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Abstract
Analogue gravitational systems are becoming an increasing popular way of studying the behaviour
of quantum systems in curved spacetime. Setups based on ultracold quantum gases in particular,
have been recently harnessed to explore the thermal nature of Hawking’s and Unruh’s radiation
that was theoretically predicted almost 50 years ago. For solid state implementations, a promising
system is graphene, in which a link between the Dirac-like low-energy electronic excitations and
relativistic quantum field theories has been unveiled soon after its discovery. This link could be
extended to the case of curved quantum field theory when the graphene sheet is shaped in a surface
of constant negative curvature, known as Beltrami’s pseudosphere. Here we provide numerical
evidence that energetically stable negative curvature graphene surfaces can be realized. Owing to
large-scale simulations, our geometrical realizations are characterized by a ratio between the
carbon–carbon bond length and the pseudosphere radius small enough to allow the formation of
an analog of a black hole event horizon. Additionally, from the energy dependence of the spatially
resolved density of states, we infer some thermal properties of the corresponding gravitational
system, which could be investigated using low temperature scanning tunnelling microscopy or
optical near field spectroscopy. These findings pave the way to the realization of a solid-state system
in which the curved spacetime dynamics of quantum many body systems can be investigated.

Quantum mechanics and general relativity are the
most successful theories of modern physics. Most of
the predicted exotic phenomena, from the weirdness
of quantum entanglement to the existence of black
holes have been experimentally tested and verified.
On the other hand, a serious difficulty remains to
merge those two fundamental theories in a single
framework, which, in turn, makes it extremely chal-
lenging to obtain firm theoretical predictions.

One remarkable exception is the discovery by
Hawking that, from a quantum mechanical point
of view, black holes are not completely black [1]:
they emit ‘Hawking radiation’ consisting of photons,
neutrinos and, to a lesser extent, all sorts of massive

particles. However, direct detection of this radiation,
which is thermal in nature, seems beyond the exper-
imental reach: Hawking radiation is in fact predicted
to be proportional to the inverse of the black hole
mass, which, for the smallest observed black hole,
implies T= 60 nK, i.e. 9 orders of magnitude smaller
than the current cosmic microwave background tem-
perature.

On the other hand, so-called black hole ana-
logues, first proposed by Unruh [2], are rapidly turn-
ing from promising to consolidated avenues in the
study of various thermodynamics aspects. This is par-
ticularly true for sonic analogues built from ultracold
gases [3–12], for which not only Unruh-[13] and
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Hawking-like [14] radiation has been experimentally
observed, but, in the latter case, its correlation spec-
trum shown to be thermal and with a temperature
given by the system’s surface gravity [15], thus vin-
dicating Hawking’s predictions.

The state-of-the-art of solid-state black hole ana-
logues is, on the other hand, at a less advanced
stage [16–18]. Indeed, while all current experimental
approaches face major challenges mainly related to
material synthesis and device fabrication, in the last
couple of years key conceptual advances have been
achieved; thus, there are now hopes for some of
the fundamental questions to be addressed in con-
densed matter systems too, especially in connec-
tion to the implementation of the Sachdev–Ye–Kitaev
model [19, 20] and its potential to holographically
realize quantum black holes.

Following [22–24] here we discuss a possible real-
ization of a solid-state black-hole analogue. This sys-
tem consists of a graphene membrane character-
ized by a three-connected tessellation engineered to
shape it in the form of a constant negative curvature
surface, known as Beltrami’s pseudosphere. In par-
ticular, we develop a novel computational method
to build realistic and energetically stable negative
curvature carbon allotropes comprising millions of
atoms. Furthermore, we elaborate a tight-binding
(TB) approach to calculate the local density of state
(LDOS) for these extended curved structures. We
anticipate that, despite the comparison between the
numerically evaluated and the theoretically predicted
LDOSs is inherently plagued by the formation of
pentagonal and heptagonal defects in our realistic
structures, we find an asymmetric LDOS around
the Fermi level, which has been predicted to encode
the signature of gravitational horizon of events in
black hole physics, through the thermal properties of
related electronic excitations [22, 23].

Beltrami’s pseudosphere represents the hyper-
bolic counterpart of the regular sphere: it is a sur-
face of revolution characterized by a constant negative
Gaussian curvature κ=−1/R2

p, with Rp the pseudo-
sphere radius.

