Eq. (27)
exp,i theory,i



D. Misseroni, E. Barbieri and N.M. Pugno Extreme Mechanics Letters 42 (2021) 101110

T
C
(
a

t

t
b
s
d
Q
c
q
a
F
c
M
i
t
s
t
p
r
b

able 1
omparison between the (dimensionless) theoretical values of the follower force
Qtheory) and the actual follower force (Qexp) estimated in the experiments to
chieve the deformed shapes reported in Fig. 4 and calculated via Eq. (27).
Subfigure 1 2 3 4 5 6 7 8 9 10

Qtheory 0 1 2 20 27 36 52 78 95 120
Qexp 0 0.88 1.26 16.05 24.30 38.69 53.99 78.59 90.70 117.34

as

ηi(pin,i) =
Q exp,th,i

Qtheory,i + Qfric,tot
, (28)

where Q exp,th represents the value of Qexp,th provided by the
rend line. The coefficient η(pin), estimated by Eq. (28), ranges
between ≈ 1 (pin= 0.18 bar) and ≈ 1.24 (pin= 1.8 bar). Indeed,
such coefficient provides just an estimate of the flexural rigidity
increase due to internal pressure since it has been determined
by an indirect method. In Fig. 3b, the (dimensionless) theoretical
values of the follower force (Qtheory) are compared with the actual
mean value of the follower force (Qexp) produced at the top of the
beam and computed by applying Eq. (27). In this case, it can be
observed that the markers are well-fitted by a straight line with
slope 1. This means that now theory and experiments are in good
agreement.

In Fig. 4 the snapshots of deformed Elastica as observed in the
experiments (frames extracted from the movies taken during a
test) are superimposed to those predicted by the mathematical
model (red/dashed lines). The deformed shapes depicted in the
sub-figures and labelled from 1 to 10 refer to an increasing
transverse force applied at the top of the beam. The results shown
in Figs. 4 and 5 suggest a Qtheory ≈ 5 as a threshold value for
which the present experimental apparatus provides inaccurate or
accurate results. In fact, from this value onwards, the deformed
shapes observed experimentally start to coincide with those pre-
dicted theoretically (Fig. 5). Such a value almost agrees with the
marked change of slope of the experimental trend line attained
at Qtheory ≈ 7, as shown in Fig. 3a (orange/dashed line).

In the same figure, it is also reported the deformed configura-
tions obtained through FE Static Riks analysis (green/continuous
line). By observing the photos, we highlight how the theory
slightly differs from the experiments in the first snapshots (2
and 3). This problem is manly due to the friction and stick–
slip between the silicon tube and the Teflon sheet that is in
percentage higher for low value of the applied air-thrust. In
fact, at the beginning of the test the applied force is small if
compared to the friction force. From the fourth snapshots forward
the experiments definitely substantiate the theoretical prediction
and the numerical findings. From the figures, we can appreciate
the appearance of the deformed hook-shaped configurations for
Q greater than 20. The matching is almost perfect for Q ranging
from about 35 to 100 where the hook-like shapes are coincident
with those predicted theoretically and numerically. For Q higher
than 100 a slight discrepancy between experiments and theory is
revealed (tenth snapshot). By manually tuning the pressure gauge
of the experimental apparatus, we were able to overcome the first
unstable mode that appears at about Q ≈ 41 and reaching rela-
tive extreme deformations of the rod up to (dimensionless) loads
of 120. In conclusion, the comparison between the deformed
structure captured during a test, the theoretical prediction and
the FE results, shown in Fig. 4, reveals a globally good agreement.
A record of a quasi-static experiment and its comparison with nu-
merical and theoretical predictions is provided as supplementary
material.

Table 1 shows the comparison between the (dimensionless)
theoretical values of the follower force (Qtheory) and the actual
follower force (Qexp) computed through Eq. (27) to achieve the

shapes reported in Fig. 4.

