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Abstract The problem of brittle crack propaga-
tion and fatigue crack growth in functionally
graded materials (FGMs) is addressed. The pro-
posed analytical approach can be used to esti-
mate the variation of the stress-intensity factor
as a function of the crack length in FGMs. Fur-
thermore, according to the Paris’ law, the fatigue
life and the crack-tip velocity of crack propaga-
tion can be predicted in the case of fatigue crack
growth. A comparison with numerical results ob-
tained according to the Finite Element method
will show the effectiveness of the proposed
approach. Detailed examples are provided in the
case of three-point bending beam problems with
either a FGM interlayer, or a FGM external coat-
ing. A comparison is presented between two types
of grading in the elastic modulus: a continuous
linear variation in the FGM layer and a discrete
approximation with a multi-layered beam and a
constant Young’s modulus in each layer.
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1 Introduction

Functionally graded materials (FGMs) have been
designed to overcome the drawbacks due to an
abrupt variation of the mechanical properties occu-
rring at interfaces and material junctions (see e.g.,
Erdogan 1995; Erdogan and Wu 1997; Jin and
Batra 1996; Carpinteri and Paggi 2005, among
others). They consist in one material on one side
and a second material on the other, connected by
an intermediate layer with a continuous inhomo-
geneity of composition or structure. FGMs arose
from a unique idea for realization of innovative
properties that cannot be achieved by conventional
isotropic materials.

A collection of technical papers that represents
current research interests with regard to the frac-
ture behavior of FGMs has been recently pro-
posed (Paulino 2002). It has been shown that for
crack problems in FGMs the crack-tip has a regu-
lar square-root singularity and stress and displace-
ment fields have the same form as those of the
homogeneous materials (Eischen 1987). In these
problems, the influence of the material gradients
manifests itself through the stress-intensity factors.
The Finite Element method is usually applied to
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solve these problems and it is the most useful and
often-used approach to model fracture in FGMs
(Gu et al. 1999; Kim and Paulino 2002, 2003).
Very often, due to the complexity of the prob-
lem, closed-form solutions provided by theoretical
models involve complex mathematical procedures
(Delale and Erdogan 1983; Fett and Munz 1997).
Recently, Carpinteri and Pugno (2005, 2006) have
proposed an approximate analytical approach
which permits to handle with nonhomogeneous
three-point bending beams and plates in extension,
confirmed by Finite Element simulations in case of
multi-layered elements (Carpinteri et al. 2006).

Starting from Carpinteri and Pugno (2005,
2006), the mathematical formulation is herein brie-
fly revised and particularized to the geometry of
three-point bending specimens having either a
FGM interlayer, or a FGM external coating. To
show the effectiveness of the proposed approach,
a comparison with Finite Element results is pro-
posed. In addition to previous published results,
the problem of fatigue crack growth in FGMs is
addressed. Two types of grading are considered:
the former corresponds to a linear variation of
the elastic modulus along the FGM layer depth,
whereas the latter consists in a discrete approxima-
tion with a constant elastic modulus equal to the
average value of the Young’s moduli of the con-
nected layers. In the sequel, these configurations
will be referred to as continuous and discrete grad-
ing, respectively. A detailed comparison between
these two possible technical solutions is presented.

2 Fracture in FGMs

Let us consider a three-point bending beam com-
posed of a heterogeneous material whose elastic
modulus varies along its depth (see the scheme in
Fig. 1a).

For the corresponding homogeneous structure,
i.e., E(y) = const, the Mode I stress-intensity fac-
tor, KI, is given by:

KI = 4M
bh3/2 f (a/h) , (1)

where M is the bending moment in the cracked sec-
tion, b is the width (along the x-axis), h is the total
depth of the beam (along the y-axis) and a is the

Fig. 1 Schemes of three-point bending beams (a) with a
given grading in the elastic modulus; (b) composed of three-
layers with a FGM interlayer; (c) composed of two layers
with an external FGM layer

crack depth. The shape function f can be expressed
as follows (a/h < 0.6) (Murakami 1987):
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Brittle crack propagation arises when the bending
moment is such that KI = KIC, at the crack-tip:

MC = KICbh3/2

4f (a/h)
, (3)

For functionally graded materials we look for a
solution of the stress-intensity factor in a form sim-
ilar to Eq. 1:

K̃I = 4M̃
bh3/2 f̃ (a, h, E(y)) , (4)

where (∼) denotes a quantity in the structure with
FGM and the shape function f̃ is the main unknown
that we are looking for. Also in this case, brittle
crack propagation will arise when M̃ = M̃C, cor-
responding to the condition of K̃I = K̃IC at the
crack-tip. In this formulation, K̃IC denotes the crit-
ical value for the stress-intensity factor of the FGM
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evaluated at the crack-tip. Function f̃ must satisfy
the following limit case for the self-consistency of
the theory:

f̃ (a, h, E(y) = const) = f
(
a
/

h
)

(5)

For a given Young’s modulus profile, E(y), this
function can be obtained numerically, as usually
done for f in the homogeneous case (Gu et al.
1999).

