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a b s t r a c t 

Clustering of ligand-binding receptors of different types on thickened isles of the cell 

membrane, namely lipid rafts, is an experimentally observed phenomenon. Although its 

influence on cell’s response is deeply investigated, the role of the coupling between me- 

chanical processes and multiphysics involving the active receptors and the surrounding 

lipid membrane during ligand-binding has not yet been understood. Specifically, the fo- 

cus of this work is on G-protein-coupled receptors (GPCRs), the widest group of transmem- 

brane proteins in animals, which regulate specific cell processes through chemical sig- 

nalling pathways involving a synergistic balance between the cyclic Adenosine Monophos- 

phate (cAMP) produced by active GPCRs in the intracellular environment and its efflux, 

mediated by the Multidrug Resistance Proteins (MRPs) transporters. This paper develops a 

multiphysics approach based on the interplay among energetics, multiscale geometrical 

changes and mass balance of species, i.e. active GPCRs and MRPs, including diffusion and 

kinetics of binding and unbinding. Because the obtained energy depends upon both the 

kinematics and the changes of species densities, balance of mass and of linear momentum 

are coupled and govern the space-time evolution of the cell membrane. The mechanobi- 

ology involving remodelling and change of lipid ordering of the cell membrane allows 

to predict dynamics of transporters and active receptors –in full agreement with exper- 

imentally observed cAMP levels– and how the latter trigger rafts formation and cluster 

on such sites. Within the current scientific debate on Severe Acute Respiratory Syndrome 
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CoronaVirus 2 (SARS-CoV-2) and on the basis of the ascertained fact that lipid rafts often 

serve as an entry port for viruses, it is felt that approaches accounting for strong cou- 

pling among mechanobiological aspects could even turn helpful in better understanding 

membrane-mediated phenomena such as COVID-19 virus-cell interaction. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Cellular communication relies upon binding of ligands to specific cell surface receptors. G-protein-coupled receptors 

(GPCRs) are key players in initiating and regulating cellular processes as they mediate responses to hormones, neurotrans-

mitters, metabolites, ions, fatty acids, pathogens, and physical stimuli, such as light, smell, taste, and mechanical stretch.

Moreover they can be activated by synthetic agonists, inhibited by antagonists and inverse agonists, or affected by allosteric

modulators. They actually represent the most important superfamily of clinical targets in disorders of neural, immune, car-

diovascular, endocrine, respiratory system and cancer ( Allard et al., 2012; Cole and Sood, 2011; Mary et al., 2013; Unal and

Karnik, 2012 ). In particular, for disease like asthma, it is known to involve specific GPCRs, called β2 - adrenergic receptors .

This is because asthma entails a continuous use of β2 -agonists, which are located in human airway epithelial cells. Indeed,

this results in loss of bronchoprotective effects and deterioration of asthma control. The importance of such receptors in

cancer relates to the fact that cAMP-based markers have shown to have a great potential for the early diagnosis of certain

tumors. Groundwork for translation of the so called β-blockade as a novel adjuvant to existing therapeutic strategies in

clinical oncology is on its way (see e.g. Banerjee et al., 2016; Cho et al., 20 0 0; Choi et al., 2018; Cvijic et al., 20 0 0; Liu et al.,

2010 ). 

GPCRs are major modulators of communication between the internal and external milieu of cells. These receptors are

integral membrane proteins with an extracellular N-terminus and seven TransMembrane helical domains (TMs), from TM1

to TM7, connected by loop regions. Nowadays GPCR signaling is recognized to be more complex that was originally under-

stood ( Kobilka and Deupi, 2007 ). Briefly, their binding to very different kinds of extracellular stimuli induces TM domain

conformational changes and the structural remodelling of the protein. The latter allows for the coupling with cytoplasmic

G proteins, which is followed by the activation of second messenger generating enzymes. The produced second messenger

can activate many downstream signaling pathways inside the cell ( Lefkowitz, 2007 ). This activity of GPCRs is known to be

detected through measurements of cyclyc Adenosyne Monophospate -cAMP-, the detectable signature of the pathway arising

in response to ligands, such as epinephrine. The production of cAMP in the cellular environment turns out to be modulated

by several factors. In particular, the presence of Multidrug Resistance Proteins -MRPs allows for the efflux of cAMP from the

interior of the cell to the extracellular fluid, by so maintaining homeostatic intracellular concentrations. For this reason,

MRPs are called transporters, as they contribute to keep a balance of cAMP inside the cell. A schematic of this process is

depicted in Fig. 1 . 

Historically, adrenergic receptors are some of the most studied GPCRs. Two main subfamilies, α and β , which differ in tis-

sue localization, ligand specificity, G protein coupling, and downstream effector mechanisms, are present. Diverse diseases,

such as asthma, hypertension, and heart failure, are related to genetic modifications of adrenergic receptors. In particular,

β2-adrenergic receptors ( β2ARs) are found in smooth muscles throughout the body, and β2AR agonists are common treat-

ments for asthma and preterm labor ( Cherezov et al., 2007 ). In ( Biondi et al., 2006 ) it has been demonstrated the presence of

β-adrenergic receptors in HTR-8/SVneo cell line, a well characterized first-trimester human extravillous trophoblast-derived 

cell line. Such cells invade the maternal uterine stroma, the decidua and the deeper portion of the myometrium evoking

profound changes within the uterine vessels. A limited trophoblast invasion of maternal vessels has been correlated to both

preeclampsia and fetal growth restriction, whereas an excessive trophoblast invasion is associated with invasive mole, pla-

centa accreta and choriocarcinoma ( Lunghi et al., 2007 ). Other studies showed the importance of GPCRs during pregnancy

( Hanna et al., 2006; Le Bouteiller and Tabiasco, 2006 ). 

Ghanouni and coworkers ( Ghanouni et al., 2001 ) focused their studies on β2AR conformational changes induced by ag-

onist binding using quenching experiments. Their results can best be explained by either a rotation of TM6 and a tilting

of TM6 toward TM5 during agonist-induced activation of the receptor. The structure, activation, and signaling of a GPCR is

heavily influenced by the bilayer environment. This influence seems likely to involve either indirect bilayer effects, specific

membrane-GPCR interactions, or a combination of both ( Chini and Parenti, 2004; Drake et al., 2006; Oates and Watts, 2011 ).

It has been reported that specific properties of this environment result in co-localization with downstream signaling com-

ponents providing a rationale for regulation and specificity in GPCR activation ( Ostrom and Insel, 2004; Patel et al., 2008 ).

Some subsets of GPCRs are preferentially segregated to discrete regions of the membrane defined as lipid rafts ( Barnett-Norris

et al., 2005; Becher and McIlhinney, 2005; Bridge et al., 1998; Chini and Parenti, 2004; Foster et al., 2003; Gopalakrishnan

et al., 2005; Jiao et al., 1996; Ostrom and Insel, 2004; Patel et al., 2008; Shukla, 2016; Villar et al., 2016; Watkins et al., 2011 ).

Despite lipid rafts are involved in a number of biologically relevant phenomena and their formation has been demonstrated

to often serve as entry port for some viruses, including SARS-CoV ones ( Lu et al., 2008 ), why is this the case and what is

the physics at the basis of the associated remodelling of the lipid membrane remain still open questions ( Fallahi-Sichani
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Fig. 1. Schematic representation of the ligand-binding between epinephrine (red dots on the top-left) and GPCRs (left, formed by seven cylindrical Trans- 

membrane Domains-TMs) with production of intracellular and extracellular cyclic-Adenosine MonoPhosphate-cAMP- in the presence of transporters-MRPs 

(yellow unit to the right). Intermediate units are the G-protein (brown circle, near the GPCRS) and the Adenylate Cyclase (purple unit, across the mem- 

brane). The surface density of GPCRs bound to ligands is denoted by ξ , while the analog for MRPs is labelled as ζ . The letters A, B, C and D display the 

order in which the chain of events occurs from the time in which ligand-binding takes place to the effects of the cell response through the production of 

intracellular and extracellular cAMP. The scheme highlights that a broad spectrum inhibitor of cAMP phosphodiesterase, labelled as PDE, is accounted for 

( Biondi et al., 2010 ). Helical domains forming the GPCR are displayed as cylinders in the figure: the TMs, where TM3, TM5 and TM6 have been reported in 

colors, to highlight their conformational changes. The latter are displayed at the bottom of this figure. They consist in a rotation ( ω) of such domains about 

their axis, orthogonal to the (local) mid plane of the membrane (whose unit vector is denoted by e 3 ), and on the shear ( μ) of TM6 approximately towards 

TM5, in the direction s , whose components in the local mid-plane are also displayed in the figure (see e.g. Ghanouni et al., 2001 ). (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and Linderman, 2009; Gopalakrishnan et al., 2005; Jacobson et al., 2007 ). Lipid raft are highly dynamic thickened areas on

the lipid membrane with different dimensions and a complex heterogeneous composition. This is due to the fact that such

rafts host a variety of transmembrane proteins responsible of compartmentalizing cellular processes to isolated districts of

the cell. These planar regions form localized microdomains on the cell membrane and are hard to be directly observable in

vivo ( Dharani, 2015; Risselada and Marrink, 2008 ). In particular, they appear as dynamic nanoscale assemblies, where a high

glycosphingolipid and cholesterol content in the outer leaflet of the lipid bilayer is present. This composition gives them a

gel-like liquid-ordered organisation in comparison with the surrounding phospholipid-rich disordered membrane ( Chini and

Parenti, 2004; Lingwood and Simons, 2010 ). 

Each lipid molecule, composed by a hydrophilic head and a hydrophobic tail, may exhibit two different shape conditions

of the tail, either straightened and taller (also known as ordered state, L o ), or curly and shortened (also known as disordered

state, L d ). Such states depend on several conditions, among which the temperature and chemical composition of the lipid

mixture are the main factors (see e.g. Bermúdez et al., 2004; Das et al., 2008; Iglic, 2012; Sackmann, 1995 ). 

The interplay between lipids and proteins is known to influence the overall behavior of the cell membrane. In partic-

ular,the adenosine A1, α1-AR, β1-AR, β2-AR, AT1R, the endothelin (ETA-A and ET-B) receptors, and the M2-muscarinic re-

ceptors have all been localized to lipid rafts and/or caveolae ( Drake et al., 2006 ). The association of β2AR with caveolin3 in

myocytes membranes has been demonstrated, as well as the fact that the confinement of β2-AR to caveolae is of critical im-
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portance for regulation of the intrinsic contraction rate in these membrane preparations ( Xiang et al., 2002 ). How cholesterol

modifies GPCR activity appears very much receptor-dependent, with regards to both upregulation and downregulation and

of direct and indirect action ( Hanson et al., 2008; Oates and Watts, 2011 ). The mechanical and chemical response of these

amazing structures depends on many factors, such as the shape of the membrane, the temperature of the environment,

the osmotic pressure, the chemical composition of lipid mixture, etc. Hu et al. (2012) , Norouzi et al. (2006) , Agrawal and

Steigmann (2008) , Agrawal and Steigmann (2009) , Walani et al. (2015) , Baumgart et al. (2003) , Baumgart et al. (2005) ,

Honerkamp-Smith et al. (2008) . 

Depending on the presence of embedded specialized proteins into the lipid membrane, several predicting models have

been developed ( Agrawal and Steigmann, 20 09; Biscari and Bisi, 20 02; Canham, 1970; Deseri et al., 2008; 2015; Deseri and

Zurlo, 2013; Jenkins, 1977; Rangamani et al., 2014; Walani et al., 2015; Zurlo, 2006 ). Most of them are based on the charac-

terization of the energy, with the aim of predicting the ordered-disordered phenomena arising in transition regions for con-

trasting the external stimuli. Indeed, thickness reduction of the bilayer is observed by changing the mechanical and chemical

conditions in the environment surrounding the cell. For this reason, several Authors adopted the change in thickness as order

parameter for studying such kind of systems ( Goldstein and Leibler, 1989; Owicki and McConnell, 1979; Sackmann, 1995 ).

