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A design strategy to match 
the band gap of periodic 
and aperiodic metamaterials
Luca D’Alessandro1, Anastasiia o. Krushynska 2, Raffaele Ardito 1, nicola M. pugno 3,4 & 
Alberto corigliano 1*

the focus of this paper is on elastic metamaterials characterised by the presence of wide sub-
wavelength band gap. in most cases, such mechanical property is strictly connected to the periodic 
repetition of the unit cell. nonetheless, the strict periodicity requirement could represent a drawback. 
in this paper, we present a design strategy for aperiodic elastic metamaterials in order to achieve 
the same performances as for the periodic counterparts. this is done by exploiting the concept 
of separation of modes for different building blocks, arranged in aperiodic fashion. A theoretical 
explanation is provided, as well as numerical simulations; the concept is validated by means of a set of 
experimental tests on prototypes that are realized via additive manufacturing.

Phononic  crystals1,2 and acoustic  metamaterials3 with rationally designed architectures can manipulate elastic 
waves in unprecedented ways. Their structure is responsible for fascinating mechanical and dynamic properties 
surpassing those of their ingredients, such as e.g. negative effective mass and  stiffness3,4, negative or extreme 
acoustic  indices5, generation of frequency band  gaps1,2, negative group  velocity6, one-way and/or scattering-
free wave  propagation7, and others. Despite theoretically unlimited possibilities for design, most researchers 
focused on periodic configurations characterized by coherent dynamic response, which are easier to study due 
to the reduction of analysis to a representative building  block3,8,9. However, a strict periodicity can be unwanted 
or undesirable from the manufacturing point of view and even can cause spurious effects, such as wave ampli-
fication in attenuating  materials3,10, vibration localization at  defects11,12, or band-gap suppression in deformed 
 configurations13. Furthermore, periodicity appears to be restrictive in realizing more advanced functionalities, 
e.g. multi-functionality14, shape  morphing15,  programmability16 or spatially textured  response17. Recently, a 
combinatorial strategy has been developed to design frustration-free metamaterials with specified quasi-static 
mechanical  response17. In dynamic cases, it has been shown that by displacing identical resonators from periodic 
arrengement or by using disordered resonators, one can eliminate wave  amplification18. Other researchers have 
analyzed the influence of disorder on the geometry of internal resonators and noticed that it may have certain 
 advantages19–21.

The presence of abrupt geometrical changes in adjacent cells strongly affects the propagation of low-frequency 
elastic waves, with the possible consequence of uncontrolled band gap limits or no band gap at all. So far, the 
break of periodicity has been reported only for acoustic metamaterials with sub-wavelength features and locally 
resonant band  gaps18,22. The width of these band gaps is, however, intrinsically limited. Phononic crystals, in 
contrast, can generate wide band gaps in strictly periodic configurations. In this paper, we demonstrate that the 
periodicity is not necessary for low-frequency, ultra-wide bandgap, provided that a suitable design strategy is 
adopted. We implement this strategy by combining cubic blocks originating from different periodic metamate-
rials, which are based on the mode separation  functionality23. The latter feature enables to generate ultra-wide 
band gaps since the dispersion diagram is dominated by low-frequency global modes, at the beginning of band 
gap, whereas the second pass band is characterized by local modes, for which the wave transmission is strongly 
attenuated. The filtering behavior of such a class of metamaterials has been shown in previous papers in the case 
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of periodic repetition of the building block. In this paper, we prove that the band gaps are preserved despite 
geometric discontinuities between the unit cells, if each block is endowed with separation of modes and some 
global mass and stiffness parameters are preserved. By adopting such a strategy, we can obtain an aperiodic 
metamaterial endowed with similar band gap features as the periodic counterparts, in spite of the presence 
of essential geometric differences between the building blocks. This feature substantially extends the space of 
structural parameters for the design of elastic metamaterials with wide low-frequency band gaps. We provide a 
theoretical explanation of this fact by means of a simple 1D analytical model, that is compared to the outcomes 
of 3D numerical simulations. Finally, we realize a sample of an aperiodic meta-structure by means of 3D-printing 
technique and experimentally prove its broadband wave attenuation ability.

Design strategy
Our design approach of aperiodic metamaterials relies on the mode separation  concept23. This concept implies 
a specific configuration of the unit cell of a periodic metamaterial enabling the separation of vibrational energy 
between different structural components. For example, a meta-structure formed by periodic alternations of 
heavy spherical masses and slender ligaments is characterized by passbands with vibration modes confined 
either in the masses (global modes) or in the ligaments (local modes). Previous  works23,24 have shown that the 
global modes, characterized by the oscillation of the heavy spherical masses connected by the elastic ligaments, 
is related to the band gap opening, in the low frequency regime. The band gap is closed in correspondence of the 
local modes, characterized by the vibration of the elastic ligaments themselves, without involving the displace-
ment of the heavy masses. As a consequence, the local modes excite a very small mass (a portion of the mass of 
the ligament) and the corresponding eigenfrequency is by far higher than the global one. The mode separation 
results in activation of extremely wide band gaps, as recently shown for several metamaterial  configurations23–26.