Under suitable boundary conditions, Gauss Bon-
net’s theorem shows that the existence of Stone-
Wales (SW) defects with an excess of six heptagonal
defects with respect to the pentagonal units [24–
26] is required to tile the pseudosphere with carbon
atoms. Thus, the presence of six heptagonal shapes
is imposed at the beginning and preserved by all the
steps of the construction. In addition, Hilbert’s the-
orem states that no analytic complete surfaces of con-
stant negative Gaussian curvature can be embedded
inR3, implying that the graphene pseudosphere can-
not be complete.

Early investigations to build a realistic Beltrami’s
pseudosphere by finding a (local) minimum energy
tiling of carbon atoms taking into account these two
theorems [24], have been inconclusive in: i) delivering

a general approach to the tessellation of hyper-
bolic surfaces; ii) scaling-up the graphene pseudo-
sphere size; and iii) measuring the surface’s electronic
structure. And properties ii) and iii) are of para-
mount importance in ascertaining the capacity of this
carbon-based structure to act as an analogue gravity
model.

Our method proceeds as follows: we start the
pseudosphere generation from a planar graphene
sheet, in which we impose the presence of six hep-
tagonal faces in the center (see figure 1(a)–(i)).
The initial configuration of the pseudosphere (fig-
ures 1(a)–(ii)) is then obtained by simply project-
ing the graphene net on the Beltrami’s surface along
the z-axis (see Supplemental Material [21]). In this
configuration, the carbon-to-carbon bond lengths in
the bent region within the pseudosphere is longer
than the typical bond distances in flat graphene
(aCC = 1.42 Å), owing to the (negative) curvature.
Next, a sequence of bond-switching trial moves and
structural optimization steps with a modified Keat-
ing potential to favour the formation of hexagonal
cells is then applied (see Supplemental Material
[21], figure A1(a), and accepted or rejected accord-
ing to a suitable energy minimization criterion (fig-
ure 1(a), panels iii through v). After O(104) moves
the algorithm efficiency drastically drops, which lim-
its the radius size of the minimized structures (fig-
ure 1(a) vi) to few nm and the number of carbon
atoms toO(103).

Scaling-up of the numbers of atoms to achieve sat-
isfactory experimental conditions (which will be dis-
cussed below) is next implemented through a cus-
tom dualization algorithm (figures 1(b) and A1(b)),
by which the pseudosphere radius and number of
atoms scale like∼

√
3 and ~ 3 respectively, while con-

serving both the bond distance as well as the num-
ber of defects (see Supplemental Material [21]). Each
dualization step is then followed by a bond switch-
ing optimization run to counteract the former tend-
ency of splitting apart the SW defects of the ori-
ginal structure (and, thus, artificially increasing its
total energy). Repeated application of this proced-
ure allows one to reach a thousandfold increase in
the number of carbon atoms (our maximum value
being N = 2, 615, 976) and a pseudosphere radius
Rp = 73.96 nm. We hasten to emphasize that these
atomic configurations are found to be stable also by
molecular dynamics simulations at several thousands
K. More specifically, despite the formation of ripples
and local deformations in proximity of the defected
sites, graphene membranes of minimal energy result
dynamically stable also when relaxing the condition
that carbon atoms are strictly located on the analyt-
ical Beltrami’s surface.

The signature of the Hawking-Unruh effect in
the carbon pseudosphere can be found by charac-
terizing the electronic properties in terms of the
LDOS near the Dirac points [27], where electrons
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Figure 1. Tiling the hyperbolic plane by three-coordinated tessellations realized by an all-sp2 carbon-based net. (a) Optimization
of a carbon pseudosphere containing N= 1626 atoms with radius Rp = 18.26 Å. Panels from i to vi represent different
optimization stages, consisting of trial bond switch–twist moves. Carbon atoms that do not belong to the hexagonal faces are
marked in red colour. Starting from an initial configuration (panel i) almost entirely tiled with hexagonal polygons, atoms
rearrange to fill uniformly the surface (panels ii to v) reaching a local minimum after a few thousands steps (panel vi). After
reaching this configuration, trial moves are rejected at an increasingly high rate and the Metropolis algorithm becomes inefficient.
(b) A dualization sequence (described in Supplemental Material [21]), leading to a thousandfold increase in the number of
carbon atoms and close to a hundredfold increase in the pseudosphere radius.

behave as relativisticmassless pseudo-particles. Given
the O(106) carbon atoms of the realized structures,
the LDOS will be evaluated through a multi-orbital
TB approach implementing the Kernel Polynomial
Method (KPM) to avoid the diagonalization of the
Hamiltonian [28]. Due to curvature, in fact, the pz
orbitals contributing to the π band are not anymore
orthogonal to the in-plane direction; similarly, the
sp2-hybridized orbitals do not lay in the graphene
plane. Thus, an approach, in which all four valence
orbitals (2 s,2px,2py,2pz) are included in the simu-
lations as opposed to the pz orbital alone, has been
necessary (see Supplemental Material [21] and fig-
ure B2 therein, where details concerning the paramet-
rization of the Hamiltonian are reported and well-
established results on graphene and carbon nanotube
structures reproduced).