The mechanical behavior of structures with
cracks or re-entrant corners can be described by
the brittleness number, s̃ = K̃IC

/(
σ̃ub(1−λ)

)
, intro-

duced by Carpinteri (1982, 1987) for homogeneous
structures and then extended by Carpinteri et al.
(2006) to multi-layered elements. The exponent λ

defines the power of the stress-singularity at the
crack-tip and it is equal to 1/2 for a crack inside
homogeneous and FGM structures, whereas it de-
pends on the elastic mismatch for a crack meeting a
bi-material interface in layered structural compo-
nents. In general, larger the brittleness number s̃,
larger the structural ductility. If this number is be-
yond a characteristic threshold, the ductile collapse
(̃σ = σ̃u) precedes the generalized brittle collapse
(K̃I = K̃IC) for any relative crack depth. Then, con-
sidering a nonlocal fracture stress criterion to over-
come the paradox between the tensional and the
energy approaches, a relationship between the brit-
tleness number for a heterogeneous structure and
that for a homogeneous element can be established
(Carpinteri and Pugno 2005, 2006). This relation-
ship can be further manipulated by considering
the relationships between the brittleness numbers
and the applied bending moments either for crack
propagation or for tensional collapse for homo-

geneous and heterogeneous structural elements,
leading to the following similarity equation:

M̃C

MC
≈ M̃t

C

Mt
C

(6)

where Mt
C and M̃t

C denote, respectively, the bend-
ing moment of first plastic deformation for a homo-
geneous beam, which is the maximum moment in
the elastic regime when tensional collapse (σmax =
σu) takes place:

Mt
C = σubh2

4g
(
a
/

h
) , (7)

and the bending moment of first plastic deforma-
tion for the heterogeneous beam:

M̃t
C = σ̃ubh2

4̃g (a, h, E(y))
. (8)

Parameter σu is the ultimate strength of the mate-
rial in the homogeneous structure, whereas σ̃u is
the ultimate strength of the material evaluated at
the crack-tip for the heterogeneous case. Functions
g and g̃ are known functions and can be easily com-
puted.

A numerical assessment of this proportionality
relationship is proposed for the bi-layered beam
sketched in Fig. 1c with different values of the
modular ratios, E2/E1 (E3 = E23 = E12E2), with
h2/h1 = 2/3, and with different crack depths, a/h,
using the Finite Element procedure as described
in Carpinteri et al. (2006). According to this ap-
proach, the ratio R between the first and second
member of Eq. 6 is numerically computed and the
results are reported in Table 1. As it can be seen,

Table 1 Numerically computed values of the ratio R for the bi-layered beam in Fig. 1c with h2/h1 = 2/3 using the finite
element method

R a/h 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70

E2/E1

0.10 0.97 1.05 1.13 1.21 1.28 1.35 1.36 0.42 0.83 0.92 0.96 0.98 1.00 1.03
0.20 0.97 1.02 1.07 1.12 1.18 1.24 1.27 0.52 0.88 0.94 0.97 0.98 1.00 1.03
0.40 0.97 0.99 1.02 1.05 1.08 1.12 1.15 0.68 0.93 0.96 0.98 0.99 1.00 1.03
0.80 0.98 0.99 0.99 1.00 1.01 1.02 1.03 0.91 0.98 0.99 0.99 0.99 1.00 1.03
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.03
1.25 0.99 1.00 1.00 1.00 0.99 1.05 1.05 0.87 1.08 1.08 0.99 0.99 1.00 1.03
2.50 1.02 1.03 1.03 1.03 1.00 0.96 0.88 1.32 1.04 1.01 1.00 0.99 1.01 1.03
5.00 1.04 1.06 1.08 1.10 1.09 1.03 0.87 1.48 1.07 1.02 1.00 1.00 1.01 1.03

10.00 1.03 1.07 1.12 1.18 1.21 1.17 0.94 1.46 1.09 1.03 1.01 1.00 1.00 1.03
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the computed ratio is close to the unity, as pre-
dicted by the approximate relationship.

Equation 6 permits to derive a simple closed-
form estimation of f̃ . To be more specific, starting
from the evaluation of g̃ (a, h, E(y)), we assume
the conservation of plane (ligament) cross-sections
after deformation, as usually considered in the
study of multi-layered beams in bending (see e.g.,
Carpinteri 1997; Chawla 1987). The assumption
of conservation of plane sections holds, provided
that the different materials are securely bonded
together so as to give the necessary resistance to
longitudinal shearing stresses. This hypothesis
implies a linear (along the y co-ordinate) axial (z)
dilation. The stress results to be nonlinear (along
y) and can be evaluated as follows (Carpinteri
1997):

σz (y) = E(y)M

ẼI∗
x

y, (9)

where Ẽ is the Young’s modulus of the material at
the crack-tip, and:

I∗
x =

∫

Alig

E(y)

Ẽ
y2dA (10)

is the weighted moment of inertia. The integral
in Eq. 10 is performed over the ligament cross-sec-
tional area, Alig. The origin of the chosen reference
system for the subsequent analysis is placed at the
centroid of the composite cross-section, defined by
the condition of a vanishing weighted static mo-
ment (see Carpinteri 1997):

S∗
x =

∫

Alig

E(y)

Ẽ
ydA = 0, (11)

In this computation, the use of an equivalent or
transformed cross-section for a beam of homoge-
neous material is made. The transformed section is
simply obtained by replacing either material by an
equivalent amount of the other material as deter-
mined by the ratio of their elastic moduli. Once
this centroid is determined, then this is chosen as
the origin of the reference system and the position
of the crack-tip, ỹ, is computed with respect to that
datum (examples of application are reported in the
Appendix).