Without explicitly doing so, a theory for the chemo-mechanical coupling of lipid bilayers accounting for curvature changes,

viscosity, diffusion and L o − L d phase transitions has recently been presented in ( Sahu et al., 2017 ). The L o − L d phase tran-

sition has been modelled through a dimensionless order parameter related to the fraction of dioleoylphosphatidylcholine,

known as DOPC. This is known to exhibit disordered features in agreement with the curliness of the tails mentioned above.

Furthermore, binding and diffusion of certain proteins, epsin-1, is thoroughly analyzed. As pointed out above, the physical

behavior of such membranes is regulated by many factors enabling the occurrence of out-of-plane tractions, while in-plane

shear stresses are not transmitted unless their viscosity is accounted for. 

The increasing availability of imaging techniques led indeed to a striking increase of interest in the study of lipid mem-

branes, often revealing examples of the complex features characterizing their behavior (see, e.g. , Baumgart et al., 2005;

Baumgart et al., 2003 ). Bilayer elasticity has been fruitfully exploited in the literature for the study of equilibrium shapes

of red blood cells ( Jenkins, 1977 ) and GUVs (Giant Unilamellar Vesicle) ( Canham, 1970; Helfrich, 1973 ). The effects of

embedded proteins or rod-like inclusions in the lipid membrane have been analyzed in Agrawal and Steigmann (2009) ,

Walani et al. (2015) , Biscari and Bisi (2002) , together with the analysis of buds formation ( Lipowsky, 1992 ) with the coexis-

tence of domains characterized by different bending rigidities ( Agrawal and Steigmann, 2008; Baumgart et al., 2005 ). 

Models for the exhibited order-disorder transition can be found in Akimov et al. (2004) , Chen et al. (2001) ,

Falkovitz et al. (1982) , Goldstein and Leibler (1989) , Iglic (2012) , Jahnig (1981) , Owicki et al. (1978) , Owicki and Mc-

Connell (1979) , Deserno (2014) , Kim and Steigmann (2015) among others, while the effects of special molecules (like

cholesterol) on such transition have also been studied in Komura et al. (2004) , Pan et al. (2009) , Rawicz et al. (20 0 0) ,

Akimov et al. (2004) , Honerkamp-Smith et al. (2008) , Lipowsky (1992) . 

Models of lipid membranes where the bending behavior, the order-disorder transition and the chemical composition have

been consistently taken into account can be found in Deseri et al. (2008) , Zurlo (2006) , Maleki et al. (2013) , Agrawal and

Steigmann (2009) , Walani et al. (2015) , Steigmann (2013) , Rangamani and Steigmann (2015) , Rangamani et al. (2014) ,

Deserno (2014) . In Deseri et al. (2008) , Zurlo (2006) , the energetics regulating the behavior of such membranes was ob-

tained through asymptotic dimension reduction (see also Deseri and Owen, 2010 ). The major point in such papers is that

the “quasi-incompressibility” of the environment, together with the influence of chemical composition, is enough to describe

the membrane L o − L d transition. 

With the aim of understanding why GPCRs prefer to live on lipid rafts and, in turn, why the activation of transmem-

brane proteins involved in cell processes induce the formation of such thickened microdomains, the mechanobiology of the

remodelling of the lipid bilayer is investigated by focusing on the interplay among membrane elasticity and density changes

of active species. In order to predict the dynamic remodelling of the cell membrane, following thermodynamic arguments,

a chemo-mechanical coupling is found for the obtained chemical potentials of such species. These potentials regulate active

species diffusion through mass balance which, in turn, involves the kinetics of binding through the occurence of interspecific

terms. The potentials of the active species determine a corresponding coupling for the resulting energetics. Furthermore, it

is found that the chemo-mechanical coupling found for such potentials is the specific work exerted by the lateral pressure

(arising across the membrane thickness) against the volume changes around the interaction sites among the species domains

and the surrounding lipids. It is worth noting that accounting for the aspects mentioned above enables mechanobiology to

give a mechanically-based justification to the experimental findings of Nobel Prizes 2012 Kobilka ( Kobilka and Deupi, 2007 )

and Leifkovitz ( Lefkowitz, 2007 ). 

2. Experimental measurements to trace protein fractions 

Experiments involving human trophoblast cells known to contain β-adrenergic receptors have been performed to the

extent of detecting the activity of such GPCR in the human placenta (see e.g. Biondi et al., 2010; Lunghi et al., 2007 ). The

occurrence of a Multidrug Resistant Protein (MRP)-dependent cAMP efflux is also shown in human first-trimester placenta

explants. Extracellular cAMP has been hypothesized to represent a source for adenosine formation that, in turn, could mod-

ulate cAMP-dependent responses in placental tissue. Evidence is provided that adenosine receptor subtypes are present and



A.R. Carotenuto, L. Lunghi and V. Piccolo et al. / Journal of the Mechanics and Physics of Solids 141 (2020) 103974 5 

Fig. 2. Experimental results: (a) value of measured intracellular cAMP after 10 min depending on epinephrine concentration, (b) time evolution of mea- 

sured intracellular cAMP for a fixed value of epinephrine concentration ( 10 −6 M). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

functional in Human TRophoblast (HTR)-derived cells . A role for cAMP egress mechanism in the fine modulation of the nu-

cleotide homeostasis is then highly probable. 

2.1. Materials and methods 

In the papers cited above, HTR-8/SVneo trophoblast cell line obtained from human first-trimester placenta ex-plant cul-

tures and immortalized using SV40 large T antigen, donated by Dr. C.H. Graham, Queen 

, 
s University (Kingston, ON-Canada)

to the Cell Biology Laboratory of the University of Ferrara, were cultured at 37 ◦C in a controlled atmosphere of 5% CO 2 /95%

air in RPMI 1640 medium containing 10% fetal bovine serum, 100 U/ml penicillin and 100 μg/ml streptomycin. These cells

were grown to confluence (2–3 days) in a 24-well plate (250,0 0 0 cells per well). The medium was then removed and re-

placed by serum-free RPMI. 

The incubation process took place in wells of capacity C w 

= 500 μl of such RPMI. This was carried out in the pres-

ence of isobutylmethylxanthine, otherwise known as IBMX, a broad spectrum inhibitor of cAMP phosphodiesterase (PDE)

Biondi et al. (2010) . This was performed in the presence and in the absence of a given amount of epinephrine for the indi-

cated times. 

Media were then collected and immediately frozen at −70 ◦C until extracellular cAMP (cAMP e ) levels were measured.

Ice-cold 0.1 N HCl (0.25 ml) was added to the cells and, after centrifugation at 12,500 x g for 10 min, supernatants were

neutralized adding 0.5 M Trizma base (0.05 ml) and utilized for measuring intracellular cAMP (cAMP i ). Finally, cAMP i and

cAMP e were determined by standard methods (e.g. method of Brown et al., 1972 ) and the nucleotide levels were expressed

as pmoles /10 6 cells / time . 

Tests with increasing concentration of epinephrine were first performed and cAMP measurements were recorded at a

given time (10 min). Epinephrine turned out to enhance intracellular cAMP in a dose-dependent fashion, reaching a plateau

at around 10 −4 M ( Fig. 2 A). 

Furthermore, the cAMP evolution over time was monitored in the absense and in the presence of 10 −6 M concentration

of epinephrine. Such a concentration was chosen because it triggered a cAMP i production close to the half of the maximum

response ( Fig. 2 B). 

The cAMP levels were measured in cells incubated up to 60 min. 

In basal conditions, cAMP concentrations remained almost constant at all tested times (around 6.0 pmoles/10 6 cells,

not shown). In the presence of epinephrine, cAMP i increased as a function of the incubation time up to 15 min (14-fold),

thereafter a reduction of the nucleotide level was observed. 

At the same time, cAMP e gradually increases in time, thereby almost reaching a plateaux, at least during the 60 min of

observation (not shown). 

Analogous experimental observations in Biondi et al. (2006) , Lunghi et al. (2007) , Biondi et al. (2010) , although with

different ligands, showed an analogous trend. For the present case, when a concentration c = 1 μM of epinephrine was

used, the total quantity Q of ligand utilized in the experiment involving 10 6 cells can be then computed as follows: 

Q = 4 × c C w 

= 4 × 1 μM × 500 μL = 2000 pmol. (2.1)

The experimental diagrams coming from the measurements of cAMP production are displayed in Fig. 2 . 

cAMPi-to- ξ and cAMPe-to- ζ relationships The fields of active receptors density ξ ( x, t ) and its products, namely the intra-

cellular cAMP i , are intimately linked by a conversion factor, namely a ξ , as follows: 

cAMP i = a ξ
(
ξ − ξ̄

)
≈ a ξ ξ , (2.2)
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where a ξ = 10 4 is estimated experimentally ( Biondi et al., 2010 ) and ξ̄ is the basal value of the density of active receptors.

Here, the cAMP level is referred to a population of 10 6 cells (and it is expressed in pmol ). Taking into account a parameter

c 1 = 10 6 for switching between the population and the single cell, and c 2 = 10 12 for converting pmol to mol , the number of

active receptors can be computed as follows: 

ξ# = 

1 

c 1 

1 

a ξ

(
cAMP i 

c 2 

)
N A , (2.3) 

where N A is the Avogadro number. An analogous relationship holds for computing the number of transporters: 

cAMP e = a ζ
(
ζ − ζ̄

)
≈ a ζ ζ , (2.4) 

where ζ̄ represents the basal value of the density of active transporters. In both the cases, direct proportionality between

cAMP concentrations has been used to obtain an indirect estimation of the protein fractions predicted by the dynamics. 

3. The biomechanical model 

The mechanobiology of lipid raft formation is investigated by accounting for deformation localization phenomena during

binding of receptors, namely GPCRs compounds, with the incoming ligand. To this aim, the cell membrane is modelled as a

thin hyperelastic soft body on which active receptors with density ξ and transporters (i.e. MRPs-Multidrug Resistant Proteins)

with density ζ mediate the communication between the extra-cellular and the intra-cellular environment. Receptor-Ligand 

(RL) compounds and MRPs directly initiate different signaling pathways involved in different cell processes, regulated by

the transport and compartmentation of chemicals such as cyclic-AMP. Measuring cAMP concentrations then allows to indi-

rectly estimate the amount of surface proteins involved, as explained in Section 2 . There the experiments used to trace the

levels of receptors and transporters are described. In the proposed model, the cell membrane is characterized according to

the constitutive framework proposed by Deseri et al. (2008) , Deseri and Zurlo (2013) , Zurlo (2006) . Here, this is explicitly

coupled with the dynamics of GPCRs and MRPs activation, apt to describe the growth of active domains on the membrane

surface by means of flow rules that include the receptor-transporter interplay. This dynamics is modelled according to a

theory of interspecific growth mechanics recently proposed by Fraldi and Carotenuto (2018) , Carotenuto et al. (2018) and

applied to model the growth of solid tumors. Here, the same framework is adapted to model the kinetics and diffusion of

transmembrane proteins triggered by ligand-binding and mediated by the membrane elasticity. Upon utilizing this approach,

the evolution equations for the species provide Lotka-Volterra-inspired interspecific terms aimed to model the response of

GPCRs to affine ligands and the growth of RL complex. The latter stimulate the activation of MRPs through the intracel-

lular cAMP production. In turn, it is observed a localization of islands of active receptors and transporters on thickened

domains of the cell membrane, known as lipid rafts. Such remodelling phenomenon is then governed by kinetics, diffusion

and energetics, where binding/unbinding events turn out to be strongly coupled to the mechanical response of the plasma

membrane through the energetics. Indeed, the mechanical interaction between the membrane and the active proteins during

their remodelling and the conformational changes of their domains can be traced through the growth of their corresponding

fractions. 