The LDOS projected onto longitudinal circles in
regions located at a different z-depth along pseudo-
spheres obtained at various stages of the dualization
procedure (and thus characterized by varying num-
ber of atoms N and radius Rp), is plotted in fig-
ure 2. In each case we evaluate this quantity for three
structures differing by the number and location of
the SW defects. In the energy range E∈ [−6, 6] eV,
the LDOS shows a graphene-like shape for all the
pseudospheres independently of the radius and defect
distribution. With respect to the pristine graphene
(region i), region ii shows Van-Hove singularities
associated to the π band peaks which are broadened
and shifted; this is due to the slightly elongated carbon
bonds characterizing this pseudosphere region, which
represents the would-be Hilbert horizon (where the
pseudosphere ends as a consequence of the Hilbert
theorem). Moving further inside, the LDOS stays the
same at a qualitatively level independently of the
pseudosphere funnel depth at which is evaluated.

A similar overall behaviour (figure 3(a)) per-
sists in the biggest structures studied. However, by
zooming in the vicinity of the Fermi energy we find

a bulge, which can be seen in the blown up region in
figure 3(a)) and which could be also spotted in the
central region of figure 2. We attribute this behaviour
of the LDOS to a genuine curvature effect. Project-
ing the LDOS over single atomic sites both inside and
outside the pseudosphere (sites s1−5 in figure 3(b))
and disentangling the nearest-neighbour contribu-
tions (that would correspond to the A and B sub-
lattices in pristine graphene), we find that the LDOS
spectrum around the Fermi energy EF is significantly
asymmetric for the two nonequivalent sublattices,
while for energy E≫ EF it is practically indistinguish-
able. It is worth to notice that axial symmetry of our
realistic structures is broken by the presence of the
defects, at variancewith the continuummathematical
model where one deals with a revolution surface. Fur-
thermore, we stress that this finding agreeswith a sim-
ilar behaviour in strained graphene sheets [29], where
sublattice symmetry breaking was induced by an out-
of-plane deformation. Further details on LDOS cal-
culations and Beltrami’s geometry generation can be
found in the Supplemental Material.

The largest simulated pseudosphere has a ratio
aCC/Rp ∼ 2× 10−3. This parameter determines how
well the Hilbert horizon and the Rindler-type event
horizon, emerging when treating the pseudosphere as
a 2+1 dimensional space-time in which the valence
electrons move, coincide [22, 23] (0 representing
coincidence). In the ideal case [22, 23], in the prox-
imity of the horizon, Hawking’s radiation happens
due to massless electrons, which before tunnelling
(i.e. on the pseudosphere surface) are described by the
action

S= ivF

ˆ
d3x

√
gψ̄γµDµψ, (1)

where vF ∼ c/300 is the Fermi velocity, γµ are the
Dirac matrices, ψ and ψ̄ are the field operators
creating particles and holes respectively, andDµ is the
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Figure 2. Evaluation of the LDOS through a multi-orbital TB approach implementing the Kernel Polynomial Method. Panels (a)
through (c): LDOS projected onto five regions at different depth along the revolution axis z (i through v) for various
pseudospheres characterized by three different values of the number of atoms N and radius Rp. For each case of N and Rp we
report the LDOS for three pseudosphere realizations B1−3 differing by the configurations of SW defects, of which a representative
is shown on the right of each panel. The Fermi energy is set equal to zero in all cases.

SO(2,1) covariant derivative. Finally, g is the determ-
inant of the pseudosphere metric ds2B = ϕ2(u)ds2R,
where ϕ(u) = ℓ/r eu/r, ℓ is a constant that in the
physical case is to be identified with aCC) and ds2R is
the Rindler-type metric ds2R = ϕ−2(u)(dt2 − du2)−
r2dv2 (with u and v the curvilinear coordinates

spanning the pseudosphere). We stress at this point
that equation (1) is strictly valid only at very small
energies around the Fermi level and that the covariant
derivativeDµ does not take into account elastic effects
for which the associated stress tensor would mix
the four-component pseudo-spinor arising from the
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Figure 3. LDOS symmetry breaking due to curvature effects. (a) LDOS projected onto five regions at different depth along the
revolution axis z (i through v) for for the three biggest pseudospheres (N= 2, 615, 976 and Rp = 73.96 nm, right). We also zoom
on the Fermi energy to expose the LDOS bulge in this region. (b) Pseudosphere’s LDOS projected over the shown sites si.
Projection over the two inequivalent sublattices A and B of graphene is also shown; the insets zoom near the Fermi energy to show
the LDOS asymmetry.