6

4.2. Stability experiments

The same experiments reported in Fig. 4 were repeated to
capture the unstable mode of the cantilever beam, as predicted
from the numerical simulations. Such results are shown in Fig. 5.
In these experiments, the pressure of the air flowing from the
small circular void was simply increased linearly without any
particular tuning expedient. The deformed shapes depicted in
the sub-figures and labelled from 1 to 5 refer to an increasing
transverse force applied at the top of the beam. From the second
to the fourth snapshot, the experiments are in good agreement
with theoretical predictions, as observed in the quasi-static ex-
periments. As discussed in detail in Section 4.1, the trend line
reported in Fig. 3a shows a marked change of slope at a value
of Q ≈ 7. This peculiarity seems to represent the transition from
which the deformed shapes observed experimentally start to co-
incide with those predicted theoretically. Therefore, such a value
could be assumed as the lower limit for which the experimental
apparatus provides accurate results. The numerical solution re-
vealed that an unstable mode appears at Q0 = 40.5 against a Q0 =

41.15 observed in the experiments. The fifth snapshot shows
the appearance of the first instability mode. The instability onset
was estimated both numerically and experimentally following
the same criterion. The adopted method consists in comparing
subsequent frames extracted from the record of the experiments
(or of the simulations). We have assumed as the instability onset
the value of Q such that from this value onwards four sub-
sequent frames exhibit dynamic oscillations characterised by a
monotonically increasing amplitude. A record of an experiment
performed to capture the instability onset, and its comparison
with numerical prediction is provided as supplementary material.

5. Conclusions

In this paper, we presented a device capable of creating an
‘‘approximate’’ perpendicular follower force. Unfortunately, the
complexity of this problem prevents the exploiting of the Bigoni
and Noselli [35] setup that would produce a ‘‘nearly’’ perfect
follower force as thought by Ziegler. The rig consists of a flexible
silicone tube with a circular opening at the free end. A pressure
gauge provides air flow to the fixed end — the thrust generated
by the outflow results in a shear follower force. The motiva-
tion behind the design of such apparatus was the appearance of
charming deformations of a cantilever rod subjected to a shear
follower force. In particular, the closed-form solution of the Elas-
tica (derived in this paper) showed fascinating shapes at relatively
high loads. By relatively, we mean a shear force Q0 normalised
o the bending stiffness EI of the rod, meaning Q0L2/(EI), with L
eing the length of the rod. At high loads, Q0 > 10, the analytical
olution dictates a deformation that seems hook-like, with spatial
imensionless frequency 1/Smax increasing with the load to a law
1/2
0 (from Eq. (13)). The deformed shapes predicted theoreti-
ally were compared with those obtained by performing both
uasi-static experiments and Riks numerical simulations. Such
comparison showed a good agreement between experiments,
E simulations and theory. Finally, stability experiments were
arried to capture the first instability mode of the flexible beam.
oreover, an explicit finite-element calculations were performed

n Abaqus to verify the instability onset determined experimen-
ally. The setup presented in the article can find application in
everal fields. For instance, these results can play a key role in
he description and in the understanding of pressure-fed com-
liant mechanisms (e.g. in the design of soft-actuators), in the
ealisation of more efficient drilling devices or in the design of
iomedical equipment, such as catheters.
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Fig. 4. The Elastica as predicted from the theory (red/dashed line) is superimposed to experiments (blue/continuous line) and FE results (green/continuous line). In
this case, a Riks analysis was performed in Abaqus to circumvent instabilities and achieve large deformations. Each sub-figure, labelled from 1 to 10, refers to an
increasing follower shear force acting at the top of the beam. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
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Fig. 5. The Elastica as predicted from the theory (red/dashed line) is superimposed to experiments (blue/continuous line) and FE results (green/continuous line). In
this case, a Dynamic/Explicit analysis was performed in Abaqus to capture the unstable mode. Each sub-figure, labelled from 1 to 5, refers to an increasing follower
shear force acting at the top of the beam. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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ppendix A. Analytical solution of the elastica under a termi-
al shear follower force

.1. Curvature

Assuming 0 ≤ S ≤ Smax and Q0 > 0, Eq. (10) can be written as

dµ√
4

= Q0 dS, (29)

1 − µ̄ µ

7

where µ̄ = µ/µmax. Let us consider the normalised variable
¯ = S/Smax, with the exact expression of Smax still unknown at
his stage: Eq. (29) becomes

dµ̄√
1 − µ̄4

=
1
2

µmax Smax dS̄. (30)

y integrating both sides between 0 and respectively µ and S we
btain

(arcsin µ̄, −1) =
µmax Smax

2
S̄, (31)

here F (ϕ, k) is the incomplete elliptic integral of the first kind.
nverting equation (31), we get

¯ (S̄) = sn
(

µmax Smax

2
S̄|−1

)
, (32)

here sn is the Jacobi sn elliptic function. The quarter-period of
the sn function is given by the complete elliptic integral of the first
kind K (−1), therefore

max =
2 K (−1)
µmax

=
√
2 K (−1)Q−1/2

0 ≈ 1.8541Q−1/2
0 . (33)

o summarise

¯ (S̄) = sn
(
K (−1) S̄|−1

)
, (34)
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µ̄′(S̄) = K (−1) cn
(
K (−1) S̄|−1