3.1. Membrane elasticity model for lipid bilayers 

In this Section the main results obtained in Deseri et al. (2008) , Deseri and Zurlo (2013) , Zurlo (2006) are briefly recalled,

and a schematic description of the approach followed in these papers is provided. The formulation of the model is based on

the following assumptions: 

(i) the effects leading to a spontaneous or natural curvature of the bilayer are ignored, i.e. it is assumed that the natural

configuration is flat; 

ii) the membrane kinematics is restricted to the class of normal preserving deformations, i.e. the normal vector n remains

always normal to the mid-surface. 

Under these assumptions, a simplified version of the elastic energy related to the change of the membrane geometry has

been obtained in Deseri et al. (2008) , Deseri and Zurlo (2013) , The deformation mapping is denoted by y = f ( x ) , while its

gradient is F = ∇y = ∇ x f . The stored Helmholtz free-energy can be then expressed as 

E( f ) = 

∫ 
V 0 

�( f ) dV 

0 = 

∫ 
�

∫ h 0 / 2 

−h 0 / 2 

�( f ) d z d �, (3.1)

where � denotes the Hemholtz energy density per unit of referential volume. It is easy to recognize that the surface density

energy has the form: 

ψ( f ) = 

∫ h 0 / 2 

−h 0 / 2 

�( f ) dz. (3.2) 

For a fixed temperature, the natural configuration B 0 of the membrane is assumed to coincide with a thin flat prismatic

shape of homogeneous thickness h in direction e , width B in direction e and length L in direction e , with ordered
0 3 2 1 
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Fig. 3. Schematic representation of the deformation of a prismatic, plate-like reference configuration B 0 into the current configuration B. The gray box 

depicts the space occupied by two lipid molecules, their volume being conserved during the deformation. Courtesy of Deseri and Zurlo (2013) . 
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phase L o (see Fig. 3 ). The membrane geometry is split into two entities, the two-dimensional mid-plane and the thickness,

hence, the material particles x ∈ B 0 are described by: 

x = x + z e 3 , (3.3)

where x = x e 1 + y e 2 denotes locations of a flat mid-surface �, and z spans the whole thickness. The reference membrane

mid-surface θ corresponds to z = 0 , and its edges are defined by x = ±L/ 2 and y = ±B/ 2 . Experimental evidences suggest

that lipid membranes exhibit the so-called in-plane fluidity , i.e. the absence of viscosity does not allow for sustaining shear

stress in planes perpendicular to e 3 . Based on this constitutive assumption, it is possibile to find a relationship for the energy

density � depending on the three invariants of the deformation gradient, namely { ̃  J ( x ) , det F ( x ) , φ̄( x ) } . In particular, the

quantity ˜ J ( x ) := 

√ 

det C αβ represents the areal stretch of planes perpendicular to the direction e 3 , after setting C = F T F =
 i j e i � e j , which is the usual Cauchy-Green stretch tensor. The remaining invariants are the volume change, det F , and the

φ̄( x ) = h ( x ) /h 0 thickness stretch in direction e 3 , respectively ( Deseri et al., 2008; Deseri and Zurlo, 2013 ). In ( Lipowsky,

1992; Sackmann, 1995 ) it is suggested that the volume of lipid membranes does not significantly change. Some authors

showed also that the volume of biological membranes can be assumed constant at several values of temperature ( Goldstein

and Leibler, 1989; Owicki et al., 1978 ). The following Ansatz (see Fig. 3 ) is assumed for describing the geometrical changes

of the membrane: 

f ( x ) = g ( x ) + zφ( x ) n ( x ) (3.4)

where g (◦) maps the mid-plane � of the membrane from the natural configuration B 0 to the current mid-surface of the

membrane (i.e θ = g (�) ), n denotes the outward normal to θ , and φ( x ) = φ̄( x ) = h ( x ) /h 0 is the thickness stretch. The

latter is defined as the ratio of the current thickness h over the reference value h 0 . It is worth noting that a Monge rep-

resentation ḡ (x, y ) := g ( x ) for θ arises upon writing the position of material particles x ∈ � in components with respect

to the pair e 1 , e 2 of orthonormal vectors chosen above. The assumption of the Ansatz (3.4) is then coupled with a quasi-

incompressibility constraint in the following form: 

det F ( x , 0) = 

˜ J ( x , 0) φ( x ) = 1 . (3.5)

It is worth noting that such quasi-incompressibility is a first-oder approximation of the full iscochoricity requirement. An

explicit expansion of Eq. (3.2) in powers of the reference thickness h 0 (see Deseri et al., 2008; Deseri and Zurlo, 2013; Zurlo,

2006 ) can be done by taking into account the choice of the constraint (3.5) . Therefore, a restriction ψ of the energy density

� to � is considered by taking into account the requirement (3.5) : 

ψ(J) = �( ̃  J , det F , φ̄) 

∣∣∣
z=0 

= �(J, 1 , J −1 ) , (3.6)

where 

J := 

˜ J ( x , 0) . (3.7)

Note that 

J = 

(
h 

h 0 

)−1 

. (3.8)

In-plane fluidity, bulk incompressibility, and a dimension reduction yield the following expression for the energy density of

the lipid membrane w per unit area in the reference configuration ( Deseri and Owen, 2012; Deseri et al., 2008; Deseri and

Zurlo, 2013 ) 

w = ϕ(J) + k (J) H 

2 + k G (J) K + α(J) || ( grad θ
̂ J ) | m 

|| 2 , (3.9)



8 A.R. Carotenuto, L. Lunghi and V. Piccolo et al. / Journal of the Mechanics and Physics of Solids 141 (2020) 103974 

Table 1 

Table 1 . Characteristic values of the membrane stretching energy at T ~ 30 ◦ . 

Stress expressed as [] = [ J/m 

2 ] × 10 −3 . Courtesy of Deseri and Zurlo (2013) . 

M max min J ∗ J m J ∗ J max J min 

5.922 10.855 0.989 1.025 1.167 1.308 1.085 1.248 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where J accounts for the areal stretch of the membrane (see e.g. Shigematsu et al., 2015 for the importance of this quantity

in lipid membranes), H and K are the mean and Gaussian curvatures of the mid-surface θ , respectively, k (J) = 

h 2 
0 

6 τ
′ (J) and

k G (J) = 

h 2 
0 

12 J τ (J) are the corresponding bending rigidities, ϕ( J ) := h 0 ψ( J ) represents the local energy density per unit area,

whereas 

α(J) = 

h 

2 
0 

24 

τ (J) 

J 3 
, (3.10) 

where 

τ (J) = ϕ 

′ (J) . (3.11) 

The quantity α( J ) is a higher order extensional modules and it is related to the nonlocal part of the energy density. In

Eq. (3.9) , ˆ J is the spatial description of J , defined by the composition 

ˆ J ◦ g = J, grad θ is the gradient with respect to points

of the current mid-surface θ , while (·) m gives its material description. The term (3.9) recovers exactly the Helfrich energy

( Helfrich, 1973 ) if J is constant. The main ingredient of the two-dimensional membrane model derived in Deseri et al. (2008) ,

Deseri and Zurlo (2013) is the surface Helmholtz energy ϕ( J ), which regulates the in-plane stretching behavior of the mem-

brane and describes the phase transition phenomena taking place in lipid bilayers. 

A Landau expansion for ϕ( J ) can be constructed because of the lack of more precise information (see, e.g. , Falkovitz et al.,

1982; Goldstein and Leibler, 1989; Komura et al., 2004; Owicki and McConnell, 1979; Owicki et al., 1978 ). This approach

results to be useful as it allows for relating the coefficients of the polynomial expansions to measurable quantities, such

as the transition temperature, the latent heat and the order parameter jump (see Goldstein and Leibler, 1989 and the trea-

tise Sackmann, 1995 for a detailed discussion). Under the current assumptions on the natural configuration B 0 the Landau

expansion of stretching energy ( Zurlo, 2006 ) takes the form: 

ϕ(J) = a 0 + a 1 J + a 2 J 
2 + a 3 J 

3 + a 4 J 
4 , (3.12)

where the parameters a i (i = 0 ÷ 4) depend on temperature and chemical composition. Because of the lack of avalaible

experimental data, these parameters have been calibrated in Zurlo (2006) by considering experimental estimates provided

by Goldstein and Leibler (1989) , Komura et al. (2004) , Komura and Shimokawa (2006) . For a temperature T ~ 30 ◦C we have:

a 0 = 2 . 03 , a 1 = −7 . 1 , a 2 = 9 . 23 

a 3 = −5 . 3 , a 4 = 1 . 13 

(3.13) 

expressed in [ J][ m ] −2 . The related local constitutive stress  (3.11) shows the typical S-shaped form, as shown in Fig. 4 . The

locations where the maximum max and the minimum min of the local stress occur are denoted by J max and J min , respec-

tively, and highlighted with squares, while the value of the Maxwell stress (determined by the equal area rule) is drawn

as a straight horizontal dark-grey line (see e.g. Coleman and Newman, 1988 ). Whenever a generic stress  is considered, it

is also possible to identify three intersections between such a stress and the local stress curve. In the case of the Maxwell

stress, these three intersections are denoted with black circles, and the corresponding areal stretch values are called J ∗ , J m 

and J ∗ from left to right. As an example, Table 1 collects the numerical values of these quantities for ϕ( J ) obtained by using

the coefficients in (3.13) . 

3.1.1. Planar case 

The study of the equilibrium for a planar lipid membrane described by the energy (3.9) permits to elucidate the emer-

gence of thickness inhomogeneities in the membrane. Moreover, this simple energetics allows one to calculate the corre-

sponding rigidities and the shape of the boundary layer between the ordered and disordered phases. By fixing temperature,

energy density coefficients are fixed to those ones in Table 1 . Whenever no curvature changes are experienced by the lipid

bilayer, in the plane strain approximation the elastic energy density in (3.9) takes the form: 

ψ(J) = ϕ ( J ) − 1 

2 

γ (J) J 2 x . (3.14) 

We note that the functions 

γ (J) = −2 α(J) . (3.15) 
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Fig. 4. The stretching energy ϕ( J ) (top) adapted from Goldstein and Leibler (1989) for a temperature T ~ 30 ◦C , with related local stress ϕ ′ (J) = τ (J) (bottom). 

The areal stretch J o = 1 corresponds to the unstressed reference configuration B 0 , while M indicates the Maxwell stress. 

 

 

 

 

 

 

 

 

 

 

 

and τ ( J ), defined by (3.11) , can be interpreted as transition and stress-like functions, respectively, as the former drives the

boundary layer wherever transitions between two phases occur. According to the geometry introduced above, the three-

dimensional membrane deformation is further restricted with respect to Eq. (3.4) as follow: 

f ( x ) = g(x ) e 1 + y e 2 + zφ(x ) e 3 , (3.16)

so that the width B is kept constant and its gradient takes the following form 

F = ∇ f ( x ) = 

[ 

g x 0 0 

0 1 0 

zφx 0 φ

] 

, (3.17)

where the subscript x denotes differentiation with respect to x . The displacement component along e 1 is u (x ) = g(x ) − x .