To compose an aperiodic meta-structure, we assemble cubic building blocks into a cubic lattice. The build-
ing blocks are represented by unit cells of periodic metamaterials (Fig. 1a). The first unit cell consists of a cubic 
frame with attached spherical masses and is referred to as “Quad” (Fig. 1b)23. Similarly, the second unit cell—
“Rhomb”—consists of ligaments arranged in a rhomb-like frame and rectangular cuboid masses (Fig. 1c). The 

Figure 1.  Design strategy and analyzed geometries. (a) The composition of periodic and aperiodic 
metamaterials. (b–d) Building blocks supporting the mode separation concept: (b) “Quad”, (c) “Rhomb”, (d) 
“Circle”. The figure has been drawn by the Authors by means of Comsol Multiphysics and Inkscape.
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third unit cell is formed by three mutually orthogonal thin rings joining rectangular cuboid blocks and is called 
“Circle” (Fig. 1d).

The geometric compatibility in an aperiodic metamaterial dictates identical external dimensions for the build-
ing blocks. We assign the unit-cell size a = 5 cm that allows one to open a low-frequency band gap in periodic 
configurations around 2 kHz23,24. A band gap in the aperiodic metamaterial can be generated if each periodic 
configuration has a band gap at the same frequencies. This can be achieved by assigning identical masses to the 
bulky elements and ensuring comparable effective stiffnesses of the ligaments.

To satisfy these requirements, we assume that each building block is made of identical mono-material. This 
is Nylon PA12 with Young’s modulus E = 1.586 GPa, Poisson’s ratio ν = 0.4 , and mass density ρ = 103 kg/m323. 
The material choice is governed by the manufacturing (3D printing) technique and the verified procedure of the 
foreseen experimental  tests23,24. The spherical or cuboid bulky elements have approximately identical masses, if 
the radius of the sphere for the “Quad” geometry is R = 14.9 mm, and the width (equal to the height) and half-
thickness of the cuboid are b = 27.2 mm, c = 9 mm and b = 25.1 mm, c = 11 mm, for the “Rhomb” and “Circle” 
configurations, respectively. Matching effective stiffnesses of connecting frames can be obtained by tuning the 
geometric parameters of the ligaments. This is done analytically by analyzing equivalent diatomic mass-spring 
chains, as described in “Interpretation of the physical mechanism via 1D model”.

Interpretation of the physical mechanism via 1D model
Description of the model. The design strategy relies on the mechanical explanation of the low-frequency 
ultra-wide bandgap. As suggested in previous  papers23,24,27, and following the hints provided in related  works28 
 and29, the proposed class of metamaterials behaves like a spring-mass chain with an additional resonating ele-
ment: the interplay between the low frequency modes of the main chain and the high frequency modes of the 
resonant element leads to the low-frequency, ultra-wide bandgap. In the present work, we propose a new simpli-
fied model that is able to describe such a behaviour, catching properly the position and width of the first band 
gap.

The proposed model is reported in Fig. 2. The main spring-mass chain is represented by masses M connected 
to one another through the equivalent stiffness given by springs K and k. The masses M physically correspond 
to the prismatic or spherical elements in the proposed layouts; the connecting stiffness is given by the elastic 
ligaments (square, circular or rhombic frames). This indicates that the band gap is activated by a mechanism, the 
global mode, that is typically used to explain the behavior of phononic crystals. On the other hand, the flatness of 
the dispersion bands around the band gap boundaries suggest the presence of a locally resonant mechanism, the 
local mode. The interplay between global and local modes is represented by the masses m, which are connected 
to the main chain through the springs k. The parameters m and k physically correspond to the resonating mass 
and the modal stiffness for the local modes of the ligaments.

With reference to the model in Fig. 2, the equations of motion are:

A harmonic solution is assumed:

where the dimensionless parameter x is defined on the basis of the wavelength � and the cell length a:

By computing the time derivatives, one obtains:

(1)Mü2n =K u2n−2 + k u2n−1 − (2K + 2k) u2n + k u2n+1 + K u2n+2

(2)mü2n+1 =k u2n − 2k u2n+1 + k u2n+2

(3)u2n =B ei(ωt−2nx)

(4)u2n+1 =b ei(ωt−(2n+1)x)

(5)x = 2π

�

a

2

Figure 2.  Modes separation mono-dimensional spring-mass chain model.
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After substitution in Eqs. (1) and (2), the following system of equations is obtained:

The non-trivial solution of the system is obtained by setting to zero the determinant of the matrix, which means:

having defined:

�loc is the angular frequency of the local mode (oscillation of the mass m connected to two springs k), whereas 
�glo is connected to the global mode.

In order to obtain real-valued wave vectors, the following set of inequalities should be fulfilled:

which means:

For the structures where modes separation holds, the frequency of the global mode is by far smaller than the 
local one: as a consequence, it is possible to assume that 

√
2�glo < �loc . Under such an assumption, the solution 

of the inequalities (14) yields the following passbands:

It is now interesting to study the eigenmodes associated to the limits of these bands. The first passbands start 
for ω2 = 0 , that is clearly associated with the rigid mode of the chain (i.e. B = b = 1 ). The passband ends for 
ω2 = 2�2

glo , that entails cos2x = 0 , on the basis of Eq. (9), and cos2x = −1 . After some algebraic manipulation, 
the governing system becomes:

The mode which defines the opening of the first band gap is therefore: B = 1 , b = 0 , which is associated to global 
motion.

The lower limit of the second pass band is now considered, ω2 = �2
loc . As before, cos2x = 0 and cos2x = −1 , 

but the governing system is now represented by:

Therefore, the mode which defines the closing of the first band gap is: B = 0 , b = 1 , which is associated to local 
motion. It is worth noting that the first band gap is opened and closed on the same symmetry point, unlike what 
typically happens for locally resonant materials.