From the previous equations it follows:

g̃ (a, h, E(y)) = bh2̃y

4̃I∗
x

. (12)

For a homogeneous structure we have ỹ= (h−a)/2
and Eq. 12 reduces to:

g
(
a
/

h
) = g̃ (a, h, E(y) = const) = 3/2

(1 − a/h)2 .

(13)

Introducing Eqs. 2, 12 and 13 into Eq. 6, we obtain
an estimation of the unknown shape function for
FGMs (Carpinteri and Pugno 2005, 2006):

f̃ (a, h, E(y)) = σuK̃IC

σ̃uKIC

g̃ (a, h, E(y))

g
(
a
/

h
) f

(
a
/

h
)

. (14)

Summarizing, for a given material grading, we have
to evaluate ỹ and I∗

x in order to compute g̃ and g.
Then, the generalized shape function f̃ is worked
out. Consequently, a prediction of the generalized
stress-intensity factor K̃I for the FGM problem can
be obtained. A further simplification will be intro-
duced in the sequel by considering σuK̃IC ∼= σ̃uKIC.
This assumption implies that the ratio between the
material strength and the fracture toughness for
a homogeneous structure is the same as that for
a heterogeneous one. In general, the higher the
strength, the lower the fracture toughness for a
given material. However, it is reasonable to expect
the occurrence of this trend both in homogeneous
and in graded materials, thus leading to σuK̃IC ∼=
σ̃uKIC. In addition, since the classical application
of the FE method to the computation of the stress-
intensity factor in FGMs does not involve the spec-
ification of material strength and toughness, it is
reasonable to assume that the generalized shape
function in Eq. 14 is independent of these material
parameters. In any case, this simplified hypothe-
sis will be checked in the sequel by comparing the
model predictions with FE results.

Brittle crack propagation can be predicted by
means of the criterion K̃I = K̃IC. This general for-
mulation can be then particularized to specific vari-
ations of the elastic modulus along the beam depth.
The main equations for a linear grading as well as
for a discrete grading have been derived and col-
lected in the Appendix.
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3 Fatigue in FGMs

In order to simulate fatigue crack growth in FGMs,
the well-known Paris’ law is adopted:

da
dN

= C (�KI)
m , (15)

where �KI denotes the variation in a cycle of the
stress-intensity factor and N is the cycles number.
Parameters C and m are experimental constants
and the parameter m usually ranges between 1 and
4 for metals and between 10 and 100 for ceramics.
Based on the computed values of the generalized
stress-intensity factor K̃I at each crack length, and
applying Eq. 15 with a step-by-step integration, the
fatigue life of graded structures can be predicted.

In general, crack propagation under fatigue
loading is influenced by the material gradient, due
to the altered stress field throughout the loading
cycle, and to the spatial variation in fatigue resis-
tance. Due to the inherent complexity of the prob-
lem and the lack of extensive experimental data
available in the Literature, constant Paris’ law
parameters are assumed in the simulations. This
assumption, which may be reasonable for titanium
alloys where the Paris’ law parameters are weakly
varying (Forth et al. 2004), permits to analyze the
effect of the altered stress field due to the material
gradient on the process of fatigue crack growth.

According to this hypothesis, we introduce two
nondimensional quantities which characterize the
mechanical response under fatigue crack propa-
gation. The first parameter is defined as the ratio
between the cycles number for a FGM structure
corresponding to a given crack length, divided by
the cycles number at failure for a structure having
a homogeneous composition:

(N)FGM

(Nmax)HOM =

a∫
a0

1

CFGM

(
�KFGM

I

)mFGM da

af∫
a0

1

CHOM

(
�KHOM

I

)mHOM da

, (16)

where a0 and af denote, respectively, the initial and
the final (at failure) crack lengths. In case of grad-
ing upon the elastic properties only, i.e., CFGM =
CHOM and mFGM = mHOM, Eq. 16 turns out to be
independent of the Paris’ law parameters C.

The second parameter is defined as the ratio
between the velocity of crack propagation inside

a FGM structure and the corresponding velocity
inside a homogeneous one, under the same applied
external loads:

vFGM

vHOM
=

da
dN

∣∣∣
FGM

da
dN

∣∣∣
HOM

=
CFGM

(
�KFGM

I

)mFGM

CHOM
(
�KHOM

I

)mHOM
.(17)

In case of grading upon the elastic properties only,
i.e., CFGM = CHOM and mFGM = mHOM, Eq. 17
simplifies as follows:

vFGM

vHOM
=
(

�KFGM
I

�KHOM
I

)m

. (18)

Furthermore, if we consider �KI = Kmax
I −Kmin

I =
K̃I and the approximate expression for K̃I in Eqs.
4, then Eq. 18 can be further simplified as:

vFGM

vHOM

∼=
(

g̃
g

)m

. (19)

Due to these relationships, it is possible to compare
the fatigue performance of a FGM structure with
either continuous or discrete grading.