symmetry of the underlying honeycomb graphene
lattice. After tunnelling, the electrons move in a flat
metric (the graphene plane) where the action is given
by equation (1), with the replacements D→ ∂, and
g→ 1. The presence of an event horizon, can be
revealed by evaluating the power spectrum ρ of the
2-point function SB = ⟨0M|ψBψ̄B|0M⟩, being |0⟩M the
flat vacuum; in this case, it would assume a thermal
form [22, 23]:

ρ=
4

π

1

(ℏvF)2
R2
p

a2CC
e−2u/Rp

E

e
E

kBΘ − 1
;

Θ =
ℏvF
kB

aCC
2πR2

p

eu/Rp , (2)

where kB is the Boltzmann constant and Θ the tem-
perature. At the horizon, where u= Rp lnRp/aCC,
the Hawking temperature reaches its maximum Θ=
ℏvF/(2πkBRp)∼ 16 K for our largest pseudosphere.

Notice that this is a low energy effect: only electrons
with an intrinsic energy E= ℏvF/Rp ∼ 9 meV have
a wavelength long enough to experience the effects
of the curvatures and thus a LDOS described by (2).
Furthermore, the large radius requirement implicit in
the intrinsic energy scale emerging from the graphene
pseudosphere analog model rigorously justifies the
low-energy description in terms of massless electron
and holes. On the other hand, for detecting experi-
mentally the Hawking temperature associated to the
existence of the Rindler horizon, Rp should be not
extremely large, as equation (2) implies Θ∝ 1/Rp.
Thus, the optimal radius value turns out to be a
trade-off between these two opposite requirements.
We notice that already for aCC/Rp ∼ 10−2 (see fig-
ure 2) the approximation of the Rindler event hori-
zon with the Hilbert horizon of the Beltrami’s space-
time is rather accurate and the LDOS asymmetry is
emerging. Nevertheless a pseudosphere with a radius
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Figure 4. Detecting the presence of an event horizon through the low-energy LDOS. LDOS lineshape (a) and contrast (b)
projected over the pseudosphere sites s4,5 shown in figure 3(b), according to analytical predictions [22, 23] (left) and numerical
results (right).

in the range of µm is necessary to achieve a good res-
olution in the linear part of spectrum.

Given the exponential nature of the power spec-
trum (2), the effect of the presence of the horizon
should manifest in a marked asymmetry of the LDOS
around the Fermi energy, as measured by the contrast

ν(E) =

∣∣∣∣LDOS(−E)− LDOS(E)

LDOS(−E)+ LDOS(E)

∣∣∣∣ . (3)

Results for the LDOS and its contrast projected on
sites located near the Hilbert/Rindler horizon are
shown in figure 4 for the theoretical (left) and numer-
ical (right) predictions. Here we stress two points:
first, that the continuum model approximation dis-
regards the impact of atomistic defects and their con-
sequence on emerging strain fields on the LDOS, and
thus on equation (2) predictions. At variance, the
Gauss–Bonnet theorem links indissolubly defects and
curvature as two different aspects of the same effect.
To disentangle the impact of curvature and defects on
the LDOS, calculations for planar graphene includ-
ing a random density of SW defects were performed
(see Supplemental Material). In this case, the LDOS
loses its symmetric behaviour in the linear part of the
spectrum around the Fermi energy more evidently
close to the defective sites. Furthermore, the pres-
ence of elastic strain also generates an asymmetric

splitting of the LDOS of the two sublattices A and B
near the charge neutrality point (see figures 3(a) and
(b) [29]. In a realistic model of Beltrami’s pseudo-
sphere the fabricated structures are open at the bot-
tom, where the continuum analytical model has a sin-
gularity. In this regard, we notice that equation (2)
neglects boundary effects, which appear owing to the
finite size of the Beltrami’s pseudosphere in real world
experiments. Static boundaries, such as the pseudo-
sphere truncation to avoid carbon atoms unphysically
compressed at the bottom singular point, enhance the
oscillating behaviour of the LDOS around the Fermi
level by including non-thermal features that smear
the QFT approach in curved spacetime (see equa-
tion (95) of reference [23] for more details on bound-
ary terms). We also stress that the assessment of the
DOS in hyperbolic spaces has been tempted by other
authors (see e.g. [30]).

