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A B S T R A C T

The ability of plant roots to penetrate soils is affected by several stimuli exerted by the surrounding medium,
such as mechanical stresses and chemical stimuli. Roots have developed different adaptive responses, such as
increase or decrease of the elongation rate of the apical region and swelling or shrinking of its diameter. We
propose a mathematical model aimed at explaining the dynamic evolution of plant roots during the penetration
into the soil. We treat the root as a cylinder and the root–soil interaction as a purely mechanical inclusion
problem. In particular, the root dynamic evolution is based on a modified version by one of the authors of
the extended universal law of West, Brown, and Enquist. Coupling the solution of the mechanical problem
and the growth equation, we compare the theoretical results with experimental data collected in artificial and
real soils. In this work, we propose a plausible interpretation of the experimental results of the root behavior
during the growth inside the surrounding soil medium.

1. Introduction

Plants do not follow a rigid predefined growing plan but adjust
their strategy to environmental conditions. Upon germination, plant
architecture is driven by a genetic post-embryonic program, which is
at the basis of the plant plasticity [1,2]. The study in [3] identified
two types of plant plasticity based on morphological or physiological
mechanisms. Morphological mechanisms require high energetic costs
because new functional portions are produced. On the other hand, in
the physiological mechanism, the modifications occurring in differen-
tiated tissue are imperceptible, the process is completely reversible
and the energetic cost is very low. The two types of plasticity are
continuously expressed during plant life since they are fundamental
for their own survival [4]. The root architecture is led by the root
tip, which has the entire control of the root structure in the space
of a few millimeters [5]. Therefore, roots adapt to the dynamically
changing soil features, mainly its impedance, with several responses,
such as the shrinking of the diameter, the root-structure architecture
modification, mucus secretion [6–9], affecting in turn the surrounding
medium (Fig. 1). Several investigations to understand how plant roots
can modulate and control the external stimuli on their growth have
been performed [10–16]. Typically, a growing plant root can exert an
estimated maximum pressure up to 1 MPa [17] and, consequently,
can arrest its growth when the pressure required to penetrate the
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soil is higher than such threshold value. For maize root, the arrest of
the growth has been reported with a penetration resistance of 0.8–
2 MPa [18,19], and in [9] some maize plants did not grow beyond
a penetration resistance of 0.25 MPa. The growth pressure is defined
as the stress, acting normally at the root surface, which a root has to
exert in order to deform the soil around it. Although a penetrometer
probe is widely used to estimate the pressure that a root has to exert
for penetrating soils, the studies in [17] and [19] demonstrated that this
procedure overestimates the root growth strength. In literature, growth
models for plant roots are mainly based on Lockhart’s equation [20–
24]. To better understand root penetration strategies and phenomena
involved in this process, the investigation of key parameters is required.
One option is to investigate penetration mechanisms and adaptation
through mathematical modeling and experimental techniques. In par-
ticular, many experimental studies illustrated the evolution of root
system in nutrient-rich patches [25–29] analyzing phenotypical reac-
tions (branching, root elongation, lateral root emergence, root hairs
proliferation, etc.). Since the majority of these studies were conducted
in real soils [30,31], characterized by high heterogeneity, these findings
have to be considered as a result of several physical and chemical
stimuli. In fact, in order to properly investigate each phenomenon and
carry out a rigorous cause–effect analysis, plants should be studied in
environments that allow to distinguish each single stimulus. In order to
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Fig. 1. Schematic diagram of the plant root structure. The growth phenomenon
occurs at the apical region through cell growth and elongation. The growing region is
constituted by the elongation zone and the meristem. Therefore, the growing tip with
mucilage and cell secretion at the root cap enables the root penetration into the soil.
The maturation zone is stationary and it is characterized by the presence of lateral
hairs on the roots. The presence of hairs and lateral roots in the mature zone provides
nutrients acquisition and anchorage. Scale bar is 500 μm.

discriminate indiscernible parameters in a real environment [32], we
investigated the growth of plant roots in artificial soils with different
soil and nutrient concentrations in the absence of other physical or
chemical stimuli.