Finally, it has to be remarked that the proposed
model can also be extended by considering a spatial
variation in the Paris’ law parameters. As regards
the phenomenon of unstable crack growth, it is
well-established that fracture toughness is depen-
dent on the volumetric content of the constituent
materials (Jin and Batra 1996). This dependence
can be determined according to simplified mix-
ture rules or using crack-bridging concepts (Jin
and Batra 1996). On the other hand, concerning
the phenomenon of fatigue crack growth, the
problem is more complicated. Generally, two main
classes of fatigue behaviors are reported in the Lit-
erature. In the first class, concerning FGMs with
a composition ranging from ceramics to metals,
the increase in the volumetric content of the ce-
ramic particulates resulted in higher crack growth
resistance with a retardation mechanism of fatigue
crack growth (Xu et al. 2003). In the second class,
concerning functionally graded titanium alloys, a
different mechanism was observed. More specifi-
cally, it was noticed a transition from the Paris’
law typical of the material composition present at
the surface (with fine grains), to the Paris’ curve
of the material in the interior (with coarse
grains).
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These observations may suggest the possibility
to have a dependence of the Paris’ law parame-
ters on the position (for the first class of materials)
or on the stress-intensity factor range (for the sec-
ond class of materials). Hence, the second effect
related to the spatial variation in the fatigue resis-
tance could be included in future improvements of
the present model by considering variable Paris’
law parameters in Eq. 15 based on specific experi-
mental data.

4 Numerical assessment with the Finite Element
method

In order to perform an assessment of the pro-
posed approximate formulation, model results are
compared with Finite Element predictions. Let us
consider the three-point bending beam of Fig. 1b
composed of two external homogeneous layers
having elastic moduli E3 and E1, connected by an
interlayer having a linear grading in the Young’s
modulus. In this case, the elastic modulus is as-
sumed to be continuous along the whole beam
height, i.e., E23 = E3 and E12 = E1.

Reference results for this case-study were
numerically computed by Gu et al. (1999) accord-
ing to a simplified Finite Element method based on
the domain integral approach. In their model, two
cases were considered, depending on the depth of
the FGM layer. The thinner configuration is char-
acterized by h1/h = h3/h = 0.45, h2/h = 0.10 and
l/h = 5, where h and l denote, respectively, the
total depth and the span of the beam. For this prob-
lem, the parameter KI

√
h/2/P is depicted versus

the nondimensional crack length (a − h/2)/(h/2)

in Fig. 2 for different values of the ratio between
the elastic moduli E3/E1. It has to be remarked
that the results in this diagram proposed by Gu
et al. (1999) depend on the beam span. A direct
comparison of Fig. 2a and b shows that the results
obtained according to our simplified approach are
in fair good agreement with the FE solution for
ratios between the elastic moduli in the range from
0.05 to 5.

The other configuration with a thicker interlayer
is characterized by h1/h = h3/h = 0.25, h2/h = 0.5
and l/h = 5. In this case, the comparison proposed
in Fig. 3 shows a rather good agreement between

Fig. 2 Stress-intensity factor versus nondimensional crack
length for the three-point bending beam of with h1/h =
h3/h = 0.45, h2/h = 0.10 and l/h = 5: (a) approximate
results; (b) FE results reprinted from Gu et al. (1999)

our simplified approach and FE solutions over the
whole range of variation of the elastic moduli.

A possible reason for major discrepancies
between our proposed solution and reference FE
results in the case of a thinner FGM layer can be due
to the behavior of the structure when the first two
external layers are completely cracked. Our model
predicts that, when the crack propagates inside the
last homogeneous layer, the stress-intensity factor
equals that of a homogeneous beam, regardless of
the elastic properties of the cracked layers. From
FE simulations by Gu et al. (1999), it seems that
the FGM interlayer with thickness h2/h = 0.10 is
not thick enough to exhibit this behavior.

In case of discrete grading, comparisons with FE
results for a two-layer three-point bending beam
(see the scheme depicted in Fig. 1c) can be found
in Carpinteri et al. (2006). Also in this case, a close
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Fig. 3 Stress-intensity factor versus nondimensional crack
length for the three-point bending beam of Fig. 2 with
h1/h = h3/h = 0.25, h2/h = 0.50 and l/h = 5: (a) approxi-
mate results; (b) FE results (reprinted from Gu et al. 1999)

agreement between the approximate generalized
shape functions and the corresponding FE solu-
tion was noticed.

5 Comparison between continuous and discrete
grading

In this section we aim at performing a comparison
between the fracture behavior of three-point bend-
ing beams having either a continuous or a discrete
grading. Two configurations are addressed: (1) a
three-point bending beam made of three layers
with an intermediate FGM interlayer; (2) a three-
point bending beam made of two layers with an
external FGM coating layer.