We notice that the assessment of the DOS in
hyperbolic spaces has been tempted by other authors
(see e.g. reference [30]). We stress that a Lobachevsky
plane represents an hyperbolic structure only locally
(but not globally) isometric to the Beltrami’s pseudo-
sphere. Thus, the solution of global integral equations
can differ. Furthermore, the emergence of an horizon
and of the Hawking temperature therein cannot be
captured in a simple hyperbolic space. Nevertheless,
we also point out that equation (2) describes the same
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low-energy limit (E→ 0) around the Fermi energy
of the DOS in flat euclidean spaces (ρ(E)≃ |E|)) as
well as the same finite value of the DOS at E= 0 pre-
viously found (see equation (19) of reference [30]).
However, a central feature of the LDOS of realistic
carbon pseudospheres is to show asymmetric beha-
viour.

The quantitative discrepancy found between the
purely theoretical predictions and our numerical res-
ults is explained by these differences in the model-
ling, which have a significant impact on the assess-
ment of the electronic properties of the pseudosphere.
Despite this, the similar qualitative agreement is key
to confirm that the more realistic atomistic model-
ling of graphene pseudospheres retains essential fea-
tures describing the low energy electronic proper-
ties, which are driving the analogy to black holes
thermodynamics.

In conclusion, we have designed a realistic model
of a Beltrami’s pseudosphere tiled by carbon atoms
arranged in a defected graphene net. The latter
is found to be an energetically and dynamically
stable allotrope of carbon. Its corresponding LDOS,
obtained numerically by solving a TB Hamiltonian,
reproduces qualitatively the analytical model, where
an asymmetric behaviour is predicted. However, in
order to consider undoubtedly the Beltrami’s pseudo-
sphere tiled by graphene a viable solid state analogue
of a quantum field theory in curved space-time in
general, and a black-hole horizon in particular, we
believe that significant theoretical advances, based
also on our computational findings, should point
towards the assessment of the decisive impact that the
presence of defects has on the intertwining of the A
and B sublattice contribution to the Dirac pseudo-
spinors in relation to equation (1). Indeed, we find a
striking evidence that this effect cannot be neglected
as done so far in analytical models. In fact the latter
theoretical efforts recognized that massless electron–
hole pair generation at the Hilbert horizon of the
graphene pseudosphere as measured by the LDOS
is analogous to Hawking radiation in conventional
black holes; but while in those systems the radiation
temperature is too small to be observed directly, in
the carbon pseudosphere temperatures of the order of
tens of K are in principle attainable. We stress that the
success of our numerical computations to generate a
realistic discrete model for testing the analytical pre-
dictions obtained within a continuum representation
paves the way for a deeper understanding of solid-
state black-hole analogues as well as makes it possible
to design a suitable experimental platform for further
investigations.

In particular, from the experimental point of
view, the manufacturing of a carbon pseudosphere
can be achieved via optical forging of graphene on
a copper substrate. This nanofabrication technique
produces ripples by inducing defects, such as SW
chains, which cause strain and, thus, bending of the

graphene sheet with features unlimited by diffraction
(see reference [31]). The defect pattern reflects the
light intensity Gaussian distribution of the focused
laser spot. In particular, one can envisage to shape
graphene into a specific curvature by following two
different strategies: either by modulating the intens-
ity distribution within the laser spot, or by using
tip-enhanced optical forging to locate defects with
10–20 nm accuracy. Strain would be induced point-
by-point until the desired shape, originating by the
interplay with the substrate adhesion, is created.
Moreover, to forge the Beltrami’s structure one needs
to start from an open graphene sheet, in which the
central hole can bemilled by a helium ionmicroscope
[31] or by tip-enhanced ablation of graphene. The
optical forging technique thus offers an accurate way
to modify and shape 2D materials and facilitates the
creation of controllable nanostructures. Additionally,
the thermal character of the low energy LDOS can be
ascertained through either low temperature scanning
tunnelling microscopy or optical near-field spectro-
scopy.
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Appendix A. Tiling the pseudosphere

The tiling of the Beltrami’s pseudosphere by carbon
atoms, which represents an interesting geometrical
problem in its own right, has been achieved through
the following steps:

(i) Set the length of the pseudosphere by fixing the
maximumvalue of the coordinate along the axis
of revolution (z).