After setting 

λ(x ) = g x (x ) , (3.18)

where the function g maps the mid plane of the membrane from B 0 to B, see Fig. 3 . The plane strain approximation yields

φ = λ−1 = 

h 

h 0 

, (3.19)

so that the membrane deformation is completely determined by 

J = λ. (3.20)

3.2. Membrane remodelling due to GPCR growth via densification 

A thermodynamically consistent framework is provided in this section with the aim of evaluating the chemo-mechanical

coupling between transmembrane proteins and membrane elasticity. To this end, a total Helmoltz free energy per unit
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Fig. 5. Schematic picture of protein activation and lipid membrane remodelling. A density change of active receptors drives the system towards an active 

configuration in which the lipid bilayer shrinks around active domains, this causing membrane deformation and thickening in the form of lipid rafts. 

Unlike usual description of finite deformations and multiphysics, all the three configurations are global. This is justified through a non-standard multiscale 

geometric framework provided by the theory of Structured Deformations (see e.g. Deseri and Owen, 2003 , Deseri and Owen (2010) , Deseri and Owen (2015) , 

Deseri and Owen (2019) , Palumbo et al. (2018) ). Here, each material particle of the body in the virgin configuration (displayed in the top-left side of this 

figure) gets first mapped into an intermediate region (center of the figure) through a pair of smooth bijections (i , K ) (where i stands for the vector-valued 

identity and the tensor K accounts for all the submacroscopic changes). Indeed, it can be shown that K r = detK and, hence, this invariant of K accounts 

for remodelling. Secondly, each neighborhood of each particle located in this intermediate global configuration gets classically deformed through a pair 

(y , ∇y ) , where y is a smooth deformation field from the intermediate global configuration onto the current one, while the second item in the pair is the 

deformation gradient from the intermediate global configuration. Features of Structured Deformations in connection with the examined biological systems 

are discussed in more details in Appendix C in which an alternative scheme of the kinematics is given in Fig. 13 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

volume is introduced, say W 

∗, accounting for both the response of the lipid bilayer and the energetics associated to the

proteins changes. In particular, the rearrangement of protein domains on the cell membrane is modelled as a process of

growth via pure densification ( Lubarda and Hoger, 2002 ), i.e. by considering the effect of the variation of the density of

activated proteins on the free-energy of the membrane. In fact, by considering a membrane element with mass d m 

0 = ρ0 d V 0 

in the inactive (virgin) configuration, as displayed in Fig. 5 , the potential activation of previously dormant receptors on the

membrane is likely assumed not to produce mass variation. However, the submacroscopic changes following the formation

of receptor-ligand binding induce remodelling and conformational changes of the bonded receptors across the membrane.

This is because the variation of the density and of the conformations of those receptors determine the re-organization of the

surrounding lipids (see the Appendix C ). By denoting with the superscript a the active (reference) configuration in which

protein activation occurs (see the intermediate global configuration of the membrane in Fig. 5 ), the remodelling K r affecting

the mass element can be written as follows (see the Appendix A ): 

ρ0 d V 

0 = ρa d V 

a → K r := 

d V 

a 

d V 

0 
= 

ρ0 

ρa 
= 

1 + κu (1 + i n 

0 
i 
�A )(ρp /ρl − 1) 

1 + κu (1 + i n i �A )(� p /� l − 1) 
. (3.21) 

This factor is calculated by considering that the density of the heterogeneous medium in a certain configuration is the sum

of the true densities weighted by the respective fractions, i.e. ρ = � l φl + � i n i (see Fraldi and Carotenuto, 2018 ), { n i }| { i =1 , 2 } =
{ ζ , ξ} representing the relative fractions of protein species (summation over i ) and φ l the complementary lipid fraction, the

additional superscript 0 being used for indicating the initial ones. The other constants read as follows : 

• κu = N max A u /A, i.e. the total areal fraction of inactive proteins ( N max = 1 . 13 × 10 7 is the total number of potentially acti-

vating proteins, estimated from the experimental data, A u is the area of the inactive domain (with diameter of ≈ 4 nm

( Gurevich and Gurevich, 2018 ), A is the surface of the cell for which a radius of 30 μm was considered) 

• �A = (A a /A u − 1) is the relative change in area of protein domains passing from inactive to active state, the sight of the

latter exhibiting a diameter of ≈ 5 nm ( Gurevich and Gurevich, 2018 ) 
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• the terms � p and � l indicate the specific true density of the transmembrane proteins and of the bilayer lipids,

respectively, both assumed constants and calculated from their molecular weights and sizes. In particular, � p =
100 kDa/h 0 π(2 . 5 nm ) 2 and � l = 2 × (1 kDa/h 0 π(0 . 5 nm ) 2 ) ( Carpenter and Tate, 2016; Cevc, 1993; Hume et al., 2014;

Mendelson, 2013 ). 

In the light of (3.21) , the energy stored through remodelling, stretching and species redistribution can be expressed

in terms of the total (three-dimensional) Helmoltz free energy W 

∗ of the membrane in the natural configuration (i.e. the

reference configuration in fig. 5 ) as: ∫ 
V a 

W 

∗dV 

a = 

∫ 
V 0 

K r W 

∗dV 

0 = 

∫ 
V 0 

W 

∗
0 dV 

0 (3.22)

where W 

∗
0 is instead the three-dimensional energy density relative to the virgin configuration. In analogy with Eq. (3.2) ,

because of the thinnes of the cell membrane relative to its in-plane sizes, a dimension reduction is performed to obtain a

corresponding effective energy density W 0 per unit area in the virgin configuration: 

W 0 = K r W (λ, ∇λ, n i ) = 

∫ h 0 / 2 

−h 0 / 2 

W 

∗
0 dz = h 0 K r W 

∗(λ, ∇λ, n i ) . (3.23)

3.2.1. Mass conservation equations and interspecific terms 

The one-dimensional balance of mass for each constituents can be written as 

˙ n i + M i,x = �i (3.24)

where the dot notation denotes the material time derivative, M i describes the material species flux and �i is the rate term

describing the evolutionary behavior of each species. This is done by taking into account intrinsic rates as well as mutual

interactions with other fields characterizing the system by means of suitable coupling terms. The present model mainly

focuses on the active receptors and transport proteins on the cell membrane. In particular, in the presence of a specific

ligand, binding and activation GPCRs kindles cytoplasmatic signaling pathways. The latter allow for both regulating some in-

tracellular processes and communicating with the extra-cellular environment by expelling molecules through the activation

of specific transport proteins, such as MRPs. This coupled mechanism can be followed in practice by measuring the levels

of intracellular and extracellular concentrations of cAMP, involved in many physiological processes of the cell. In particular,

intracellular cAMP production follows the response of the GPCRs to certain ligands, such as epinephrine. The level of cyto-

plasmatic cAMP is modulated by MRPs that permit the efflux of cAMP from the interior of the cell to the extracellular fluid.

In this way, MRPs control cell homeostasis and determine an agonist interaction with membrane receptors. In order to trace

the interplay of the transmembrane proteins, we introduce mass balances for two selected species, n 1 = ξ , representing the

G proteins, and n 2 = ζ , namely the transport proteins. The main physiological aspects associated to their activity have been

described by means of the following interspecific (Volterra-Lotka like) equations: 

˙ ξ + M ξ ,x = αξ ξ − δξ ξ − βξζ ζ ξ (3.25)

˙ ζ + M ζ ,x = βζξ ξ ζ − δζ ζ . (3.26)

Physical meaning of the species rates parameters In Eq. (3.25) , the term αξ denotes intrinsic activation in response to a given

ligand concentration (such as the epinephrine), modelled by means of a specific uptake function. In particular, it is likely

assumed that the ligand precipitation rate obeys a generic Gamma distribution with probability density function ϒ(t) =
a t e −bt . The coefficients a and b are calibrated by means of experiments. By observing the time at which ϒ is maximum

– i.e. ˙ ϒ(t m 

) = 0 – it readily follows that b = t −1 
m 

. Also, the total quantity of ligand precipitated over the experiment time T

then will be 

Q = 

∫ T 

0 

ϒ(t) dt = ab −2 (1 − e −bT (1 + bT )) (3.27)

that allows to estimate the parameter a = Q/ (t 2 m 

− e 
− T 

t m t m 

( t m 

+ T ) ) . Given this, the coefficient αξ results the relative uptake

function multiplied by a suitable binding constant: 

αξ = k b Q 

−1 ϒ(T ) . (3.28)

The coefficient δξ denotes an intrinsic deactivation constant , while the interspecific term βξζ is introduced in the light

that the efflux of extracellular cyclic Adenosyne Monophospate, cAMP e (whose amount is proportional to the active MRP on

lipidic membrane through (2.4) ), is assumed to reduce the activity of receptor-ligand compounds by establishing chemical

equilibrium between the extra- and the intra-cellular space. Dually, in Eq. (3.26) , the rate of activation of transport proteins

is stimulated by the level of intracellular cyclic Adenosyne Monophospate, cAMP i (which is proportional to the activated

G-proteins at time t through (2.2) ). This is accounted for through the interspecific positive term βζξ governing the growth of

activating MRPs. Model parameters have been therefore estimated through the experimental evaluation of intracellular and

extracellular cAMP concentrations (see Section 2 ). 
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3.3. The Helmoltz free-energy of the membrane proteins 

The energy W 

∗ accounts for the hyperelastic contribution of the lipid membrane and for the Helmoltz free energy of the

active proteins. The latter interact with the membrane by exchanging mechanical forces and showing remodelling changes

during their activity. We start from the isothermal dissipation inequality. Here, we single out the contribution of mass trans-

port of the species over the generic elementary volume, say M i for the i th species, through the action of the corresponding

(thermodynamically conjugate) chemical potential μ∗
i 
, as well as the presence of thermodynamic driving forces F ∗r expend-

ing power against the rate of change of remodelling (see e.g. Lubarda and Hoger, 2002; Nappi et al., 2015 ). Hence, for an

incompressible material and under isothermal assumptions, combined energy-entropy equations yield the following form of 

the second law of thermodynamics: ∫ 
V 0 

P ∗ ˙ λ d V 

0 −
∫ 

V 0 

(
μ∗

i M i 

)
x 

d V 

0 + 

∫ 
V 0 

F ∗r ˙ K r d V 

0 ≥ d 

d t 

∫ 
V 0 

W 

∗
0 d V 

0 (3.29) 

where repeated index i means summation over that index. By appealing to relation (3.22) , in agreement with the dimension

reduction performed in (3.23) , quantities X per unit area can be introduced by considering that 
∫ 

V 0 X 
∗d V 0 = 

∫ 
� X d �, with

X = h 0 X 
∗ for any field X 

∗ per unit volume in the virgin configuration. 