In the former case, a continuous linear grad-
ing implies that the elastic modulus of the FGM
interlayer linearly connects the elastic moduli of
the other layers. On the other hand, when a dis-

crete grading is considered, the elastic modulus
of the interlayer is set constant through the FGM
depth and equal to the average value of the elastic
moduli of the external layers (see Fig. 1b). Geo-
metrical parameters of the beam are: h1/h = 0.60,
h2/h = h3/h = 0.20 and l/h = 5.

In the latter case, the thickness of the third layer
is set equal to zero, i.e., h3 = 0, and the other
geometrical parameters are equal to h1/h = 0.60,
h2/h = 0.40 and l/h = 5. In case of linear grading,
the elastic modulus of the external layer linearly
varies from E23 = E3 to E12 = E1. On the con-
trary, when a discrete grading is considered, the
elastic modulus of this external layer is set con-
stant and equal to (E1 + E3)/2 (see the scheme in
Fig. 1c for the nomenclature used).

5.1 Three-point bending beam with a FGM
interlayer

In case of brittle crack propagation, the fracture
behavior is fully determined once the evolution
of the generalized shape function versus the crack
length is obtained. It has to be noticed that the dia-
gram of the generalized shape function in terms of
the nondimensional crack length is independent of
the geometrical parameters of the beam. Then, this
diagram should be preferred to that proposed by
Gu et al. (1999) in which the solutions are depen-
dent on the beam span. For this problem, results
corresponding to linear and discrete grading are
presented in Fig. 4a and b, respectively. In the for-
mer case, the linear variation of the elastic mod-
ulus in the FGM layer gives rise to a continuous
generalized shape function over the whole beam
depth. In general, due to grading, not only the
elastic modulus, but also the critical stress-inten-
sity factor can vary with position. In the special
case where the toughness is constant over the FGM
thickness, the crack growth is likely to be unsta-
ble for E3/E1 ≤ 1 (see Fig. 4a). In such cases,
if the condition for crack propagation is enforced
at each step, i.e., K̃I = K̃IC at the crack-tip, the
external load has to be reduced during the crack
propagation, since the shape function increases.
On the other hand, according to the same reason-
ing, we observe from the same figure that, when
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Fig. 4 Generalized shape function versus nondimensional
crack length for the three-point bending beam of Fig. 2 with
h1/h = 0.6, h2/h = h3/h = 0.20 and l/h = 5: (a) continuous
and (b) discrete gradings

E3/E1 > 1, crack propagation is unstable up to
the crack length corresponding to the maximum
of the shape function. When the shape function
decreases after this maximum, a stable crack prop-
agation may occur.

A completely different behavior is predicted in
case of discrete grading, as shown in Fig. 4b. Gen-
eralized shape functions present discontinuities in
correspondence of the bi-material interfaces. For a
crack-tip approaching the bi-material interface in
case of E3/E1 > 1, the generalized shape functions
clearly increase with the crack length, because of
the elastic mismatch. Unstable crack propagations
are likely to occur in such cases. Furthermore, the
maximum value reached by the shape function in
case of E3/E1 = 10 with discrete grading is more
than twice that for the corresponding problem with
continuous grading.
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Fig. 5 Nondimensional crack length versus nondimension-
al cycles number for the three-point bending beam of Fig.
2 with h1/h = 0.6, h2/h = h3/h = 0.20, l/h = 5 and m1 =
m12 = m23 = m3 = 1: (a) continuous and (b) discrete
gradings

Generalized shape functions for configurations
having modular ratios E3/E1 less than unity slightly
decrease when the crack-tip approaches the
bi-material interfaces (see Fig. 4b). This implies
that cracks are difficult to propagate across the
bi-material interface when the substrate is stiffer
than the coating. This result is in agreement with
FE results obtained by Chi and Chung (2003).

As far as fatigue crack growth is concerned, a
comparison in terms of the fatigue life for three-
point bending beams with either continuous or
discrete grading is proposed in Fig. 5. In order
to investigate on the effect of the elastic grading
only upon the fatigue life of the component, para-
meters C and m are assumed to be the same for
each layer and we have set m = 2. The nondi-
mensional crack length is depicted as a function
of the nondimensional cycles number in Fig. 5.
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Fig. 6 Crack-tip velocity versus nondimensional crack
length for the three-point bending beam of Fig. 2 with
h1/h = 0.6, h2/h = h3/h = 0.20, l/h = 5 and m1 = m12 =
m23 = m3 = 1: (a) continuous and (b) discrete gradings

Independently of the type of grading being con-
sidered, we recognize that the softer the mate-
rial 3 compared to the material 1, the longer the
fatigue life. From a closer comparison between
Fig. 5a and b it has to be noticed that, for any
modular ratios, the fatigue life is approximately
the same regardless of the type of grading adopted.
Since the evolution of the crack length versus the
cycles number is computed as the integral of the
velocity of crack propagation estimated according
to Eq. 15, the fact that the fatigue life is the same
in the case of linear and discrete grading solutions
implies that the average crack-tip velocity is
approximately the same in both cases.