(ii) Determine the number of carbon atoms N that
are needed if one were to tile the surface of the
Beltrami’s pseudosphere with the same dens-
ity of planar graphene (0.379 atoms/Å 2). Peri-
odic boundary conditions are applied by using
a rectangular supercell repeated along the x and
y directions to saturate the outer carbon atom
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Figure A1. Bond switch and dualization procedures. (a) An example of a bond-switch trial move in a graphene lattice. Starting
from an initial configuration showing 6-fold rings (dashed circles), the bonds between the carbon atoms A–B, and C–D are cut,
and new bonds A–C and B–D are formed. Twisting then transforms the four 6-fold rings into two 5-fold rings and two 7-fold
rings (adapted from reference [36]). (b) Dualization sequence based on the three-connectivity of the graph. The parent geometry
is shown on the left, while the resulting (daughter) geometry is on the right.

bonds belonging to r= Rp and z= 0 (the Hil-
bert horizon).

(iii) Construct a planar graph (N, F, E) consisting
of N vertices, F faces and E edges. The N ver-
tices represent compressed carbon atoms with
shortened carbon-to-carbon bond lengths,
aCC <1.42 Å; each vertex is linked to three
nearest neighbours by edges (representing
bonds) and is shared by three faces.

(iv) Map the initial graph onto the Beltrami’s
pseudosphere surface via a one-to-one trans-
formation bywhich the revolution axis coordin-
ate z of the vertices is unambiguously determ-
ined ∀

√
x2 + y2 < Rp by fixing

z= z(x,y) = Rp

[√
1− x2 + y2

R2
p

− atanh

√
1− x2 + y2

R2
p

]
; (A1)

(v) Find the atomic arrangements with N∼
O(103) thatminimize a surface potential energy

of the Keating type [32]

E=
3

16

α

a2CC

∑
i,j

(
r2ij − a2CC

)2

+
3

8

β

a2CC

∑
i,j,k

(
rij · rik +

a2CC
2

)2

+ ch
∑
Fi

(|Fi| − 6)2, (A2)

where α= 25.88 eV Å −2 is the bond stretch-
ing force constant, aCC = 1.42 Å, rij is the dis-
tance between atoms i and j, and β ∼ α

5 is the
bond-bending force constant. Finally, the last
term favours the formation of hexagonal faces:
Fi labels the polygons of the net, |Fi| is the num-
ber of vertices of the polygons, and ,finally, one
has ch = 0.35 empirically. To reach the energy
minimum we repeated the following steps, typ-
icallyO(104) times:

• Perform random switchings/twists of atomic
bonds, based on the Wooten, Winer and
Weaire (WWW)method [33] (figure A1(a));
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• Let the geometry relax through molecular
dynamics simulations based on the Fast Iner-
tial Relaxation Engine (FIRE) approach [34];

• Accept the move only if it lowers the total
energy of the system according to the Met-
ropolis algorithm [35].

(vi) Execute on the minimized surfaces a dual-
ization sequence, to increase the number N
of atoms and correspondingly the radius of
the pseudosphere (figure A1(b)). By using the
three-connectivity of the graph one creates a
hexagon around each vertex of the initial optim-
ized structure; rescale the bond lengths with a√
3 factor and repeat from 5.

Appendix B. Tight-binding parameter
estimate

Low energy electronic properties of geometries con-
taining millions of atoms, have been evaluated using
a TB approach, which is well known to describe cor-
rectly the dispersion of graphene around the six Dirac
K-points in the first Brillouin zone [27]. Due to the
pseudosphere curvature, a multi-orbital TB approach
has been developed, in which all four valence orbit-
als (2 s,2px,2py,2pz) are included in the simulation
through the Hamiltonian:

H=
∑
ξ,i

ϵiξa
†
i,ξai,ξ +

∑
ξ,γ,⟨ij⟩

tijξ,γa
†
i,ξaj,γ , (B3)

where ξ, γ are orbital label indices while i, j are site
indices; tijξ,γ indicates the hopping parameters; a†