)
dn

(
K (−1) S̄|−1

)
, (35)

ith cn and dn being respectively Jacobi cn and dn elliptic func-
ions. The differential relationship between µ̄ and S̄ is

S̄ =
1

K (−1)
sign

(
µ̄′

) dµ̄√
1 − µ̄4

. (36)

.2. Rotation

With boundary condition θ (1) = 0, the rotation is given by

θ (S) =

∫ 1

S
µ(S) dS =

∫ 1

0
µ(S) dS−

∫ S

0
µ(S) dS = β1−β(S), (37)

here

(S) =

∫ S

0
µ(S) dS β1 = β(1). (38)

he integral of the curvature in S can be computed as follows

β(S) = µmax Smax

∫ S̄

0
µ̄ dS̄ = 2 K (−1)

∫ S̄

0
µ̄ dS̄. (39)

Using Eq. (36)

β(S̄) = 2
∫ µ̄

0

µ̄√
1 − µ̄4

sign
(
µ̄′

)
dµ̄ (40)

e now integrate equation (40) by parts. To this end, let us define

(µ̄) =

∫ µ̄

0

µ̄√
1 − µ̄4

dµ̄ =
1
2

arcsin
(
µ̄2) . (41)

herefore,

= arcsin
(
µ̄2) sign

(
µ̄′

)
+ 2

∫ µ̄

0
I(µ̄)

d sign
(
µ̄′

)
dµ̄

dµ̄ (42)

The derivative of the sign of µ̄′ with respect to µ̄ is a sum of Dirac
delta functions, centred in µ̄ = −1 (where µ̄′ goes from negative
to positive), and µ̄ = 1 (where µ̄′ goes from positive to negative).

d sign(µ̄′)
dµ̄

= 2
∑

−δ(µ̄ − 1) + δ(µ̄ + 1). (43)

e notice that I(±1) = π/4. Therefore,

(S̄) = arcsin
(
µ̄2) sign

(
µ̄′

)
+ π

(
n↓(S̄) − n↑(S̄)

)
, (44)

here n↓(S̄) is the number of times µ′ changes sign from positive
o negative between 0 and S̄, while n↑(S̄) is the number of times
′ changes sign from negative to positive.

.3. Deformation

With boundary condition x(1) = 1 and y(1) = 0, the coordi-
ates of the deformed configuration are given by

x(S) = 1 +

∫ S

1
cos θ (S) dS

= 1 −

∫ 1

0
cos θ (S) dS +

∫ S

0
cos θ (S) dS, (45a)

(S) =

∫ S

1
sin θ (S) dS

= −

∫ 1

0
sin θ (S) dS +

∫ S

0
sin θ (S) dS (45b)
a

8

We notice that
cos θ = cosβ1 cosβ + sinβ1 sinβ,

sin θ = sinβ1 cosβ − cosβ1 sinβ.
(46)

oreover,

cosβ(S) = (−1)n↓−n↑ cos
(
µ̄2) ,

sinβ(S) = (−1)n↓−n↑ sign
(
µ̄′

)
µ̄2

= µ̄2,
(47)

here we used (−1)n↓−n↑ sign
(
µ̄′

)
= 1 if Q0 > 0.

Hence, using Eq. (36)∫ S

0
cosβ(S)dS = Icβ = Smax

∫ S̄

0
cosβ(S)dS̄

=

√
2
Q0

∫ µ̄

0
,
cos arcsin µ̄2√

1 − µ̄4
dµ̄ =

√
2
Q0

µ̄ (48)

∫ S

0
sinβ(S)dS = Isβ = Smax

∫ S̄

0
sinβ(S)dS̄

=

√
2
Q0

∫ µ̄

0
sign

(
µ̄′

) µ̄2√
1 − µ̄4

dµ̄. (49)

et us define

β (S) =

∫ µ̄

0

µ̄2√
1 − µ̄4

dµ̄ = E(arcsin µ̄ | −1) − F (arcsin µ̄ | −1),

(50)

here E is the elliptic integral of the second kind and F is the elliptic
integral of the first kind. Then,

Isβ =

∫ S

0
sinβ(S)dS

=

√
2
Q0

(
sign

(
µ̄′

)
Iβ (S) + 2 Iβ (1)