Finally, the upper limit of the second passband is ω2 = �2
loc(1+m/M) , that entails cos2x = 1 , therefore 

x = nπ . The associated eigenvector is characterized by the motion of both masses: B = − m
M b.

(6)ü2n =− Bω2 ei(ωt−2nx)

(7)ü2n+1 =− bω2 ei(ωt−(2n+1)x)

(8)
[
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For the sake of completeness, we consider the case 
√
2�glo > �loc . In that situation, the roles of global and 

local modes are basically inverted, the first passband is for 0 ≤ ω2 ≤ �2
loc and the second passband involves the 

movement of the mass M. In the limit case 
√
2�glo = �loc mode separation does not exist and there is a unique 

passband for 0 ≤ ω2 ≤ (1+m/M)�2
loc.

Application to the proposed layouts. The proposed model is now used in order to predict the initial 
and final frequency of the first band gap for the three cells presented in Fig. 1. The physical correspondence 
between the lumped parameters and the various components of the cells are explained in the previous section 
and allow us to compute the mass and stiffness parameters on the basis of the geometric features of the proposed 
layouts. The interpretative schemes, based on the results achieved in previous  works23,24, are shown in Fig. 3. The 
examination of the band gap opening and closing modes suggest that the opening mode is characterized by the 
simultaneous oscillation of the masses, with the typical deformed shape of the connecting frames depicted in 
Fig. 3. Consequently, in all the cases the global stiffness coincides with that of the planar frame, which can be 
computed by studying one quarter of the structure, in view of double symmetry. The global stiffness (K + k/2) 
is twice the stiffness of the frame, since the masses are connected by another frame, in the orthogonal plane, 
not shown in Fig. 3. The global mass M is given by the spherical or prismatic items. For what concern the local 
parameters, the examination of previous results suggests that the local modes are given by intrinsic oscillation of 
the connecting elements. Therefore, the local parameters are computed by considering the out-of-plane oscilla-
tion of the single branches of the frame. The local mass m is equal to the modal mass of the frame models shown 
in Fig. 3 and it is concentrated on the mid point.

For the “Quad” case, the global stiffness can be computed by studying the corner frame via the Timoshenko 
beam model. By assuming the deformation mode depicted in Fig. 3, one finds:

where E = 1.586 GPa and G = 566 GPa are the longitudinal and tangential moduli of the material; l = 4.689 
mm is the free length of the beams (the rigid parts are evidenced by thick solid lines in Fig. 3); I = wt3/12 = 
3.808 mm4 is the moment of inertia of the cross-section; A = tw = 6.760 mm2 is the area of the cross-section; 
A∗ = tw/1.2 = 5.633 mm2 is the reduced area for shear effects. The global mass is given by:

where ρ = 1000 kg/m3 is the density of the material; r = 14.9 mm is the radius of the sphere. The local stiff-
ness is given by the out-of-plane stiffness of each beam that compose the corner frame. The application of the 
Timoshenko model, account taken of the torsional effect, yields:

where J = 0.141tw3 = 6.443 mm4 is the torsional inertia of the cross-section. By studying the out-of-plane mode, 
one finds that the lumped mass can be estimated as the overall mass of the deformable parts of the corner frame:

If one considers the “Rhomb” layout, the global stiffness can be easily computed on the basis of the axial 
stiffness of the beam:

(19)K + k

2
= 2

1

l3

12EI +
l

GA∗ + l
EA

(20)M = ρ
4

3
πr3

(21)
k = 1

l3

12EI

1+4 EI
GJ

1+ EI
GJ

+ l
GA∗

(22)m = 2ρwtl

(23)K + k

2
= 2

EA

L

Figure 3.  Simplified schemes for the evaluation of global and local parameters of the three proposed layouts.
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where L = 21.45 mm is the free length of the beam; A = tw = 4 mm2 is the area of the cross-section. The global 
mass is:

For the local mode, one can consider the out-of-plane vibration of a clamped-clamped beam with a concentrated 
mass in the middle. The stiffness of one half of the beam is exactly the local stiffness:

where I = tw3/12 = 1.333 mm4 is the moment of inertia of the cross-section; A∗ = tw/1.2 = 3.333 mm2 is the 
reduced area for shear effects. The lumped mass is about one third of the mass of the whole beam:

For the “Circle” case, the global stiffness can be computed on the basis of the simplified theory for curved 
Timoshenko  beams30. One obtains:

where R = 14 mm is the free mean radius of the circular beam; β = 0.4515 rad is the half-opening of the free 
span; I = wt3/12 = 1.333 mm4 is the moment of inertia of the cross-section; A = tw = 4 mm2 is the area of the 
cross-section; A∗ = tw/1.2 = 3.333 mm2 is the reduced area for shear effects. The global mass is:

For the local mode, the same consideration as for the “Rhomb” case hold.
On the basis of the above considerations, one can easily compute the typical frequency in the dispersion 

diagram for the different models, namely: the frequency that opens the first band gap fop1 =
√
2�glo/2π ; 

the frequency that closes the first band gap fcl1 = �loc/2π ; the frequency that opens the second band gap 
fop2 =

√
1+m/M�loc/2π . The obtained results, for the different layouts, are summarized in Table 1.

The three layouts have been designed in order to show the same global mass and global stiffness: that entails 
that the frequency that opens the first band gap is matched between the three cases. On the other hand, the other 
frequencies are pretty different.