To fix ideas, let us consider the cases with
E3/E1 higher than unity. For these problems,
when the crack-tip is in the external layer, the
velocity of crack propagation is approximately
the same regardless of the type of grading

(see Fig. 6). When the crack propagates inside
the second layer, then the crack-tip velocity de-
creases down to that of a homogeneous beam if a
linear variation in the elastic modulus is assumed.
On the other hand, in case of discrete grading, a
reduction of the crack-tip velocity occurs at the
very beginning and then a sudden increase takes
place when the crack-tip approaches the third
layer. The velocity of crack propagation in the last
homogeneous layer is the same in both cases. As
a result, the average velocity of crack propaga-
tion is almost the same in both types of grading
and the discrete grading approach seems to be
as effective as the continuous counterpart when
fatigue crack growth is the dominant fracture
mechanism.
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al crack length for the three-point bending beam of Fig. 3
with h1/h = 0.6, h2/h = 0.4, h3/h = 0.0 and l/h = 5: (a)
continuous and (b) discrete gradings



544 A. Carpinteri et al.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6a

(N)FGM/(N
max

)HOM

a/
h

1 0.5

5

0.2 E
3
/E

1
=0.12

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

(N)FGM/(N
max

)HOM

a/
h

1 0.55 0.1E
3
/E

1
=0.2210

b
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3 with h1/h = 0.6, h2/h = 0.4, h3/h = 0.0, l/h = 5 and
m1 = m12 = m23 = m3 = 1: (a) continuous and (b) discrete
gradings

5.2 Three-point bending beam with an external
FGM layer

In case of brittle crack propagation, the general-
ized shape functions corresponding to both lin-
ear and discrete grading are shown in Fig. 7a and
b, respectively. The previous considerations about
the shape of these curves and the stability of crack
propagation hold also for this case.

On the other hand, a different behavior has to
be noticed in case of fatigue crack growth. In or-
der to investigate on the effect of the elastic grad-
ing only upon the fatigue life of the component,
we have assumed the same values for C and m
for the two layers and we have set m = 2, as in
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Fig. 9 Crack-tip velocity versus nondimensional crack
length for the three-point bending beam of Fig. 3 with
h1/h = 0.6, h2/h = 0.4, h3/h = 0.0, l/h = 5 and
m1 = m12 = m23 = m3 = 1: (a) continuous and (b) dis-
crete gradings

the previous examples. The nondimensional crack
length is depicted as a function of the nondimen-
sional cycles number in Fig. 8. Independently of
the type of grading being considered, the softer the
material 3 compared to the material 1, the longer
the fatigue life. Furthermore, we observe that the
predicted fatigue life is comparable for both types
of grading when E3/E1 ≥ 1. On the other hand,
when E3/E1 < 1, the fatigue life in case of a lin-
ear grading is longer than that corresponding to
the case of discrete grading. For instance, when
E3/E1 = 0.1, the relative gain in the fatigue life
is approximately equal to three times. This trend
is expected to increase if higher values of m are
considered.
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For the sake of completeness, the corresponding
crack-tip velocities are depicted in Fig. 9 as func-
tions of the nondimensional crack length.

6 Conclusions

The problem of brittle crack propagation and fa-
tigue crack growth in FGMs has been addressed.
The simplified analytical approach herein presented
can be used to investigate on Mode I crack propa-
gation. The problems of a beam under three-point
bending and of a finite plate in tension with edge
cracks are noticeable examples that can be tackled
with this approach by using the well-known shape
functions reported in the fracture mechanics hand-
books.

The main formulae have been specified to the
case of three-point bending beams with either two
or three layers. The simplified assumptions have
been checked by comparing the model results with
FE solutions and a good agreement has been
noticed.

Focusing our attention on the comparison
between discrete and continuous grading solutions,
generalized shape functions have been derived.
These solutions characterize the problem of brittle
crack propagation. It has been observed that linear
grading is particularly effective in the reduction of
the stress-intensity factor for cracks close to the
bi-material interfaces. Also, stable crack propaga-
tions may occur when a linear grading is considered
due to the observed decreasing stress-intensity fac-
tor in a given range of crack depths.

As regards the phenomenon of fatigue crack
propagation, the crack-tip velocity and the cycles
number have been predicted in terms of the crack
length by assuming constant parameters entering
the Paris’ law. This assumption, which may be rea-
sonable for functionally graded titanium alloys
where the Paris’ law parameters are weakly vary-
ing from 3.40 to 4.33 (Forth et al. 2003), has per-
mitted to focus the attention on the effect of the
altered stress field due to the material gradient on
the process of fatigue crack growth. Linear and
discrete grading are almost equivalent in case of
three-point bending beams with a FGM interlayer.
In such situations, the fatigue life is mainly ruled
by the external layer and the average crack-tip

velocities are approximately the same regardless
of the type of grading solution being considered.
A completely different behavior occurs when the
problem of a two-layers three-point bending beam
with an external FGM layer is addressed. In these
cases, the life is longer when a continuous grading
solution is adopted. Moreover, it has to be noticed
that a grading in the fatigue parameters can also
be taken into account in a future improvement of
the model by considering a spatial variation in the
fatigue resistance according to specific experimen-
tal data.