Provided that 

W = W (λ, λx , n i ) (3.30) 

from (3.23) , one also obtains the dimensionally reduced version of (3.29) : ∫ 
�

P ̇ λ d V 

0 −
∫ 
�

( μi M i ) x d � + 

∫ 
�

F r ˙ K r d� ≥
∫ 
�

[
K r 

(
∂W 

∂λ
˙ λ + 

∂W 

∂λx 

˙ λx + 

∂W 

∂n i 

˙ n i 

)
+ W 

˙ K r 

]
d�. (3.31) 

By substituting the mass balance (3.24) in the second integral of the left-hand side and by integrating by parts the second

term on the right-hand side, Eq. (3.31) can be rearranged as follows: 

∫ 
�

[
P ̇ λ − μi,x M i + μi ˙ n i − μi �i + F r ˙ K r 

]
d� ≥

[
∂W 0 

∂λx 

˙ λ

]
∂�

+ 

∫ 
�

{
K r 

[(
∂W 

∂λ
− ∂ 

∂x 

(
∂W 

∂λx 

))
˙ λ + 

∂W 

∂n i 

˙ n i 

]
+ W 

˙ K r 

}
dV 

0 

(3.32) 

Provided the condition [
∂W 

∂λx 

˙ λ

]
∂�

= 0 (3.33) 

is satisfied, grouping and localization of the terms in (3.32) yields the following inequality [
P − K r 

(
∂W 

∂λ
− ∂ 

∂x 

∂W 

∂λx 

)]
˙ λ + 

[
μi − K r 

∂W 

∂n i 

]
˙ n i + [ F r − W ] ˙ K r − μi,x M i − μi �i ≥ 0 . (3.34) 

Following the standard Coleman and Noll’s procedure, it is then possible to obtain the following constitutive relations for

the Piola-Kirchhoff stress, the chemical potential and the remodelling driving force, which turns out to be entirely identifi-

able with the mechanical energy involved in the process: 

P = K r 

(
∂W 

∂λ
− ∂ 

∂x 

∂W 

∂λx 

)
, 

μi = K r 
∂W 

∂n i 

, (3.35) 

F r = W. 

Inequality (3.36) thus reduces to: 

−μi,x M i − μi �i ≥ 0 (3.36) 

that can be fulfilled by expressing proteins movement term as proportional to the gradient of the chemical potential, i.e.

M i = −L i n i μi,x , where L i ≥ 0 are suitable mobilities. A reduced dissipation inequality in the form μi �i ≤ 0 remains to be

fulfilled in order to ensure thermodynamic compatibility. In other words, the evolution of the system is thermodynamically

consistent when the chemical potential becomes negative in the presence of increasing binding proteins on the membrane.

An example of a similar instance was encountered in Gao et al. (2005) in which an ad hoc flow rule respecting such condi-

tion was introduced. 
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3.4. Constitutive equations for the membrane 

In presence of the uniaxial kinematics discussed in Section 3.1.1 , the problem is entirely governed by a one-dimensional

energetics. 

In agreement with (3.23) , a complete representation formula for the Helmoltz free energy density introduced in (3.30) is

sought. Indeed W = W (λ, λx , n i ) represents the energy per unit area in the active (reference) configuration for which no

complete expression is yet available. With the aim of providing an explicit representation for W , an additive decomposition

is assumed between the (hyperelastic)energy of the membrane and a second potential associated to the energetics of the

transmembrane proteins. This assumption is stated in the following form: 

W = W hyp (λ, λx ) − W n i (φ, n i ) = W hyp (λ, λx ) − W n i (λ
−1 , n i ) . (3.37)

it is worth notning that the second term account for the possibility that activation and conformational changes of GPCRs

may affect the membrane thickness, measured through λ−1 . The total differential of W thus gives: 

d W = 

∂W 

∂λ
d λ + 

∂W 

∂λx 
d λx + 

∂W 

∂n i 

d n i = 

˜ P d λ + ˜ μi d n i . (3.38)

Because of relations (3.35) , the following equations for the stress and for the chemical potentials relative to the active

(reference) configurations follow: 

˜ P = K 

−1 
r P = 

∂W 

∂λ
− ∂ 

∂x 

∂W 

∂λx 
(3.39)

˜ μi = K 

−1 
r μi = 

∂W 

∂n i 

= −∂W n i 

∂n i 

. (3.40)

A Legendre transformation of (3.38) can now be performed by subtracting the variation d(n i ̃  μi ) = ˜ μi d n i + n i d ̃  μi , by obtain-

ing the coupled potential 

d ˆ W = d(W hyp (λ, λx ) − ˆ W μi 
(λ−1 , μi )) = 

˜ P dλ − n i d ̃  μi (3.41)

from which it follows that 

n i = −∂ ˆ W 

∂ ˜ μi 

= 

∂ ˆ W μi 

∂ ˜ μi 

. (3.42)

Because W hyp is independent of the chemical potentials and since ˆ W μi 
depends on the variables λ−1 and ˜ μi , the latter

relation also implies that 

d n i = −d 

(
∂ ˆ W 

∂ ˜ μi 

)
= 

1 

λ−2 

∂ ̃  P 

∂ ˜ μi 

d λ−1 − ∂ 2 ˆ W 

∂ ˜ μ2 
i 

d ̃  μi = − c λi 
d λ−1 + c μi 

d ̃  μi . (3.43)

Herein, the coefficient c λi 
and c μi 

relate the variation of the i th species density n i to the change of the membrane stretch

and of the associated chemical potential ˜ μi . It is assumed that the terms c λi 
and c μi 

can be modelled as first order variation

coefficients that depend on the current amount of active proteins, i.e. c λi 
≈ n i c λi 

and, in the light of the antagonism (3.36) ,

c μi 
≈ −n i c μi 

. Under this constitutive assumption, Eq. (3.43) rewrites as: 

dn i 

n i 

= −c λi 
d λ−1 − c μi 

d ̃  μi (3.44)

Therefore, integration of Eq. (3.44) leads to the following relation: 

− log 
n i 

n 

0 
i 

� c λi 

(
λ−1 − 1 

)
+ c μi 

(
˜ μi − ˜ μ0 

i 

)
(3.45)

which allows for evaluating the chemical potential of the species as follows 

˜ μi = ˜ μ0 
i − ω i 

(
λ−1 − 1 

)
− ηi log 

n i 

n 

0 
i 

, (3.46)

after setting 

ω i := c λi 
/ c μi 

, 

(3.47)

ηi := 1 / c μi 
. 

Eq. (3.40) in combination with (3.46) then allows for finding the following (normalized) expression for the potential W n i : 

W n i (λ
−1 , n i ) = −

∫ n i 

n 0 
˜ μi dn i = ηi n i log 

n i 

n 

0 
+ (n i − n 

0 
i ) 

(
ω i 

(
λ−1 − 1 

)
− ˜ μ0 

i − ηi 

)
. (3.48)
i i 
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This relation exhibits a Boltzmann-type entropic contribution related to the chemical species coupled with a mechanical

term. In Appendix B it has been shown that the latter represents the specific work done by the lateral pressure between

the protein domains and the lipids in the cell membrane during conformational changes. 

Representation formula (3.48) for W hyp permits to obtain the following relationships for the stress and the chemical

potentials: 

P = K r 

(
∂W hyp 

∂λ
− ∂ 

∂x 

∂W hyp 

∂λx 
− ∂W n i 

∂λ

)
= K r 

(
∂W hyp 

∂λ
− ∂ 

∂x 

∂W hyp 

∂λx 
− ω i 

(n 

0 
i 

− n i ) 

λ2 

)
= P e f f − P n , (3.49) 

μi = K r ̃  μi = K r 

(
˜ μ0 

i − ω i 

(
λ−1 − 1 

)
− ηi log 

n i 

n 

0 
i 

)
. (3.50) 

In Eq. (3.49) , P can be interpreted as the membrane net stress, while P eff and P n respectively represent the effective

(hyperelastic) response of membrane and the chemical stress due to protein specific work. Indeed, the assumed correlation

between the potential associated to transmembrane proteins activation and lipid bilayer thickening has been introduced in

Eq. (3.37) . It can be noted that each term ω i (n 0 
i 

− n i ) /λ
2 forming P n relates to the change of the corresponding specific work

exerted by the lateral pressure arising in species-lipid interactions. In Appendix B this is explicitly worked out for the active

receptors through a bottom-up approach that considers the surface interactions between receptors and lipids, thereby giving

a mechanobiological explanation to recently observed experimental findings. The effective response of the lipid membrane

is instead fully identifiable with the hyperelastic law (3.14) for J = λ, here reported for convenience: 

W hyp (λ) := ψ(λ) = ϕ(λ) − 1 

2 

γ (λ)(λx ) 
2 (3.51) 

3.5. Mechanical equilibrium of the biological cell membrane 

In this Section, the use of total free-energy (3.37) expressed by means of (3.48) and (3.51) as a simplified energy govern-

ing the behaviour of biological membranes allows for searching the set of mechanical equilibria. To this end, the variational

derivative of the resulting Gibbs free energy with respect to the in-plane displacement u will be computed in order to isolate

configurations corresponding to its stationary points. The Gibbs free energy, here denoted by E is obtained as the difference

between the Helmholtz one H, defined by (3.52) 2 below, minus the work L done by the external load, i.e 

E := H − L , H := 

∫ 
�

W 0 d� (3.52) 

The work L results from the presence of two possible mechanical agents, a traction ( t ) acting against the displacement,

and a hyperstress H ( t ) acting against the gradient of the displacement at the boundary, i.e. 

L = [  u + H u x ] ∂�, (3.53) 

Because u (x, t) = g(x, t) − x, since (3.18) holds, a compatibility relation between the stretch and the derivative of the dis-

placement is obtained λ = 1 + u x . Henceforth, upon considering a perturbation δu , the first variation of (3.52) with respect

to the displacement can be written with the help of relation (3.32) : 

δE = 

[
∂W 0 

∂λx 
δu x 

]
∂�

+ 

∫ 
�

P δu x d� − [  u + H u x ] ∂�

= 

[(
∂W 0 

∂λx 
− H 

)
δu x 

]
∂�

+ [ ( P − ) δu ] −
∫ 
�

P x δu d�. (3.54) 

Stationary condition of the energy (3.54) supplies the following equations governing the equilibrium of the membrane:{ 

P x = 0 , x ∈ �
either P =  or δu = 0 , x ∈ ∂�
either γ u xx = H or δu x = 0 , x ∈ ∂�

(3.55) 

in which Eq. (3.51) and compatibility relation have been employed, while the stress P relative to the virgin configuration

reads as follows: 

P = K r 

[
τ (λ) + 

1 

2 

γ ′ (λ)(u xx ) 
2 + γ (λ) u xxx − ω ξ

ξ − ξ 0 

(1 + u x ) 2 
− ω ζ

ζ − ζ 0 

(1 + u x ) 2 

]
. (3.56) 

Here τ and γ have been defined through (3.11) and (3.15) respectively. 
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Table 2 

Table 2 . Coefficients used in numerical simulations (e.d. = available experimental data). 

Coefficient Value [Unit] Range [Unit] Reference 

k b 5.18 3 . 89 − 5 . 7 Bridge et al. (2018) , Li et al. (2017) - e.d. 

δξ 1 . 1 × 10 −3 s −1 (0 . 9 − 1 . 65) × 10 −3 s −1 Bridge et al. (2018) 

βξζ 4 × 10 −6 s −1 (3 − 6) × 10 −6 s −1 Bridge et al. (2018) , Rich et al. (2001) 

βζξ 3 . 3 × 10 −3 s −1 (2 . 5 − 4 . 15) × 10 −3 s −1 Saucerman et al. (2013) , Rich et al. (2001) , Agarwal et al. (2014) - e.d. 

δζ 10 −7 10 −8 − 10 −6 assumed 

ζ 0 10 −2 - 

ξ o 10 −4 - 

ξ a 10 −2 - 

L i 1 . 87 × 10 −17 m 

4 J −1 s −1 (10 −20 − 10 −15 ) m 

4 J −1 s −1 Gurevich and Gurevich (2018) , Kim et al. (2016) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.6. Coupling of the equations 

For the sake of illustration, prediction the formation of lipid rafts on a cell membrane is obtained in the case of plane

strain. Coupling between the balance of linear momentum (3.55) 1 with the evolution laws provided by the mass balance of

transmembrane proteins, (3.25) and (3.26) , yields the following set of governing equations: ⎧ ⎨ ⎩ 

P = 
˙ ξ −

(
L ξ ξ μξ,x 

)
x 

= αξ ξ − δξ ξ − βξζ ζ ξ
˙ ζ −

(
L ζ ζ μζ ,x 

)
x 

= βζξ ξ ζ − δζ ζ . 