The one-dimensional model can be also used to carry out transmission analysis, by repeating the unit cells to 
obtain a finite structure. The equations of motion can be established and solved and eventually the ratio between 
the amplitude of the signal introduced on the first mass and the amplitude of the signal received on the last mass 
can be plotted. If one considers three unit cells (see Fig. 1), the transmission curves are reported in Fig. 4. The first 
bandgap coincides with the zone of negative transmission (i.e. attenuation). The curves are exactly superimposed 
in the low-frequency pass band; the opening frequency is roughly the same for the three cases, around 2 kHz, 
and is connected to the global mass-spring chain behavior. The band gap is closed by a sharp transmission peak, 
suddenly followed by an attenuation peak. This is typical of resonant systems and confirms that the band gap is 
closed because of the presence of a resonating local mode. Therefore, the examination of the transmission plot 
confirms the behavior connected to mode separation.

numerical and experimental results
Dispersion analysis. The specification of structural parameters allows performing full-scale finite-element 
simulations. We start from the dispersion analysis of the periodic configurations performed numerically by 
means of the Solid Mechanics Module in COMSOL Muliphysics 5.2. We model a single building block of each 
designed metamaterial and apply the periodic Bloch–Floquet boundary conditions at the three pairs of lateral 

(24)M = ρ2cb2

(25)k = 1

(L/2)3

12EI + (L/2)
GA∗

(26)m = 1

3
ρwtL

(27)K + k

2
= 2

R3

EI

(

β + sin 2β
2

− 1−cos 2β
β

)

+ R
GA∗

(

β − sin 2β
2

)

+ R
EA

(

β + sin 2β
2

)

(28)M = ρ2cb2

Table 1.  Model parameters considering the simplified schemes in Fig. 3.

“Quad” “Rhomb” “Circle”

M 13.86 13.81 13.86 (g)

m 0.0722 0.0286 0.0253 (g)

K 499.9 582.2 559.3 (N/mm)

k 180.1 18.41 75.18 (N/mm)

K + k/2 590.0 591.4 596.8 (N/mm)

fop1 2077.0 2082.9 2088.8 (Hz)

fcl1 11243 5709.6 12273 (Hz)

fop2 11272 5715.5 12284 (Hz)
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faces. The geometry is meshed by tetrahedral elements, and the mesh convergence is confirmed. The related 
eigenfrequency problem is solved for positive values of wave vector at the boundary of the irreducible Brillouin 
zone (IBZ) for a cubic lattice.

In the framework of the linear elasticity, band diagrams for “Quad”, “Rhomb”, and “Circle” cases are presented 
in Figs. 5a, 6a and 7a, respectively, with the band gaps indicated in gray. To distinguish between various mode 
types, the pass bands are coloured according to the amount of the motion localization p in ligaments, namely,

where ûx , ûy , ûz and V̂  are the displacements and the volume of the ligaments, while ux , uy , uz and V are the dis-
placements and the total volume of solid parts within a building block. The (almost) zero values of p, indicated by 
dark colors in Figs. 5a, 6a and 7a, correspond to modes localized in the massive elements with almost motionless 
ligaments. The values 0.2 < p < 0.8 describe the modes with all parts of the metamaterials involved in motion. 
These are depicted by colors similar to those of the unit cells in Fig. 1b–d. Finally, the values of 0.8 ≤ p ≤ 1 cor-
respond to the modes, the motions in which are localized in the ligaments, and are depicted in red.

(29)p =

∫

V̂

(

∣

∣ûx
∣

∣

2 +
∣

∣ûy
∣

∣

2 +
∣

∣ûz
∣

∣

2
)

dV̂

∫

V

(

|ux|2 +
∣

∣uy
∣

∣

2 + |uz |2
)

dV
,

Figure 4.  Transmission plots for the simplified schemes presented in Fig. 3.

Figure 5.  Dispersion analysis. (a) Band diagram for the “Quad” periodic metamaterial with the color of the 
passbands indicating the degree of the motion location in ligaments, as defined in Eq. (29). Band gaps are 
shaded in gray. (b) Vibration patterns at the boundaries of the band gaps (total displacement is normalized to 
maximum displacement). The figure has been drawn by the Authors by means of Comsol Multiphysics and 
Inkscape.
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Note that below the first band gap, the modes are mainly of the mixed, non-localized type (see the first sub-
figure in Figs. 5b, 6b, 7b). They can be classified as the global modes, as all the unit cell parts are in  motion23. 
Instead, above the the first band gap, the modes represented by almost flat curves exhibit a localized character—
the local modes—with intense motions concentrated either in masses or in ligaments (Figs. 5b, 6b, 7b).

The evaluated band-gap bounds are in a fair agreement with the analytical predictions discussed in “Inter-
pretation of the physical mechanism via 1D model”. For the “Quad” configuration, the calculated frequency 
fop1 = 1950 Hz is 6.5% lower than the predicted value f (a)op1 = 2077 Hz. This can be explained by a larger connec-
tion area between the ligaments and the spheres, as assumed in the analytical analysis, that decreases the bending 
stiffness of the frame. For the “Rhomb” unit cell, the numerical lower band-gap bound is only 3.6% smaller than 
the analytical value (i.e., fop1 = 2010 Hz vs. f (a)op1 = 2083 Hz) that again results from a larger connection area 
between the frame and the cuboid blocks. The smallest difference is observed for the “Circle” case, constituting 
less than 1.5% between fop1 = 2059 Hz and f (a)op1 = 2089 Hz. For the higher frequency modes, the maximum 
mismatch between the numerical and analytical results slightly exceeds 8%. Hence, we conclude that the pro-
posed spring-mass models properly capture the dispersion of both global and local modes of three-dimensional 
metamaterials supporting the mode separation functionality. This is particularly attractive, taking into account 
that the dynamics of the designed metamaterials is characterized by complex, essentially three-dimensional 

Figure 6.  Dispersion analysis. (a) Band diagram for the “Rhomb” periodic metamaterial with the color of 
the passbands indicating the degree of the motion location in ligaments, as defined in Eq. (29). Band gaps are 
shaded in gray. (b) Vibration patterns at the boundaries of the band gaps (total displacement is normalized to 
maximum displacement). The figure has been drawn by the Authors by means of Comsol Multiphysics and 
Inkscape.