(
n↓ + n↑

))
, (51)

here and Isβ (1) ≈ 0.5991.

ppendix B. Estimation of the transverse thrust provided by
he air flow

The transverse follower force, acting at the end of the beam,
as provided via the air thrust. This force, linked to the Newton’s
hird low, is generated by the reaction applied to the beam by
he accelerating air flowing from the small circular void present
t the top of the beam. In this section, the thrust as a func-
ion of the measured pressure is derived for the experimental
roblem schematised in Fig. 6a. Such expression is obtained by
pplying the continuity equation, the momentum equation and the
nergy equation to each Control Volume Element (CVE) reported
n Fig. 6a.

omentum equation. With reference to a generic CVEi defined
y the control sections CSinlet and CSexit the momentum equation
rites

CVEi

F =

∑
CVEi

Fbody +

∑
CVEi

Fsurface =

∑
CSexit

βṁv −

∑
CSinlet

βṁv, (52)

here β is a correction factor (for turbulent flows can be assumed
1), ṁ is the mass flow, v the velocity and

∑
F the sum of

ll the body forces and the surface forces acting on the CVE at

particular instant in time.
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ontinuity equation. The conservation of the mass flow ṁ (conti-
uity equation) through each cross section CSi can be expressed
s

˙ = Ai ρi Vi = const, ∀i ∈ N, (53)

here Ai is the cross section area, ρi is the air density and Vi the
ir velocity. Since the air, assumed dry, is a compressible fluid its
ensity is not constant but depends on pressure and temperature
ccordingly with the following equation

(p, T ) ≃ ρdry(p, T ) =
p

RspecT
, (54)

here T is the absolute temperature [K], p the absolute pressure
Pa], Rspec = 287.058 [J/(kg K)] the specific gas constant for dry air.
or adiabatic and isoentropic compression/expansion processes of
n ideal gas the relations among its temperature T , pressure p and
ensity ρ are

1−γ T γ
= const,

ρ

p1/γ
= const, (55)

where γ is the heat capacity ratio Cp/Cv . Such a ratio is γ = 7/5
for air.

Energy equation. In the case of a steady flow with no shaft work,
negligible change in elevation and that takes place adiabatically,
the energy balance (first low of thermodynamic) reduces to

h +
V 2

2
= h0 (56)

here V is the speed flow and h is enthalpy of the system and h0
s stagnation (or total) enthalpy.

The enthalpy, equal to the internal energy u plus the product
f its pressure p, and its volume V , can be expressed as a function
f the heat capacity ratio, the pressure and the density as

h = cpdT ⇒ h =
γ

γ − 1
p
ρ

(57)

Therefore, the energy balance low can be written as

V 2

2
+

γ

γ − 1
p
ρ

= h0, (58)

or equivalently in terms of the mass flow ṁ as

ṁ2

2 (ρA)2
+

γ

γ − 1
p
ρ

= h0. (59)
9

B.1. Air flow with friction

This subsection is devoted to the estimation of the pressure
drop between the corss sections CS2 and CS3, namely along the
Silicon tube, caused by wall friction (Fanno flow) [42–44]. In the
case of a compressible fluid, such as air, and high speed flow the
wall friction is usually negligible for short ducts with big cross-
sectional area. On the contrary, frictional losses are not negligible
for long duct with small cross-sectional area. To correctly take
into account wall friction it is convenient rewrite the momentum
equation in its differential form

dp +
δFfriction

A
+ ρvdv = 0. (60)

In the previous equation, δFfriction is the friction force that is
generated between the inner surface of the duct and the flowing
fluid. Such a force is defined as

δFfriction = ρV 2 f
2

A
Dh

dx, (61)

where f is the friction factor and Dh the hydraulic diameter of the
duct; in the case of circular duct Dh = d. The friction factor f can
be evaluated via the following relation, known as the Colebrook
equation

1
f

= −2.0 log
(

ε/D
3.7

+
2.51
Re

√
f

)
, (62)

here Re= VavgD/ν is the Reynolds number (Vavg is the average
low velocity, ν = µ/ρ the kinematic viscosity of the fluid, for
ir ν ≈ 10−5 m2/s) and ε the roughness of the tube. For the
pecific case of a Silicon surface, ε is about 0.2–0.3 nm. In the
ase of compressible fluid flow, it is instrumental to define the
ariation of the flow properties in terms of the Mach number,
a = V/