(3.57)

Here, because of symmetry assumptions, x ∈ [0, L ] with L set to L = 10 0 0 h 0 , while the time t ∈ [ 0 + , t max ] , t max being set

to 1 hour on the basis the experiments duration (see Sect. Appendix 2 ). The unknowns of the problem are the displacement

u ( x, t ) and the protein fractions ξ ( x, t ) and ζ ( x, t ), subjected to the boundary conditions u (0 , t) = 0 , u xx (0 , t) = u xx (L, t) = 0 ,

ξx (0 , t) = ξx (L, t) = 0 and ζx (0 , t) = ζx (L, t) = 0 in absence of hyperstress H and protein species leakage at the boundaries.

Initial conditions provide initial null displacement u (x, 0) = 0 , while suitable initial distribution have been assigned to pro-

teins. In particular, ζ (x, 0) = ζ 0 is assumed constant, while, in order to take into account localization of lipid rafts on the

membrane in response to prescribed ligand distributions, an initially non-homogeneous spatial profile of inactive GPCRs has

been introduced. To do this, the initial condition ξ (x, 0) = ξ 0 (x ) is expressed by means of a suitable generating function: 

ξ 0 (x ) = ξo + ( ξa − ξo ) 

m ra f t ∑ 

m =0 

�(x ) , �(x ) = 

E −(x ) 

1 + E −(x ) 
− E + (x ) 

1 + E + (x ) 
(3.58)

where E ±(x ) = exp [ −c a ( x − x a ± �a / 2 ) ] , x a and �a governing the positioning and the amplitude of the activating raft. In

particular, the formation of a single raft region centred at the origin with amplitude �a = 400 h 0 and multiple (quasi-

periodic, with m ra f t = 4 ) rafts regions with amplitude �a = 100 h 0 have been simulated in the sequel. Moreover, a stress-

free (i.e.  = 0 ) and a stress-prescribed case have been both considered, by imposing that the nominal traction equals the

Maxwell stress of the membrane through the expression (t) = M 

(1 − e −t ) , consistently with the initial undeformed con-

ditions and with characteristic values of internal cell pressures ( Kelly and Macklem, 1991 ). Eqs. (3.57) have been numerically

solved with the aid of the software Mathematica® ( Wolfram Research, 2015 ) through the method of lines. Spatial coordi-

nates and model parameters, reported in Table 2 , have been normalized with respect to the reference thickness h 0 . 

4. Results and discussion 

The outcomes of the numerical simulations derived by the biomechanical model introduced above show the lipid bilayer

undergoing dynamic remodelling triggered by the evolution of transmembrane protein activity. In particular, here strain

localization within the cell membrane leading to the coexistence of thicker (ordered L o -phases) and thinner lipid zones

(disordered L d -phases) is predicted. 

As shown in Fig. 6 , the densification of lipids across the regions in which active GPCRs tend to cluster is accompanied by

the progressive formation of lipid rafts. In agreement with previous findings (see e.g. Niemelä et al., 2007 ), on such sites a

difference of about 0.9 nm between raft and non-raft membrane zones is detected. In particular, in stress-free simulations,

there is a pure chemically-induced thickening of the membrane that forms a single raft and multiple rafts according to

the analysed cases ( Fig. 6 ). Under the same initial conditions, rafts also occur in the tensed membrane, where a transverse

contraction and initial longitudinal elongation additionally take place in the L d -phase as elastic response of the applied

traction. 

In Fig. 7 A the time-evolution of both the type of transmembrane protein fractions occurring on a raft site is reported.

The interplay between RL proteins ξ and transporters ζ is studied as a result of the introduced interspecific dynamics. More

specifically, an initial growth of the GPCRs binding with ligands first occurs. Upon comparing this finding with the experi-

mentally determined intracellular cAMP (cAMP i ) normalized concentration, an estimate of the binding Receptor-Ligand (RL)

compounds is provided according to (2.2) . This is because GPCRs activation directly triggers the cell response by initiating
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Fig. 6. Lipid raft formation in stress-free (upper row) and tensed (lower row) membranes. Both the case of a single raft and multiple raft are analysed, the 

membrane thickening following the activation of transmembrane proteins. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the cAMP signaling pathway. Homeostatic levels of cAMP i are restored thanks to the activation of the Multidrug Resistant

transport Proteins (MRPs) driving the efflux of part of the produced cAMP towards the extracellular environment. It is worth

noting that a very good agreement is found between the predicted MRPs fraction and the (normalized) increase of cAMP e . 

Furthermore, Fig. 7 A displays the simultaneous evolution of the ordered (thicker) phases. The latter evolve with similar

trends in both the unconfined and the tensed membranes, exception made for the load-induced shrinkage in the initial

stage, when chemical stress P n = K r ω i (n 0 
i 

− n i ) /λ
2 (introduced in (3.49) ) is not yet acting. At the time at which such stress

is maximum, i.e t � 642 s in the simulations, a clear spatial correspondence between active domains and raft formation

can be recognized in all situations, see Fig. 7 B. This predicts that active GPCRs localize on lipid rafts as an effect of the

chemo-mechanical coupling between: 

1. the chemical pressure arising from the deformation of the lipid bilayer; 

2. the configurational changes of TMs domains, to which a decrease chemical potential as in Fig. 9 is associated according

to the above discussed thermodynamic arguments. 

Although the model and the associated numerics is carried out for a one-dimensional problem, the findings are fully

consistent with the experimentally observed clustering of ligand-binding receptors on lipid rafts across the cell membrane

(see e.g. Becher and McIlhinney, 2005; Bridge et al., 1998; Chini and Parenti, 2004; Foster et al., 2003; Jiao et al., 1996;

Ostrom and Insel, 2004; Villar et al., 2016; Watkins et al., 2011 among others). 

In order to investigate how model coefficients influence the formation of lipid rafts in high coupling with the dynamics

of active receptors, the robustness of the model was tested by considering the variation of both interspecific and chemo-

mechanical coefficients. In this regard, more than two thousands numerical simulations were performed by assigning values

within the ranges reported in Table 2 and by then evaluating the associated membrane thickening. In particular, as also

shown in Fig. 8 , analyses revealed that lipid rafts formation is mainly affected by the level of intrinsic rate of activation in

response to ligand concentration αξ (through the uptake coefficient k b ), and the chemo-mechanical coefficient ω ξ , repre-

senting the specific mechanical work that GPCRs exert on the lipid membrane by inducing its thickening. 

As displayed in Fig. 10 , the imposed constant reference traction induces a nonhomogeneous distribution of the Cauchy

stress, which relaxes within the rafts (namely across the thickened regions), thereby exhibiting values lower than the tension
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Fig. 7. A . Time evolution of active receptors (blue) and transporters (red) in comparison with the experimental cAMP measurements. It is shown that the 

raft dynamically follows the binding/unbinding kinetics. B . High degree of localization between lipid raft formation and active GPCRs in single rafts (top) 

and multiple raft domains (bottom). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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Fig. 8. (Left) Variation of the maximum thickening of the lipid membrane as a function of the intrinsic uptake coefficient k b and of the chemo-mechanical 

work coefficient ω ξ . The red spot indicates the couple { k b , ω ξ } used in the simulation. (Right) Evolution of the membrane stretch for different values of 

coefficients k b and ω ξ . The red curve highlights the one obtained for the adopted parameters. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 9. Evolution of chemical potentials associated to protein species during binding/unbinding kinetics. 

 

 

 

 

 

 

 

 

experienced by the thinner (hence disordered) phases. The binding kinetics and protein activation are instead responsible of

a progressive, chemically-induced, compression of the lipids in the raft region. Such compression decreases over time during

the unbinding phase (see Fig. 10 ). 

In stress free conditions, the chemical stress exerted by the activating proteins is entirely converted into effective mem-

brane compression (see Fig. 11 ). From a mechanical point of view, the stress relaxation renders ordered islands more com-

pliant to demand TMs to undergo conformational changes, and hence GPCRs location on lipid rafts also implies a reduced

energy expenditure during the protein structural re-organization. 

Conclusions 

Predictions and interpretation of the findings provided in this paper allow for explaining why active receptors of the

GPCRs family tend to cluster on lipid rafts . Furthermore, active receptors are predicted to enhance rafts formation . 

Such predictions are shown to be in relation with: 

i) stress reduction arising within rafts because of the presence of active receptors and transporters that need local compli-

ant zones to be able to perform conformational changes; 

ii) decrease of chemical potential owing (1) binding of the GPRCs with the ligand, thereby favoring the formation of higher
density regions of RL complex and (2) uptaking of intracellular cAMP from the MRPs transporters. 
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Fig. 10. Stress in tensed membranes. The imposed constant reference traction induces a nonhomogeneous distribution of the Cauchy stress (upper row), 

which relaxes in thickened raft regions. In the lower row, the chemical stress generated by the protein species is reported, causing a progressive compres- 

sion of the lipids inhabiting the raft domains. 

Fig. 11. Effective and chemical stress balancing in stress-free remodelling membranes. 

 

 

 

 

 

 

It is shown how the mechanobiology involved at the level of the cell membrane does entail strong coupling among

(a) mechanical equilibrium governed by the (entropic, conformational, elastic) energy, (b) the kinetics of RL-binding and

unbinding, regulated by the chemical potential and traced through the diffusion of GPCRs and MRPs (related to cAMP i
and cAMP e respectively), and (c) the consistency requirement that the effective chemical potential of the RL-compound

must agree both with the energetics and with lateral pressure arising between lipids surrounding the domains of the active

species and confining their conformational changes. The strict correlation between how cAMP is triggered by RL-compounds
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and modulated by MRPs and the tendency of GPCRs to locate on lipid rafts has been shown by the simulations. It is worth

notning that on the basis of the boundary and limit conditions of interest and by considering the interspecific terms taken

into account in the model, coalescence due to Cahn-Hilliard-like dynamics was not expected, this phenomenon being object

of future investigations. 