Figure 7.  Dispersion analysis. (a) Band diagram for the “Circle” periodic metamaterial with the color of the 
passbands indicating the degree of the motion location in the ligaments, as defined in Eq. (29). Band gaps are 
shaded in gray. (b) Vibration patterns at the boundaries of the band gaps (total displacement is normalized to 
maximum displacement). The figure has been drawn by the Authors by means of Comsol Multiphysics and 
Inkscape.
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motions with non-uniform displacements of different components of the building blocks (see, e.g., the first 
sub-figure in Figs. 5b, 6b, 7b).

In contrast to the lower band-gap bounds, the corresponding upper bounds are difficult to match due to 
(1) a large number of imposed geometric constraints (unit-cell dimensions, ligament geometry, limitations 
originating from the manufacturing and exploitation requirements, e.g. the ligaments should be thick enough 
to maintain the structural stability) and (2) different deformation mechanisms in the local modes governed by 
different sets of mechanical parameters (see “Interpretation of the physical mechanism via 1D model”). As the 
normalized gap width (the ratio between a gap width and a mid-gap frequency) for the “Quad”, “Rhomb”, and 
“Circle” configurations is large (i.e., 137%, 97%, and 140%, respectively), and the upper bounds are formed by 
localized modes, the aperiodic metamaterial can have the attenuation performance typical for a low-pass filter, 
when the attenuation starts from the lower band-gap bound and proceeds beyond the upper bound, merging 
the subsequent band  gaps23. To verify this, we perform experimental and numerical transmission analysis on 
finite-size samples.

transmission analysis. The dispersion analyses, reported in the previous section, are used to study the 
three layouts in the hypothesis of infinite periodic repetition. On the other hand, transmission analyses for 
finite samples can be adopted to study both the periodic and the aperiodic systems and to compare the achieved 
results, numerically and experimentally. The experiments aim at confirming the filtering behavior of the periodic 
metamaterials and at proving that the aperiodic metamaterial behaves in the same way as the periodic ones, i.e. 
that filtering properties are not destroyed by the absence of geometric periodicity. Prototypes with periodic and 
aperiodic arrangements of 3× 3× 3 building blocks are produced by means of the Selective Laser Sintering 
(SLS) technique from Nylon PA12 with mechanical parameters indicated in “Design strategy” (see Fig. 8). The 
chosen number of the building blocks is compatible with the rapid manufacturing technique and sufficient to 
correctly capture the band gap attenuation regimes (for more details see Ref.27). As a matter of fact, the finite size 
of the lattice may affect the dynamic response, but the proposed arrangement is large enough to ensure the cor-
rect representation of the lattice behavior. The confirmation will be given by the examination of the linear-elastic 
transmission plot: the attenuation zones must agree with the band gaps reported in the dispersion diagrams.

The transmission spectrum is measured along the Ŵ − X direction of the IBZ that allows catching the band-
gap frequencies due to the structural symmetry. To this purpose, a prototype is placed on a bubble wrap to 
isolate it from environmental vibrations. A VibeTribe-Mamba with 20 W power and a frequency range from 
40 Hz to 22 kHz is used as actuator. A harmonic excitation is applied on a circular input area (see Figs. 9, 10) at 
one side of a cubic sample in the orthogonal direction to the surface, while the output signal is detected at the 
opposite face along the same direction. To sense the input and output signals, two PCB Piezotronics 353 B 15 
accelerometers (10 mV/g sensitivity and 70 kHz resonant frequency) are glued to the designated surface areas. 
The data acquisition chain is completed with an 8-channel PCB 483 C 05 ICP Sensor Signal Conditioner and 
a NI 9205 module (16-bit resolution). The experimental tests are performed with a 60-s white noise from 0.2 
to 15 kHz and by using a rectangular window function. Acquired signals are sampled 51,200 times per second 

Figure 8.  Prototypes of the designed geometries. The periodic samples (a) “Quad”, (b) “Rhomb”, (c) “Circle”, 
and the “aperiodic” structure (d). The figure contains photographs of the prototypes, taken by the Authors.
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and post-processed by means of Bartlett’s method by dividing them into 200 segments to guarantee a sufficient 
frequency resolution (i.e. δf  = 3.3 Hz). The transmission is then defined as a ratio between the output to input 
force amplitudes expressed in dB. Note that the described experimental setup can measure a maximum attenu-
ation up to 75 dB (i.e. 3.75 orders of magnitude).