As compared to the well-established weight
function method (see e.g., Fett and Munz (1997)
and thereafter) which permits to accurately deter-
mine the stress-intensity factor in FGMs and in
multi-layered elements, the herein proposed
approach presents several advantages. First of all,
it has to be remarked that the weight function
method requires the determination of the weight
functions that are dependent not only on the geom-
etry, but also of the elastic constants of the joint
(see Fett et al. 1997), thus leading to relatively
complicated expressions. Conversely, the approxi-
mate solution proposed in the present paper per-
mits to determine the generalized shape function
for a heterogeneous structural element just starting
from the simple expressions of the shape functions
for the limit homogeneous cases available in the
fracture mechanics handbooks. Hence, this simpli-
fied approach can be particularly effective from the
engineering point of view, since the results can be
used to draw a first guideline for the design of struc-
tural elements with functionally graded materials.

7 Appendix

Functionally graded materials are usually used
either as an external coating layer, or as a strip
sandwiched between two homogeneous layers of
finite thickness. Hence, the expressions of the
weighted moment of inertia, Ĩ∗

x , given by Eq. 10,
and of the co-ordinate of the crack-tip with respect
to origin of the reference system defined by Eq. 11,
ỹ, are herein particularized to handle with these
important applications. Closed form equations are
provided both for the case of a continuous (linear)
grading, and for a discrete (multi-layered) solution.
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7.1 Continuous grading

Let a three-point bending beam be composed of
three layers (see the scheme in Fig. 1b). The
extreme layers are homogeneous and are referred
to as layer 1 and 3, respectively. Their elastic mod-
uli are denoted by E1 and E3. These layers are
joined by a FGM strip with a linear grading in the
elastic modulus. For the sake of generality, the val-
ues of the elastic moduli of the FGM layer at the
interfaces, i.e., E12 and E23, can be different from
those of the homogeneous layers.

According to Eqs. 10 and 11, it is possible to com-
pute the position of the crack-tip with respect to
the origin of the reference system and the weighted
moment of inertia. In case of an uncracked struc-
ture, i.e., for a = 0, we have Ẽ = E3 and:

ỹ =
h1

(
h1

2
+ h2 + h3

)
+ E23

E1
h2

(
h3 + h2

2

)
+ h2

2

(
E12

E1
− E23

E1

)(
h3 + 2

3
h2

)
+ E3

E1

h2
3

2

h1 + h2
E23

E1
+ h2

2

(
E12

E1
− E23

E1

)
+ E3

E1
h3

Ĩ∗
x = E1

Ẽ
b

{
h3

1

12
+ h1

(
h1

2
+ h2 + h3 − ỹ

)2

+E23

E1

[
h3

2

12
+ h2

(
h2

2
+ h3 − ỹ

)2
]
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(

E12

E1
− E23

E1

)[
h3

2

36
+ h2

2

(
2
3

h2 + h3 − ỹ
)2
]

+E3

E1

[
h3

3

12
+ h3

(
h3

2
− ỹ
)2
]}

(20)

The formulation is completed by noting that the
corresponding values for a cross-section reduction
due to the presence of a crack of length a, i.e.,
ỹ = ỹ (a) and Ĩ∗

x = Ĩ∗
x (a), can be obtained from

the previous two relationships with the following
substitutions, depending on the crack depth:

a < h3 Ẽ = E3, h3 �⇒ h3 − a
h3 ≤ a < h2 + h3 Ẽ = (E12 − E23)

a−h3
h2

+ E23,
E23 �⇒ Ẽ, h2 �⇒ h2 + h3 − a,
h3 �⇒ 0

a ≥ h2 + h3 Ẽ=E1, h1�⇒h1 + h2 + h3 − a,
h2 �⇒ 0, h3 �⇒ 0

(21)

The problem of a two-layered beam with an exter-
nal FGM layer can be derived as a limit case by
setting h3 = 0 in the above equations:

ỹ =
h1h2 + h2

1
2 + h2

2E23
2E1

+
(

E12
E1

− E23
E1

)
h2

2
3

h1 + h2E23
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(
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− E23
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h2
2

, (22)
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− 2̃y
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2
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)}
(23)

Also in this case, the corresponding values for a
cross-section reduction due to the presence of a

crack of length a, ỹ = ỹ (a) and Ĩ∗
x = Ĩ∗

x (a), can be
obtained by substitution:

a < h2 E2 �⇒ Ê, h2 �⇒ h2 − a
a ≥ h2 E1 �⇒ Ê, h2 �⇒ 0, h1�⇒h1 + h2 − a

(24)

7.2 Discrete grading

In certain applications, the use of a multi-layered
beam instead of a structure with continuous grad-
ing can be motivated by technological and econom-
ical reasons. Therefore, in such cases, a comparison
of the corresponding fracture behaviors can be par-
ticularly useful for design and optimization proce-
dures. In this case, the weighted static moment of
the rectangular ligament cross-section with respect
to a given axis can be written as:

S∗
x = b

Ẽ

N∑
i=1

EihiyGi, (25)

where hi are the depths of the N layers composing
the ligament cross-section, b denotes their com-
mon width and yGi is the co-ordinate of the geo-
metrical centroid for the i-th layer. The Young’s
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modulus of the i-th layer is Ei, whereas Ẽ is the
Young’s modulus of the material at the crack-tip.
From geometrical considerations we have:

yGi = ỹ −
i∑

j=1

hj + hi

2
(26)

where ỹ represents the distance between the ori-
gin of the chosen reference system (y = 0) and
the crack-tip. Introducing Eq. 20 into Eq. 19 and
imposing a vanishing weighted static moment, the
distance ỹ between the weighted centroid of the
ligament cross-section and the crack-tip is derived:

ỹ =

N∑
i=1

{
Eihi

(
i∑

j=1
hj − hi

2

)}

N∑
i=1

Eihi

(27)

Eventually, the weighted moment of inertia with
respect to the elastic centroid axis can be obtained:

I∗
x = b

Er

N∑
i=1

Ei

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

h3
i

12
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⎜⎜⎜⎜⎝

N∑
i=1
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Eihi

(
i∑

j=1
hj − hi

2

)}

N∑
i=1

Eihi

−
i∑
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hj + hi

2

⎞
⎟⎟⎟⎟⎠

2⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(28)

As a result, the shape function and the stress-
intensity factor at the crack-tip in a multi-layered
structure can be evaluated according to Eq. 14.

Acknowledgements Support by the Italian Ministry of
University and Research (MIUR) is gratefully acknowl-
edged.

References

Carpinteri A (1982) Notch sensitivity in fracture testing of
aggregative materials. Eng Fract Mech 16:467–481

Carpinteri A (1987) Stress-singularity and generalized frac-
ture toughness at the vertex of re-entrant corners. Eng
Fract Mech 26:143–155

Carpinteri A (1997) Structural mechanics: a unified
approach. Chapman & Hall, London

Carpinteri A, Paggi M (2005) On the asymptotic stress
field in angularly nonhomogeneous materials. Int J Fract
135:267–283

Carpinteri A, Pugno N (2005) Fracture instability and limit
strength condition in structures with re-entrant corners.
Eng Fract Mech 72:1254–1267

Carpinteri A, Pugno N (2006) Cracks and re-entrant cor-
ners in functionally graded materials. Eng Fract Mech
73:1279–1291

Carpinteri A, Paggi M, Pugno N (2006) Numerical eval-
uation of generalized stress-intensity factors in multi-
layered composites. Int J Solids Struct 43:627–641

Chawla KK (1987) Composite materials: science and engi-
neering. Springer-Verlag, NewYork, Berlin, Heidelberg,
London, Paris, Tokyo

Chi S-H, Chung Y-L (2003) Cracking in coating-substrate
composites with multi-layered and FGM coatings. Eng
Fract Mech 70:1227–1243

Delale F, Erdogan F (1983) The crack problem for a non-
homogeneous plane. ASME J Appl Mech 50:609–614.

Eischen JW (1987) Fracture of nonhomogeneous materials.
Int J Fract 34:3–22

Erdogan F (1995) Fracture mechanics of functionally gradi-
ent materials. Compos Eng 5:753–770

Erdogan F, Wu BH (1997) The surface crack problem for
a plate with functionally graded properties. ASME J
Appl Mech 64:449–456

Fett T, Munz D (1997) Stress intensity factors and
weight functions. Computational Mechanics Publica-
tions, Southampton

Fett T, Tilscher, Munz D (1997) Weight functions for cracks
near the interface of a bimaterial joint, and application
to thermal stresses. Eng Fract Mech 56:87–100.

Forth SC, Favrow LH, Keat WD, Newman JA (2003) Three-
dimensional mixed-mode fatigue crack growth in a func-
tionally graded titanium alloy. Eng Fract Mech 70:2175–
2185

Gu P, Dao M, Asaro RJ (1999) A simplified method for cal-
culating the crack-tip field of functionally graded mate-
rials using the domain integral. ASME J Appl Mech
66:101–108

Jin Z-H, Batra RC (1996) Some basic fracture mechanics
concepts in functionally graded materials. J Mech Phys
Solids 44:1221–1235

Kim J-H, Paulino GH (2002) Mixed-mode fracture of
orthotropic functionally graded materials using finite
elements and the modified crack closure method. Eng
Fract Mech 69:1557–1586

Kim J-H, Paulino GH (2003) T-stress, mixed-mode stress
intensity factors, and crack initiation angles in function-
ally graded materials: a unified approach using the inter-
action integral method. Comput Methods Appl Mech
Eng 192:1463–1494

Murakami Y (ed) (1987) Stress intensity factors handbook.
Pergamon, Oxford

Paulino GH (ed) (2002) Fracture of functionally graded
materials. Eng Fract Mech 69:14–16

Xu FM, Zhu SJ, Zhao J, Qi M, Wang FG, Li SX, Wang ZG
(2003) Fatigue crack growth in SiC particulates rein-
forced Al matrix graded composite. Mater Sci Eng A
360:191–196.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