and a are the creation and annihilation operators;
and the symbol ⟨ij⟩ means that the nearest neigh-
bours approximation is adopted. The parameters
tijξ,γ describing the hopping between orbitals in dif-
ferent sites were computed within the Slater-Koster
formulation [37], which provides a scheme to relate
the orbital symmetry, distances and directions of
neighbour atoms. Owing to the non-planarity of our
geometry we cannot make use of the multi-orbital
parametrization typically used for graphene [38, 39]
where the onsite energy of the pz-symmetry orbitals
are treated differently from the x, y orbital cartesian
components along the in-plane directions (that is
ϵpx = ϵpy ̸= ϵpz). Therefore, we derive the TB para-
meters by fitting ab-initio Density Functional Theory
(DFT) simulations of the graphene bands by further
imposing that the onsite energies for the p orbitals
are the same (ϵpx = ϵpy = ϵpz). DFT simulations of
equilibrium and strained configurations of graphene
were carried out by using theQuantumEspresso code
suite [40]; in particular we use a norm-conserving
PBE pseudopotential (C.pbe-mt gipaw.UPF) and
an energy cut-off for the wavefuntion expansion on
plane-waves set equal to 100 Ry. The k-point mesh

is a 40× 40× 1 grid for the calculation of both the
ground state density and the band structures. Con-
vergence of the integrals over the Brillouin zone was
improved by smearing the occupancy with a 0.136
eV width Gaussian function. The TB parameters
that we obtained using equation (B3) for unstrained
(a= aCC) and strained (a ̸= aCC) graphene are:
εs =−2.8 eV and εp = 0 eV as onsite energies;

Vssσ(a) =−5.6 · a/aCC · e−
a−aCC
0.55 eV, Vspσ(a) = 5.2 ·

a/aCC · e−
a−aCC
0.75 eV, Vppσ(a) = 4.6 · a/aCC · e−

a−aCC
0.55

eV and Vppπ(a) =−2.44 · a/aCC · e−
a−aCC
0.41 eV as hop-

ping parameters between different orbitals. In fig-
ure B2a we report the bands of unstrained and
strained graphene obtained by using the DFT and
multi-orbital TB approaches.

Appendix C. Kernel Polynomial Method

For the evaluation of the LDOS we resorted to the
KPM, which is a numerical approach useful to access
spectral quantities of extended systems for which a
direct diagonalization of the full Hamiltonian mat-
rix is computationally unfeasible. It consists in the
expansion of the sought quantity in terms of a set
of orthogonal polynomials, and then in improving
the convergence of the expansion with a kernel to
avoid spurious Gibbs oscillations [41]. In particular,
we used the Chebyshev polynomials for the expan-
sion, and the Jackson kernel to increase convergence,
resolution, and accuracy [41].Within this framework,
a generic function can be expanded according to

f(x) =
1

π
√
1− x2

[
µ0g0 +

Nc−1∑
n=1

µngnTn(x)

]
, (C4)

where Tn(x) are Chebyshev polynomials of the first
kind, µn =

´ 1
−1 dx f(x)Tn(x) are the coefficients of the

expansion and the gn are the Jackson kernel coeffi-
cients defined as

gn =
1

Nc + 1

[
(Nc − n+ 1)cos

πn

Nc + 1

+ sin
πn

Nc + 1
cot

π

Nc + 1

]
. (C5)

Finally, Nc represents the truncation number related
to the maximum momentum. The best achievable
resolution through this kernel is

∆J =

√
1− cos

π

Nc + 1
. (C6)

We refer to [41] for the details about the calculation of
µn; here it suffices to emphasize that it is based on the
stochastic evaluation of traces, which requires a cer-
tain number R of random initial states. As expected,
the bigger is R, the more accurate becomes the eval-
uation of the coefficients; we found that R= 100 was
enough for all calculations carried out.
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Figure B2. Determination of the parameters for the multi-orbital TB algorithm and corresponding reference LDOS calculations.
(a) TB fit of graphene bands obtained from DFT electronic structure calculations. From left to right and from top to bottom we
report the bands for a biaxial compression of the graphene cell equal to 4%, unstrained graphene, and a biaxial tensile strain of
the cell equal to 4% and 8%, respectively. (b) (top) LDOS for different values of the cut-off parameter Nc obtained by projection
on a site of a pristine graphene rectangular cell with sides equal to 199.97 nm× 199.81 nm, containing 1, 525, 188 carbon atoms;
The inset represents a zoom near the Fermi energy. (bottom) total DOS of (n,n) nanotubes for n= 9 (r= 0.61 nm), n= 49
(r= 3.32 nm), n= 99 (r= 6.71 nm), n= 199 (r= 13.49 nm) and n= 299 (r= 20.27 nm). (c) The LDOS angular dependence
obtained by projecting over sites belonging to a SW defect (coloured atoms in the right panel). (d) The LDOS dependence on the
radial distance d.