The measured data are given in Figs. 9 and 10 by the black solid lines together with the numerical curves 
estimated by using the Solid Mechanics Module of Comsol Multiphysics v5.2. In the simulations, we analyze the 
same metamaterial configurations as in the experiments and first apply a linear elastic model for the Nylon 
material. At the unloaded surfaces of the samples, stress-free boundary conditions are applied. The numerical 
transmission data are shown by the dashed lines in Figs. 9 and 10 and perfectly match the band-gap frequencies 
predicted by the dispersion analysis, which are highlighed in gray. This confirms the accuracy of the transmission 
simulations and sufficiency of the chosen number of building blocks to capture the band-gap features. However, 
one observes certain discrepancies between the calculated and experimental results. First, the experimental band 
gaps are not aligned with the numerically predicted transmission drops being shifted towards higher frequencies. 
This is a clear indication of the viscoelastic material  behaviour9,24,27. To capture viscoelastic effects, we apply a 
simple standard linear solid model σ (ve) = 2(G′ + iG′′)ǫ(el) with G′ = G(ve) (ωτ (ve))2

1+(ωτ (ve))2
 and G′′ = G(ve) ωτ (ve)

1+(ωτ (ve))2
 

for  Nylon27 (the superscripts (ve) and (el) refer to viscoelastic and elastic material behavior, respectively).
The coefficients of the model, the relaxation time τ (ve) =8.95e-4 s and the relaxation shear modulus 

G(ve) = 235 MPa, are properly calibrated to catch the attenuation characteristics of the two lowest passbands for 
the 3D-printed prototypes. In general, the frequency-dependent behavior of 3D printed material is quite dif-
ficult to be captured, in view of the fact that the polymerization is uneven in different regions of the prototypes 
(specifically, in the bigger parts the polymerization is complete on the outer layer, whereas the internal material 

Figure 9.  Transmission analysis. Experimental transmission results for the the periodic metamaterial samples 
(the black solid lines); numerical transmission data for the same configurations for linear elastic material 
behavior (the colored dashed lines) and viscoelastic behavior (the colored solid lines). The figure has been 
drawn by the Authors by means of Comsol Multiphysics and Inkscape.
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structure is largely unknown). The simple viscoelastic model has been chosen with the purpose of understanding 
the frequency shift and the attenuation of the experimental passbands. The viscoelastic transmission simulations 
are shown by the dashed solid lines in Figs. 9 and 10.

The comparison between experimental data and numerical outcomes is fair. One observes that in the first 
passband, until about 1.8 kHz, the viscoelastic numerical simulations reproduce correctly the experimental data: 
to appreciate that fact, the zoomed views of the comparative plots in the range 0.5–3 kHz are reported in the 
Supplementary Information 1. It is worth noting that, for all the cases, there is a discrepancy between experi-
ments and simulations in the frequency range around 2 kHz: this is possibly due to the insufficient damping, for 
that specific frequency range, connected to the simple viscoelastic model. At higher frequencies, the simulations 
predict large attenuation, until 300 dB. Such an attenuation cannot be captured by the experimental apparatus, 
that is able to measure transmission until − 75 dB because of the intrinsic limitation of the accelerometers. As 
a matter of fact, the coherence plots (reported in the Supplementary Information) show in general null values 
beyond 2 kHz, which testifies the noisy nature of the measurement in that frequency regions. The only excep-
tion is represented by the case “Rhomb”. After the examination of the coherence plot, it is possible to conclude 
that the second passband, between 7.5 and 8 kHz, is not an experimental artifact and should be captured by the 
model. Figure 9, case “Rhomb”, shows that the viscoelastic model is able to capture the frequency shift of the 
second passband with a reasonable accuracy (error in the frequency peak slightly less than 10%). The attenuation 
is larger than expected, but not unreasonable. In all the other cases, it is not possible to check the experimental/
numerical agreement in the noisy region and we cannot exclude the presence of resonant modes, as predicted 
by the viscoelastic simulations. Nonetheless, such modes correspond to attenuations larger than 80 dB, i.e. four 
orders of magnitude.

The experimental results for the periodic arrangements, Fig. 9, confirm the numerical prediction in terms of 
ultra-wide low-frequency band gap. Moreover, it is possible to notice that higher frequency passbands separat-
ing adjacent band gaps almost completely disappear in the experimental and numerical viscoelastic data for 
the periodic configurations. This can be explained by the localized character of these modes (see Figs. 5, 6, 7) 
excluding their proper excitation in standard transmission tests. Therefore, the adjacent band gaps are merged 
and all the designed metamaterial structures act as filters for waves above 2 kHz.

The most important result is referred to the aperiodic sample, see Fig. 10. Indeed, both the numerical and 
the experimental results confirm that the band gap is present and that the opening frequency coincides with 
the value that characterizes the three building blocks. This proves that the lack of periodicity does not affect the 
filtering behaviour. This claim is strengthened by additional analyses, reported in the Supplementary Informa-
tion 1, for different random arrangements of the aperiodic material: in all the cases, the numerical transmission 
plots show the same band gaps.

conclusions
The aim of this paper is to validate the possibility of realizing aperiodic metamaterials with band gap properties 
that match the behavior of the periodic cases. The design strategy is based on the assembly of various building 
blocks, characterised by completely different geometric features. The dispersion spectrum of each building block 
is characterized by the presence of wide low-frequency band gap. The proposed metamaterial is aperiodic, since 
the geometry of the unit cell is not periodically repeated, but some basic mechanical features are preserved. As a 
matter of fact, the behavior of the proposed metamaterials can be interpreted by means of an analytical model, 
which shows that the opening and closing frequency of the first band gap are determined by global and local mass/
stiffness parameters, respectively. The different building blocks have been designed with the objective of having 