√
γ RspecT , that defines flow regimes. For instance, the

low is sonic when Ma=1, subsonic when Ma<1 and supersonic
when Ma>1. In our experiments, the flow regime is always sub-
sonic (Ma<1). The pressure drop along the tube can be computed
nowing the flow Mach number at the inlet cross section CS2

(Ma2) and at the exit cross section CS3 (Ma3), as

∆Pfriction = P2−P3 = P2

⎡⎢⎢⎢⎣1 −

1
Ma3

(
k + 1

2 + (k − 1)Ma23

)1/2

1
Ma2

(
k + 1

2 + (k − 1)Ma22

)1/2

⎤⎥⎥⎥⎦ . (63)
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.2. Sudden contraction of the flow area

The effect of the sudden contraction of the flow area between
he cross sections CSin and CS5 has been evaluated accordingly
ith the procedure reported in the work [45]. In the case of a
ompressible fluid, the dissipation due to sudden changes in the
low area are usually considered ‘‘minor losses’’. The pressure
osses are assumed to be negligible from CSin to the vena contracta
CS4 while they can cause an entropy increase from the vena con-
tracta (CS4) to CS5. The pressure drop ∆Pcontraction is determined
by applying the continuity equation, the momentum equation and
the energy equation to the CVE3 considering an effective flow area
at the vena contracta A4 = CdAint , smaller than that of the duct,
Aint = πd2int/4. The steady flow discharge coefficient Cd, function
of the area contraction (Ain/Aint ) and of the pressure drop (Pin/P4),
is defined as

Cd = 1.02
Pin
P4

− 0.36
(
Pin
P4

)2

. (64)

.3. Thrust acting at the top the beam

The thrust P acting at top of the beam can be derived from the
omentum equation applied on CVE4 as

=

∑
F =

∑
CSout

βṁv −

∑
CSin

βṁv (65)

here β is a correction factor (for turbulent flows can be assumed
1), ṁ is the mass flow and v the velocity.
Being pout ≃ patm, the transverse follower force F , equal to the

omponent of the air thrust S along the y axis can be expressed
s

exp,th = Py ≃ ρatmAoutv
2
out , (66)

here ρatm = 1.204 kg/m3 is the air density at 20 ◦C and at
01.325 kPa, Aout = πd2out/4 the area of the void at the top of
he beam and dout its diameter.

By applying Eqs. (66), (53) and (59) on each control sections
Si reported in Fig. 6a it is possible to obtain the analytical
quation that provides the mass flow ṁ.
Finally, note ṁ from the above equation, the transversal fol-

ower force Qexp,id generated by the air flow and the pressure pin
ecorded during the experiments is

exp,th =
ṁ2

ρout Aout
(67)

In Fig. 6b is reported the dimensionless transversal follower
orce Qexp,th as a function of the pressure p0 measured during
he experiments for the ideal case (no-dissipations, black/dashed
ine) and the real case (with dissipations, blue/continuous line).
he curves are obtained replacing each parameter with the actual
alue of the experiments accordingly with those reported in
ection 4.

.3.1. Ideal case (no-dissipations)
For the ideal case of no-dissipations (frictionless tube and neg-

igible effect of the sudden change of area between the cross sec-
ions CSin and CS5) the mass flow ṁ can be determined through
he closed-form expression

˙ =

√
2γ

γ − 1

(
pin
ρin

−
patm
ρatm

)(
1

ρ2
atmA2

out
−

1
ρ2
inA

2
in

)−1

. (68)

he previous expression has been obtained by applying the con-
tinuity equation, the momentum equation and the energy equation
on cross sections CS and CS .
in out

10
B.3.2. Real case (with dissipations)
In the event that the effect of the wall friction and the sudden

contraction of the flow area are not neglected, the mass flow
cannot be determined via a closed-form expression as in the ideal
case. For this purpose, a specific algorithm has been written in
Mathematica to compute iteratively the mass flow known the
pressure p0 recorded during the experiments. For each pressure
pin, the code determines the mass flow ṁdiss with all the sources
of dissipation, as shown in Appendices B.1 and B.2, assuming as
a mass flow of the first-attempt that provided by Eq. (68) for the
ideal case. The condition e(k) = (ṁ(k)

diss- ṁ(k−1)
diss )/ṁ(k)

diss < 0.001 on
he residual error has been assumed as termination criteria for
he iterative procedure (k represents the iteration step). The value
of ṁ(k)

diss for which such a condition is matched represents the mass
flow for the real case with dissipation.

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.eml.2020.101110.
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