Appendix D. Tests of the LDOS
calculations

The convergence with respect to the Nc parameter
can be tested in the calculation of the LDOS for the
benchmarks cases of planar graphene and armchair
carbon nanotubes. The LDOS of graphene for four
different values of Nc ranging from 2400 to 6000, is
shown in the top panel of figure B2(b)). While at
a wide energy scale the curves are indistinguishable,
zooming near the Fermi energy (set to zero as usual)
shows that higher truncation values for Nc captures
more faithfully the expected linear dispersion rela-
tion; on the other hand, there is a threshold to the

number of terms in the summation after which spuri-
ous oscillations set in, thus spoiling convergence. This
can be understood by noticing that the energy sep-
aration between levels in periodic graphene is infin-
itesimal and the DOS is a continuous function. Then,
since the pseudosphere in our simulations is a large
but finite system and the energy separation of the
levels increases with respect to infinite periodic struc-
tures, a too big value ofNc may result in aKPMenergy
resolution marginally above the finite energy separa-
tion between levels of our finite system, thus leading
to poor convergence [42]. For non-planar systems, we
have computed the total DOS of (n,n) nanotubes for
n = 9, 99, 199 and 299 (radius r= 0.61, 3.32, 6.71

10
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Figure E3. (a) Supercell of graphene with 0.05% density of random SW defects. In red colour we design the atoms belonging to
the SW, while the green sphere points out the atomic sites over which we project the LDOS. (b) LDOS (red and blue curves) and
TDOS (black curve) of graphene with 0.05% density of random SW defects. (c) Zoom near the Fermi energy to show the
asymmetric behaviour of the LDOS.

and 13.49 nm). The total DOS is reported in the bot-
tom panel of figure B2(b)), where we observe that
the DOS lineshape of these armchair nanotubes is
reproduced surprisingly well already for themoderate
value ofNc = 2000 and that, as expected, the confine-
ment effects become less important upon increasing
the radius size.

Since amethod for estimating the value ofNc that
trades-off between accuracy and computational effi-
ciency exists only for pristine structures that do not
have any defect [42], selecting the bestNc is a trial and
error process. For the pseudosphere case we found
Nc = 8000 to be the optimal value (with Nc = 16 000
used when resolving the Fermi energy region in
figure 4).

Appendix E. LDOS of graphene with a
single SW defect

The SW defects are present within the realistic frame-
work of the Beltrami’s pseudosphere owing to the
negative curvature, while their occurrence is neg-
lected in the analytical continuum model. Thus, we
finally investigate the effect of the presence of a
single SW defect on the LDOS of a graphene net
(N = 823 860), particularly near the Fermi energy
where our interest is focused. We study both the
LDOS projected over different symmetry sites of the
SW defect (withNc = 5000), thus obtaining informa-
tion on the angular dependence (figure B2(c)), as well
as the LDOS projected over sites increasingly far from
the SW defect, thus obtaining insights on the radial
dependence (figure B2(d)). On top of amarked angu-
lar dependence, we see that the shape of the LDOS
is dramatically modified near the defect site, while
far from it the planar graphene shape is recovered;
the presence of the SW defect still affects the LDOS
projected at distances of ≈ 80 Å with small oscilla-
tions in the spectrum. Furthermore, we notice most
importantly that near the Fermi energy one observes
a marked asymmetry of the LDOS spectrum, per-
sisting again up to a distance of ≈ 80 Å. This effect

overlaps in this energy range and actually is indistin-
guishable from the asymmetry owing to the negative
curvature.

Appendix F. LDOS of graphene with a
random density of SW defects

The presence of a single SW in a graphene large area
is of course unrealistic, while we aim at simulating
a surface as close as possible to experimental condi-
tions. Thus, we increased the number of SW defects,
which were created randomly within the graphene
lattice. In this case, we calculate the DOS projection
over sites positioned in the two different sublattices.
These simulations were carried out in a graphene lat-
tice containing N = 1, 240, 236 carbon atoms, where
we introduced 100 SW defects.

A square cut of this planar structure is shown in
figure E3(a). After testing the convergence parameters
were set to R= 100 andNc = 6000. In figure E3(b) we
show the LDOS (blue and red curves) and the TDOS
(black curve) of this structure. The LDOS, in par-
ticular, is plotted at a distance of approximately 100
Å from the nearest defect site. Surprisingly, here the
LDOS projected over the two sites belonging to the
sublattices A and B have a line-shape similar to the
single-defect case and to the pristine graphene (see
figure 6b)) but showing somewhat noisier peaks. On
the other hand, the TDOS is smoother, as the con-
tributions of the defects averages out in this case. We
observe that an asymmetric behaviour is found again
by zooming the LDOS near the Fermi energy (see
figure E3(c)).
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