Figure 10.  Transmission analysis. Experimental transmission results for the “Aperiodic” metamaterial sample 
(the black solid line); numerical transmission data for the same configurations for linear elastic material 
behavior (the colored dashed line) and viscoelastic behavior (the colored solid line). The figure has been drawn 
by the Authors by means of Comsol Multiphysics and Inkscape.
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the same mass and stiffness connected to global mode, so that the opening frequency is the same. On the other 
hand, the mass and stiffness parameters for the closing frequency are different, as it is quite difficult, in view of the 
geometric constraint, to match both global and local parameters between the three blocks. The 3D unit cells are 
thus characterized by different bandgap, with similar opening frequency (maximum difference about 5.6%) and 
different closing frequency. The aperiodic metamaterial, constituted by the arrangment of the different blocks in a 
3× 3× 3 setup, is analyzed by means of numeric and experimental transmission diagrams, that show a wide band 
gap whose opening frequency is in agreement with the single blocks. The experimental results show also that, in 
view of the damping connected to viscoelastic behavior of the material, the high frequency passband is strongly 
attenuated, so that the adjacent band gaps are merged and the metamaterial behaves as a low-pass mechanical 
filter. This kind of dynamic response is shown in the numeric viscoelastic analyses as well. The achieved results 
lead us to an important conclusion that we designed the first aperiodic metamaterial with extremely wide low-
frequency band gaps, attenuating waves with the efficiency comparable to the periodic counterparts. This paves 
the way for research developments in various directions. First, the proposed design approach has a potential to 
reduce the production costs by implementing an alternative manufacturing technique for phononic materials. 
As discontinuities in the bulky parts do not influence the wave attenuation in a structure, one can produce each 
unit cell separately, as suggested in the recent  literature31, instead of a time-consuming 3D-printing of a whole 
structure. Such parallelization can largely decrease the production time and foster practical applications of the 
proposed metamaterials. In view of possible industrialization, the presence of defects and of differences between 
the building blocks cannot be excluded: it would be interesting to investigate to what extent the difference 
between the band gaps of the unit cells is affecting the presence and the width of the band gap in the aperiodic 
material. This could be done, for instance, by means of Monte Carlo simulations for a random variation of the 
mechanical parameters in predefined intervals. Moreover, despite the limitations imposed by the compatibility 
of the unit cells, the design space of aperiodic metamaterials is huge and not restricted to the configurations 
supporting the mode separation concept. Finally, the extension of the aperiodic metamaterial concept to the 
microscopic scale is  desirable32, in view of the possible application as mechanical or acoustic filter in the field of 
Micro and Nano Electro-Mechanical Systems (MEMS/NEMS).
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Coherence plots for the measured data
The coherence γ2 between the experimental input and output accelerations is computed on the basis of the cross-spectral density
Sio and the autospectral densities Sii and Soo:

γ
2( f ) =

|Sio( f )|2

Sii( f )Soo( f )
(1)

For linear systems, as the considered metamaterials, the coherence should be ideally equal to unity. Low values of the
experimental coherence typically denote the presence of noise. Fig. S1 shows the coherence for the four prototypes, namely the
three periodic samples (“Quad”, “Circle” and “Rhomb”) and the aperiodic one. The coherence is reasonably close to unity
only in correspondence of the first passband, i.e. for frequency lower than 2 kHz. Beyond that threshold, the band gap begins
and the attenuation attains extreme values, that cannot be captured by the experimental setup in view of the accuracy of the
accelerometers. As a consequence, the measurement is dominated by the noise and the coherence is pretty close to zero. The
only exception is represented by the case “Rhomb”, where the coherence is different than zero (though very small) in the
frequency region around 8 kHz. This suggest the fact that the second passband is experimentally detected, even if a rather noisy
signal is present.

In order to provide an indication of the region in which the noise overwhelms the measurement, we consider the frequency
threshold after which the coherence is lower than 10−3: case “Quad”, 2.37 kHz; case “Circle”, 2.20 kHz; case “Rhomb”, 2.33
kHz; case “Aperiodic”, 2.17 kHz. These values are used in the examination of the transmission plot, see Fig. S2 to get better
insight in the numerical/experimental comparison.

Numerical-experimental comparison in the low frequency range
The examination of the coherence plots, presented in Fig. S1, confirms that the most reliable results are confined in the first
passband, for waves with frequency between 0.5 kHz and 2 kHz. In order to appreciate the accuracy of the numerical models, a
zoomed view of the transmission plots in the range 0.5 kHz-3 kHz are presented in Fig. S2. In these plots, the vertical red
dashed lines represent the coherence threshold, i.e. the frequency threshold after which the signal-to-noise ratio is no longer
acceptable. Moreover, the gray shaded areas represent the band gap as predicted by the dispersion analyses in the linear elastic
case.

For the case “Quad”, the viscoelastic analysis predicts correctly the experimental behavior around 0.5 kHz. The frequency
of the first amplification peak, around 0.82 kHz is slightly overestimated, as it happens for the second peak around 1.15 kHz. In
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Figure S1. Coherence plot of the input/output measured acceleration for the four tested specimens, namely the three periodic
prototypes “Quad”, “Circle” and “Rhomb” and the aperiodic one.

the frequency region around the band gap opening, that is predicted at 1.95 Hz for linear elastic behavior, there is a certain
discrepancy in terms of attenuation level: this is due to the fact that the viscoelastic model is very simple, if compared to the
complex behavior of the 3D printed material, and that some additional damping would be needed in that frequency range.
Nonetheless, the frequency of the small peak at 2.27 kHz, that marks the experimental band gap opening, is correctly simulated
by the viscoelastic model. Such a data is reliable, since it lies in the high-coherence region.