The entire analysis has be done with special regard to an existing set of experiments involving HTR-8/SVneo cells and

β2AR. Diffusive phenomena have been considered and the arising chemo-mechanical coupling has been accounted for

through the kinetics of ligand binding. The outcomes of the model highlight the mechanobiology of lipid membrane re-

modelling by providing a mechanical explanation for the observed correspondence between the membrane regions where

distribution density of active receptors is higher and locations of lipid rafts. These theoretical predictions actually confirm

experimental findings by Nobel Prize 2012 Kobilka ( Kobilka and Deupi, 2007 ) and Lefkovitz ( Lefkowitz, 2007 ). Importantly,

the predictive potential of the obtained model can help to provide a key support to quantitative diagnostics, owing for eval-

uation of cell response to endogenous and exogenous ligands regulated by GPCRs under different operating conditions of

the cells. 
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Appendix A 

Density ratio associated to remodelling 

The effective density ρ( x, t ) of the heterogeneous membrane at any time t and at any point x can be written as the

sum of the products between the true densities ϱk and the volumetric fractions υk composing the body. The membrane is

essentially inhabited by lipids and by transmembrane proteins. The latter share the same true density, although they can

appear either in an active or inactive state. Furthermore, it is worth notning that in the intermediate active (reference)

configuration displayed in Fig. 5 ) the thickness of the membrane h 0 is homogeneous. Henceforth, the following expression

can been written for the density ρ( x, t ): 

ρ(x, t) = υk � k = υu � 

p 
u + υa � 

p 
a + υl � 

l 

= 

(
N u 

A u 

A 

+ N a 
A a 

A 

)
� 

p + 

[
1 −

(
N u 

A u 

A 

+ N a 
A a 

A 

)]
� 

l 

= � 

l 

[
1 + 

(
N u 

A u 

A 

+ N a 
A a 

A 

)(
� 

p 

� 

l 
− 1 

)]
(A.1) 

where � 

p = d m 

p /d V p and � 

l = d m 

l /d V l are the protein and lipid true densities, respectively, while A k / A is the areal fraction

of the species. By introducing the relation N u + N a = N max , where N max denotes an estimate of the maximum reference

value of total proteins present on a surface surface A on the cell membrane, the expression (A.1) above can be rearranged

as follows: 
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ρ(x, t) = � 

l 

[
1 + N max 

(
A u 

A 

+ 

N a 

N max 

(
A a − A u 

A 

))(
� 

p 

� 

l 
− 1 

)]
= � 

l 

[ 

1 + 

N max A u 

A 

( 

1 + 

∑ 

i 

n i 

(
A a 

A u 
− 1 

)) (
� 

p 

� 

l 
− 1 

)] 

(A.2)

where 
∑ 

i n i = N a /N max = ξ + ζ represents the cumulative fraction of activated receptor and transporters. Therefore, the den-

sity ratio associated to remodelling, reported in Eq. (3.21) , is finally obtained as K r = ρ(x, 0) / ρ(x, t) . It is worth notning that

K r has a meaningful multiscale geometric interpretation through the Theory of Structured Deformations , as highlighted in

Fig. 11 (see e.g. Deseri and Owen, 2003; Deseri and Owen, 2010; Deseri and Owen, 2012; Deseri and Owen, 2015; Deseri

and Owen, 2019; Palumbo et al., 2018 ), as discussed in details in Appendix C . 

Appendix B 

The chemical potential is influenced by the lateral pressure experienced by the cell membrane 

The mechanical term ω i 

(
λ−1 − 1 

)
appearing in the chemical potential ˜ μi = ˜ μ0 

i 
− ω i 

(
λ−1 − 1 

)
− ηi log 

n i 
n 0 

i 

, i.e. (3.46) ,

which is the parent of the chemo-mechanical energy (3.48) , allows for obtaining the chemical stress through derivation

as in Eqs. (3.49) and (3.56) , i.e. 

˜ P n = (n 

0 
i − n i ) 

∂ ˜ μi 

∂λ
= −∂W n i 

∂λ
= ω i 

(n 

0 
i 

− n i ) 

λ2 
. (B.1)

As the first formula clearly displays, the chemical stress is obtained through the change in chemical potential caused by

local stretch changes, λ (or, equivalently, caused by the local changes of the membrane thickness as (3.19) , i.e. φ = λ−1 ,

so that dλ = −φ−2 dφ). The chemical potential of the species is then key for understanding the mechanobiology involved

in ligand-binding of the receptors analyzed in this paper. Because of its high importance, in this section we provide a

more physical understanding of the origins of such a key quantity. Indeed, direct considerations at the microscale can be

performed by taking into account the lateral pressure arising between the active species domains and the adjacent lipids

within the bilayer. Lateral pressure in lipid membranes is known to be present in bilayers even without receptors. It is worth

noting that lateral pressure is known to contribute to the stress across the thickness. In mechanical terms, such a pressure

can be seen as the reaction to incompressibility, thereby not affecting the elastic part of the energy. When it comes to

considering the membrane stress, formed by a hyperelastic part added on a reactive one, the lateral pressure is indeed such

a term in the expression for the stress. In turn, the lateral pressure changes in the presence of proteins (see e.g. Cantor,

1999; Lee, 2004; Marsh, 2007; Ollila, 2010 ) and it influences their chemical potential. 

For the sake of illustration, in the sequel we focus on the active receptors, namely the RL complex, as reported in

Pollaci (2016) . In Fig. 12 it is shown a schematic of a TM domain involved in the conformational changes and the lateral

pressure RL profile ˆ π( x , z, t) (marked with the green line in Fig. 12 .b). 

Indeed, this lateral pressure exhibits higher magnitudes in the zones where the lipid head groups interact with the top

and bottom sites of the TMs. Therefore ˆ π( x , z, t) performs work against the lateral variation of area, namely the local area

change, ˆ J ( x , z, t) at each level z across the thickness. We approximate the lateral pressure profile ˆ π( x , z, t) = ˆ π( x , −z, t) with
Fig. 12. Schematic representation of the lateral pressure between a TM domain and the lipid bilayer as in Pollaci (2016) (see also Marsh, 2007 ). 
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an even piecewise function as displayed in red in Fig. 12 .b) and defined as follows: 

ˆ π( x , z, t) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

−p 0 < z < 

h 

2 

− φ

q 

φ/ 2 

[
z −

(
h 

2 

− φ

)]
h 

2 

− φ < z < 

h 

2 

− φ

2 

q − q 

φ/ 2 

[
z −

(
h 

2 

− φ

2 

)]
h 

2 

− φ

2 

< z < 

h 

2 

(B.2) 

Here h ( x , t) is the current thickness of the membrane at x at the time t, q denotes the value of repulsive pressure arising

because of the contrast of the lipid headgroup against the receptor domain, and p is the value of the attractive pressure along

the hydrocarbon chain region arising to produce a self-balanced pressure profile. Balance through the thickness implies that

the following relationship must hold: 

2 p 

(
h 

2 

− φ

)
= 4 

q φ/ 2 

2 

, 

hence p and q turn out to relate as follows: 

p = 

q 

2 

φ

h − φ
. (B.3) 

The work ˜ w ξ done by the lateral pressure (B.2) against the change in lateral stretch 

ˆ J ( x , z, t) can be expressed as: 

˜ w ξ = π d s h 

ˆ w ξ , (B.4) 

where ˆ w ξ denotes the work done per unit area and π d s h is the exhibited lateral surface of the TM. 

If we set 

θ = z −
(

h 

2 

− φ

)
and θ ′ = z −

(
h 

2 

− φ

2 

)
, 

the quantity ˆ w ξ can be evaluated as follows: 

ˆ w ξ = 2 

∫ h 
2 

0 
ˆ π( x , z, t) ˆ J ( x , z, t) dz 

= 2 

(
− p 

∫ h/ 2 −φ
0 

ˆ J ( x , z, t) dz + q 1 
φ/ 2 

∫ φ
2 

0 
θ ˆ J ( x , θ + 

h 
2 

− φ, t) dθ + q φ
2 
+ 

−q 4 
φ

∫ φ
4 

0 
θ ′ ˆ J ( x , θ ′ + 

h 
2 

− φ
2 
, t) dθ ′ 

≈ 2 

[ 
q φ

2 
− p 

∫ h 
2 −φ

0 

[
ˆ J ( x , 0 , t) + z ˆ J z ( x , 0 , t) 

]
dz 

] 
= 2 

[
q φ

2 
− p 

(
h 
2 

− φ
)

J 
]

= 

γRL 

d s 
φ( 1 − J ) 

(B.5) 

The result arises after utilizing (B.3) relating p to q and upon recognizing that the surface tension γ RL of the RL compound

at the lipid headgroup- is related to the lateral pressure as 

q = γRL /d s 

where d s denotes the diameter of a TM domain. 

Bearing in mind that h = h 0 /λ, where λ = J, an approximation for the work done by the lateral pressure is the computed

through (B.4) , namely ˜ w ξ = π d s h ˆ w ξ , by virtue of (B.5) , i.e. 

˜ w ξ = π φ h 0 γRL 

(
1 
λ

− 1 

)
. (B.6) 

With the identification 

ω ξ = π φ h 0 γRL (B.7) 

Eq. (B.6) yields 

˜ w ξ = ω ξ

(
1 
λ

− 1 

)
. (B.8) 

namely the (opposite of the) work per unit area and per unit receptor, represents the contribution to the chemical potential μξ

in ( 3.50 ) due to mechanical actions associated with conformational changes, against which the lateral pressure performs work . 

The remaining terms in (3.46) , namely the entropic one, ηξ log ( ξ / ξ 0 ), and the reference value ˜ μ0 
ξ

add together and

sum up to ˜ w ξ to deliver the complete expression of the chemical potential for the RL compound. Obviously, for the MRPs,

namely the transporters, the reasoning is analog, thereby retrieving relation (3.50) for n 2 = ζ , i.e. the analog expression for

the chemical potential for such species. 
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The chemical stress (B.1) can be revisited in the light of (B.8) . In particular, for the RL species n 1 = ξ it is worth noting

that ∂ ̃  μξ /∂λ = −∂ ˜ w ξ /∂λ and hence the chemical stress associated with the RL compound reads as follows: 

˜ P ξ = −(ξ 0 − ξ ) 
∂ ˜ w ξ

∂λ
. (B.9)

It is then worth emphasizing that, in spite of the fact that the lateral stress profile between TMs and lipids is self-balanced

across the thickness, the rate of change of its work (done against the lateral variation of area) times the relative density of the

RL compound actually produces a quota of the membrane stress . Of course for the MRPs an analog reasoning follows. 

Appendix C 

Conformational changes, remodelling and associated energetics 

A schematic of the kinematics of the cell membrane in the presence of conformational changes and, possibly, remodelling

of the lipid membrane is displayed in the sequel in Fig. 13 . For the sake of illustration, this focuses on active receptors

alone, although the treatment for active transporters (MRPs) can be done in the same way. Geometrical changes occuring

among the TransMembrane domains of TM3, 5 and 6 (see 1 ) are shown together with the deformation of the lipid bilayer.

As pointed out in Section 3.2 , the submacroscopic changes caused by the formation of the RL compound (i.e. the receptor-

ligand binding) do cause a remodelling of the cell membrane. This is due to a change of the density of active receptors

thereby determining the re-organization of the surrounding lipids. 

Structured Deformations (see e.g. Deseri and Owen, 2003; Deseri and Owen, 2010; Deseri and Owen, 2012; Deseri and

Owen, 2015; Deseri and Owen, 2019; Palumbo et al., 2018 ) is a multiscale geometric framework that permits to account

for both conformational changes and remodelling arising at the submacroscopic level. Such a framework does allow for

envisioning three full configurations for the membrane. 

In particular, on the top-left side of Fig. 13 , a schematic of a piece of the membrane in its virgin configuration is sketched.

Besides the reference thickness for the membrane and for the TMs, h 0 and h r 0 respectively, and their counterparts in the

current configurations, h and h ′ , the quantities highlighted there are the normal N to the mid-plane of the lipid membrane

in the virgin configuration, its counterpart n in the deformed configuration, the reference value φT of the diameter of each

TM, and the available diameter φ0 for such movements to arise. The quantity ρT := φ0 /φT denotes the room space available

between the TMs for conformational changes in the virgin configuration, this indicates the degree of packing of the TMs.

The minimum value of the room space ρT is estimated to be 1 + 2 / 
√ 

3 (closest packing of the three domains involved in the

movements), hence its value is taken to be between such a value and 3, corresponding to the available room space of a TM

in the middle of TM3, 5 and 6, as shown in the sequel in Fig. 14 . 

It is worth notning that this schematic allows for distinguishing two different deformed configurations: the classically

deformed one and the current configuration. The latter is represented on the top right side of Fig. 13 . Mathematically,
Fig. 13. Conformational changes and membrane deformation. 
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Fig. 14. Room space for conformational changes in active receptors as in Pollaci (2016) : (a) schematic of TM3, 5 and 6, (b) minimum and regular room 

space among the domains involved in the conformational changes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

this is described through a given Structured Deformation, namely a pair ( y , G ) , where y is the deformation mapping from

the virgin configuration, and G is a tensor field which would be equal to the gradient of y if no conformational changes

would occur. The lower part of Fig. 13 offers an explanation of such interpretation through the multiplicative decompostition

( y , G ) = ( i , H ) ◦ ( y , F ) of the pair ( y , G ) introduced above. An intermediate classically deformed configuration is represented

in the bottom of this figure where ( y , F ) , with F = Grad y , maps points in the virgin configuration in this intermediate one.