In the case “Circle” the discrepancy in the region around the band gap opening is more evident. On the other hand, in
this case there is excellent agreement in the initial part of the plot, specifically in correspondence of the first peak (about 0.72
kHz) and of the second peak (about 1.02 kHz). The descent after band gap opening seems too much shifted towards the high
frequencies, but this is possibly due to the presence of a numerical peak around 2.37 kHz, that is present in the viscoelastic
analysis but it is not visible in the experiments. The discrepancy in this case can be explained by considering the fact that the
coherence threshold is pretty close to the elastic band gap opening, so the measurements around 2.37 kHz are dominated by the
experimental noise.

The examination of the transmission plots for the case “Rhomb” emphasizes the fact that the viscoelastic analyses are by
far better than the elastic ones. Indeed, the elastic analyses shows peaks and troughs with significant amplitude, whereas the
experimental transmission in the low frequency regime lies in the range between -10 dB and 6 dB. The viscoelastic transmission
is in fair agreement with the experimental data, even though the frequency of the peaks seems to be slightly overestimated.
Again, there is a discrepancy around the band gap opening (2.01 kHz for the linear elastic case), that can be ascribed to the lack
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Figure S2. Transmission plots for the four tested specimens, namely the three periodic prototypes “Quad”, “Circle” and
“Rhomb” and the aperiodic one. The experimental measurement (solid black lines) are compared to the numerical elastic (solid
color lines) and viscoelastic (dashed color lines) analyses. The red dashed line correspond to the coherence threshold,
arbitrarily chosen as γ2 = 10−3

of damping connected to the viscoelastic model in that frequency regime. The experimental band gap opening is well aligned
with the frequency threshold, at 2.33 kHz, and is suitably predicted by the viscoelastic model.

Finally, for the aperiodic metamaterial the match between experimental data and viscoelastic analysis is satisfactory until
about 1.8 kHz, with a good prediction of the first and second peaks and an excellent agreement in the trough around 1.48 kHz.
The attenuation around 2 kHz is underestimated, that configures a common feature of the viscoelastic model, but, on the other
hand, the sudden drop after 2.13 kHz (that represent the band gap opening) is caught with sufficient accuracy. The numerical
analyses show a small peak around 2.27 kHz, but that frequency is beyond the coherence threshold.

To conclude, the examination of the numerical and experimental plots in the low frequency regime (from 0.5 kHz to 3 kHz)
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shows that the viscoelastic model is able to capture the main features of the elastic wave transmission, even if some additional
damping should be introduced in the region around 2 kHz. The comparison is corroborated by the addition of the coherence
data, that helps to explain some discrepancy.

Numerical results for different aperiodic arrangements
To support the key claim of this work, we consider other five aperiodic arrangements of the metamaterial building blocks. The
aperiodic patterns are created by using uniformly distributed random numbers 1, 2 and 3, referring to “Circle”, “Rhomb”, and
“Quad” building blocks, respectively, and generated by the Matlab function rand(3,3). Each run of the function delivers a 3
by 3 array of the numbers indicating the arrangement of the building blocks in a single layer. The layers can be used to form
various aperiodic metamaterial configurations. In two of the analyzed cases, the metamaterials contain 9 building blocks of
each type that are arranged as indicated in Table S1.

Table S1. Additional aperiodic arrangements, characterized by the same number of each building block

Layer 1 Layer 2 Layer 3

Mix I
3 1 2
3 2 2
2 3 2

2 3 1
2 1 1
1 1 3

3 3 1
3 2 2
1 1 3

Mix II
1 2 3
3 2 1
1 3 2

2 3 2
2 1 1
3 3 1

2 2 1
3 1 2
1 3 3

The transmission data for these two configurations are given in Figure S3 by the dashed purple and olive curves, respectively.
In the other three cases, the building blocks of a single type are dominant. Specifically, we analyzed the arrangements reported
in Table S2. As can be seen, the mix 1 has a larger number of the “Circle” building blocks indicated by number 1, and the
mixes 2 and 3 are dominated by the “Rhomb” and “Quad” building blocks, respectively. The evaluated transmission results are
shown in Figure S3 in blue, green and cyan solid lines. The gray shaded areas indicate the band gaps obtained for the aperiodic
arrangement reported in the paper.

The examination of the transmission plots, obtained for a linear elastic constitutive model, confirms that the band gaps
are not altered by the different aperiodic arrangements. More specifically, all the cases share the same opening frequency for
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Figure S3. Transmission plots for the different aperiodic arrangements, specified in Table S1 and Table S2. Gray shaded
areas represent the first and second band gaps for the arrangement considered in the paper.
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the first band gap, around 2 kHz. The pass band around 6 kHz is present for all the cases, with different amplifications. The
obtained result supports the statement that the aperiodic metamaterial is endowed with the same filtering properties as the
periodic counterparts.

Table S2. Additional aperiodic arrangements, characterized by a dominant building block (boldface number)

Layer 1 Layer 2 Layer 3

Mix 1
2 3 1
1 2 2
3 1 1

1 2 1
3 1 2
1 2 3

3 1 3
2 3 2
1 1 3

Mix 2
2 1 2
2 1 1
3 1 2

1 1 2
3 1 2
2 2 3

2 1 2
2 3 2
3 3 1

Mix 3
1 2 2
3 3 3
3 1 3

3 3 3
2 3 3
1 3 2

2 1 1
1 1 3
3 1 3
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