This classical deformation is followed by a non-classical one. The latter is represented by a pair ( i , H ) and it is displayed in

Fig. 13 : here i is the identity mapping (leaving then the macroscopic configuration untouched), while H = G F −1 is a tensor

field accounting for all the local conformational changes. 

It is also worth noting that this representation is fully compatible with the schematic depicted in Fig. 11 in the main

text. As pointed out in Deseri and Owen (2003) , a factorization of the structured deformation ( y , G ) = ( y , F ) ◦ ( i , K ) such

that a classical deformation follows a non-classical one where the macroscopic deformation of the body does not change,

while conformational changes such that K = F −1 G can occur at the submacroscopic level. Obviously there is a one-to-one

relationship between the configurational changes described (through H ) from the classically deformed configuration to the

current configuration and their description starting from the virgin configuration (through K ). Indeed, pure geometry is

suggestive of the fact that the deformation of the membrane plays a key role (through F = Grad y ) on carrying over the

information related to the conformational changes, as K = F −1 H F . 

It is worth noting that the definition of the remodelling factor introduced in (3.21) can be exactly written as 

K r = det K , (C.1) 

as the change in volume between the virgin configuration and the reference configuration is solely due to disarrangements

which, in this case, are due to (submacroscopic) remodelling. 

Furthermore, it is obvious that d et K = d et H . Henceforth, the evaluation of the remodelling factor can either be done

upon following the scheme displayed in Fig. 11 ( ( y , F ) ◦ ( i , K ) , namely by letting disarrangements to act first, then followed

by a classical deformation) or the one in Fig. 13 ( ( i , H ) ◦ ( y , F ) , i.e. a classical deformation first, then the conformational

changes). 

Conformational energy: the case of active receptors 

As is has been recalled in Fig. 1 , conformational changes in active receptors are mainly characterized by a rotation ω 

of TM6 about its axis and by a translation μh of the TM6 domain with respect to TM3 and TM5 (see e.g. Ghanouni et al.,

2001 ). 

Henceforth, the change in Helmholtz free energy per unit area and per unit receptor relative to the classically deformed

configuration (as displayed in Fig. 13 ) due to such movements can be then interpreted as a result of two contributions, both

arising in the current configuration (see Pollaci (2016) ). For both of such terms, the change in entropy per unit area and per

unit receptor is evaluated as in Pollaci (2016) . The change of entropy due to rotation is accounted for by generalizing the

result obtained in Finkelstein and Janin (1989) , namely 

ϕ 

(1) 
CR = A log 

(
ω 

2 π2 / 3 

)
, (C.2) 

where ω represents the rotation of the TM domains involved in the conformational change about the normal e 3 to the mid-

plane of the membrane in the current configuration, A is a normalization constant and A · K B T represents the conformational

energy level per unit receptor per unit area at the reference angle ω 

∗ = 2 π2 / 3 e . The local translation measure is relative to

the free volume available for the conformational changes in the current configuration. This is calculated by multiplying the

current value of the thickness h of the cell membrane by the available area π ( d /2) 2 J , where d represents the referential
0 0 
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Table 3 

Table 3 . Ranges of values of geometrical parame- 

ters assumed from ( Hiden et al., 2007; Lee, 2004; 

Pollaci, 2016 ), while the room space ρT is esti- 

mated from Fig. 14 . 

thickness h 0 diameter d s room space ρT 

[ nm ] [ nm ] - 

3 ÷6 0.3 ÷0.5 2.15 ÷3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

diameter of the zone in which conformational changes of the TMs can occur. It is worth recalling that J = h 0 /h depends

on the location x = (x 1 , x 2 ) of the mid plane of the bilayer. As recalled in Section 4 , it has been shown that J is the order

parameter in lipid membranes (see e.g. Deseri et al., 2008; Deseri and Zurlo, 2013; Zurlo, 2006 ), allowing for discriminating

whether or not lipids exhibit ordered ( J = 1 indicates the completely straight configuration of the lipid tails) or disordered

phases ( J > 1, curlier configuration). Henceforth, the resulting change in entropy due to translational changes may be written

as follows: 

ϕ 

(2) 
CR = A log 

( 

μ h (
J (d 0 / 2) 2 h 

)1 / 3 

) 

, (C.3)

where μ h represents a measure of the local translation of the TMs with respect to current location and 

(
J (d 0 / 2) 2 h 

)1 / 3 =(
(d 0 / 2) 2 h 0 

)1 / 3 
is a reference measure of such translation. Upon introducing the “room space” parameter 

ρT = d 0 /d s , (C.4)

which measures how much room is available for the conformational changes of the TMs, as d s indicates the diameter of any

of the TMs involved in such changes. 

The total conformational energy density per unit area and per unit (distribution density of) receptors is obtained as the sum

of both contributions (C.2) and (C.3) above, i.e. 

ϕ CR = ϕ 

(1) 
CR + ϕ 

(2) 
CR = A log 

(
κ

η

J 

)
, (C.5)

where 

η = ω μ (C.6)

represents the conformational field and κ is a dimensionless geometric constant defined as follows: 

κ = 

1 

2 

(
2 h 0 

π d s ρT 

) 2 
3 

. (C.7)

Accordingly to Eq. (C.7) and a range of geometric quantities collected from literature in Table 3 , a range for κ can be then

determined to be κmin ≤ κ ≤ κmax , where κmin = 0 . 587 , κmax = 1 . 634 and κm 

= (κmin + κmax ) / 2 = 1 . 11 will be used. 

In Pollaci (2016) bounds for η are found in terms of the ratio h / h 0 . Nonetheless, for a given set of geometrical parameters

h 0 , d s , ρT , it can be shown that η∗ = K 

−1 represents the lowest possible value for η. Maximum admissible values of the

conformational changes η can also be estimated by considering extreme configurations of a single TM. Indeed η is composed

by a rotation, ω in the range (0, π ] (i.e. the value 0 cannot be achieved), and a shear, μ = tan α where α is an angle across

thickness (see Fig. 13 ). The angle α can conceivably achieve values up to π /4, due to the presence of the surrounding TMs.

Then, the conformational field is found in the following interval: η∗ ≤ η ≤ π . 

The result (C.5) is a generalization of Finkelstein and Janin (1989) and Murray and Verdonk (2002) , as the entropic

changes are measured while accounting for the deformation of the lipid membrane. 

Conformational energy and work done by the lateral pressure: the case of active receptors 

The contribution to the total Helmholtz free energy W of the energetics of active receptors, RL, and transporters, MRPs,

has been worked out in Section 3.4 . In particular, Eq. (3.48) for the RL compounds specializes as follows 

W ξ (λ
−1 , ξ ) = ηξ ξ log 

ξ

ξ 0 
+ (ξ − ξ 0 ) 

(
ω ξ

(
λ−1 − 1 

)
− ˜ μ0 

ξ − ηξ

)
. (C.8)

Eq. (3.50) particularized for such a species and integrated over the domain �a in the intermediate configuration, can be

considered. Its variational derivative with respect to ξ , the density of RL, leads the following expression for the chemical

potential 

˜ μξ = ˜ μ0 
ξ − ω ξ

(
λ−1 − 1 

)
− ηξ log 

ξ

ξ 0 
. (C.9)
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Fig. 15. Behavior of ξ / ξ 0 vs h / h 0 using η as parameter. Here η∗ = 1 . 07 represents a basal value and �η = 2 . 06 (see Pollaci, 2016 ). 

 

 

 

 

 

 

 

 

 

 

 

 

In Appendix B it has been obtained that the term ω ξ

(
λ−1 − 1 

)
appearing both in (C.8) and (C.9) solely regards the work

done by the lateral pressure against the local area variation arising across the membrane during conformational changes. 

Mixing of the RL (active receptors) throughout the membrane contributes to lower the energy of the system in a purely

entropic way (see e.g. Rangamani et al. (2014) ). Upon identifying 

ηξ = K B T , (C.10) 

where K B is the Boltzmann constant, T is the absolute temperature of the bath in which the cells are embedded, i.e. 

K B T ξ

(
−e RL + log 

(
ξ

ξ 0 

))
, (C.11) 

where e RL is the specific activation energy for the complex receptor-ligand. 

The corresponding energy density (C.5) per unit receptors, per unit area and per unit K B T due to conformational changes

and ideal mixing allows for writing the aliquot of the total Helmholtz free energy associated with ξ as follows: ∫ 
�a 

ξ

[
−e RL + log 

(
ξ

ξ 0 

)
− ϕ CR 

]
d�a . (C.12) 

The variational derivative of the overall energy with respect to ξ yields the following expression of the corresponding

chemical potential 

˜ μξ = K B T 

(
−e RL + 1 + ln 

(
ξ

ξ 0 

)
− ( ξ ϕ CR ) ,ξ

)
. (C.13) 

As in Pollaci (2016) , by taking (C.10) into account, the comparison between (C.13) and (C.9) establishes the consistency of

both the expressions for the chemical potential of the RL compound and leads to the following relation among the density

of active receptors ξ , the conformational field η and the membrane thickness change h : (
ξ

ξ 0 

)−1 

= 1 − C 

h 

h 0 

− 1 

ln 

(
K 

h 

h 0 

η

)
. (C.14) 

where 

C = 

K B T A 

πφT h 0 γRL 

. (C.15) 

In Fig. 15 , slices obtained by fixing values of η are shown, namely the quantity X = ξ/ξ 0 as a function of the relative

thickness change H = λ−1 = h/h 0 . This shows that relative thickness change H increases with an increase of active receptor

density X . This result, is found to be in agreement with the experimental findings of Lefkovitz ( Lefkowitz, 2007 ) and Kobilka

( Kobilka and Deupi, 2007 ). As in a purification process the addition of cholesterol to the membrane induces lipid ordering,

this actually enhances the clustering of activated receptors on rafts. Our model is then consistent to this observation already

at the constitutive level. Furthermore, in Pollaci (2016) it is shown that Eq. (C.14) allows one to obtain the conformation in

terms of relative distribution of active receptors X and of the thinning field H , in the following form: 

η = 

1 

HK 

exp 

(
− (1 − H)(1 − X ) 

C X 

)
. (C.16) 
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Table 4 

Table 4 Estimated values for C . For each choice of parameters, the first pair of rows is referred to A = 1 , while the second refers 

to A = 5 . Values of γRL come from literature ( Marsh, 2007; Ollila, 2010; Pollaci, 2016 ). 

h 0 [ nm ] φT [ nm ] γRL [ mN/m ] A / C C 

3 0.5 10 11.01 0.091 

0.454 

6 0.3 10 13.21 0.076 

0.379 

3 0.5 35 38.52 0.026 

0.129 

6 0.3 35 42.22 0.022 

0.108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The relative receptor density X is a positive definite quantity and it is increasing with H . In Pollaci (2016) it is shown that

the simultaneous occurrence of both these conditions implies the occurrence of the following inequalities: 

η < 

1 

K H 

exp 

(
1 − H 

C 

)
= ηUB , (C.17a)

η ≥ 1 

K H 

exp 

(
H − 1 

H 

)
= ηLB , (C.17b)

for given values of H, C and K . Further investigations (see Table 4 below) allow for estimating C in the range [0.05 ÷0.75],

while the value taken for this parametric study is C = 0 . 3 . 
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