Therefore, in this work, to shed light on the conducted experimental
results we propose a mathematical model. The mathematical model is
based on an elastic inclusion problem to investigate the growth of plant
root and its surrounding medium. In fact, the field of mechanics seems
to have a prominent role to investigate and explain biomechanical
mechanisms [33–36]. In particular, the theory of linear elasticity can
offer a possible way to describe complex processes by translating into
mechanical problems, such as the brain deformation due to a decom-
pressive craniectomy [35] and the mechanical relationship between
the tumor growth and its environment [33,34]. In this regard, we
studied the mechanical inclusion of a finite cylinder into a cylinder of
infinite length as a highly idealized system of the interaction between
the growing root and the surrounding soil medium. By exploiting a
continuum mechanics approach, we treated the plant root as an elastic
cylinder and the soil as a homogeneous elastic fracturable matrix, in
agreement with [33]. Since we focused on the variation of the root elon-
gation caused by the interactions with the surrounding environment,
we considered a single isolated root growing in the axial direction. We
applied our model in the specific case of Zea mays primary root growth
in artificial soil with different concentration of Phytagel and in real soils
with different soil compactness. In addition, we extended our model to
describe experiments conducted in Phytagel medium with the presence
of an excessive Murashige and Skoog Basal Salt Mixture concentration
to test the influence on both the root elongation and radial expansion.
The paper is organized as follows. A description of the formulation of
the inclusion problem is given in Section 2. Section 3 describes the
root growth in the case of (1) axial expansion assuming the absence
of nutrients in the surrounding medium; (2) axial and radial expansion
considering the presence of nutrients in the soil medium. Sections 4 and
5 summarize the results and concluding remarks, respectively.

Our approach introduces certain simplification to model the com-
plex interaction between the root and the surrounding soil medium.
Therefore, we disregarded some mechanisms involved in the phe-
nomenon of root growth into the soil medium, e.g. the flow at the
root–soil interface.

Fig. 2. Diagram of the domain for the embedded elastic cylinder and the surrounding
elastic matrix. The zooms show the inclusion problem applied to the domain related
to the tip region of the elastic cylinder, 𝐶, of radius 𝑅 and length 𝐿. Such zone is
subjected to axial, 𝑝, and radial pressure, 𝑝. The corresponding surrounding matrix, 𝑀 ,
is such that 𝑀 = 𝐶+ ∪ 𝐶− with the cylindrical hole (with radius 𝑅1 and length 𝐿1)
subjected to axial, 𝑝, and radial pressure, 𝑝. The matrix 𝑀 has length 𝐿2 and radius
𝑅2, respectively.

2. Preliminaries and problem formulation

We focus on biological phenomena in which the time-scale of
growth is longer than the time-scale of the elastic response, this latter
is hypothesized as being a quasi-static phenomenon, thus inertial forces
are negligible. We consider the problem of the inclusion of a cylinder in
a matrix. We treat both the cylinder and the matrix as linearly elastic,
homogeneous, and isotropic material. The constitutive relationship
between the stress tensor

{

𝜎𝑖𝑘
}

𝑖,𝑘 and the strain tensor
{

𝜖𝑖𝑘
}

𝑖,𝑘 is given
by [37,38]

𝜎𝑖𝑘 = 𝐸
1 + 𝜈

(

𝜖𝑖𝑘 +
𝜈

1 − 2𝜈
𝜖𝑙𝑙𝛿𝑖𝑘

)

,

where 𝐸 and 𝜈 are the Young’s modulus and Poisson’s ratio of the mate-
rial. The strain tensor can be written as a function of the displacement
vector 𝒖

𝜖𝑖𝑘 = 1
2
(

𝑢𝑘,𝑖 + 𝑢𝑖,𝑘
)

.

By introducing cylindrical coordinates (𝑟, 𝜃, 𝑧), we assume that the
displacement vector is

𝒖 (𝑟, 𝜃, 𝑧) =
(

𝑢𝑟, 𝑢𝜃 , 𝑢𝑧
)

=
(

𝑢𝑟 (𝑟) , 0, 𝑢𝑧 (𝑧)
)

. (1)

For Eq. (1) the non-vanishing components of the strain tensor are
𝜖𝑟𝑟 = 𝑢𝑟,𝑟, 𝜖𝜃𝜃 = 𝑢𝑟∕𝑟, 𝜖𝑧𝑧 = 𝑢𝑧,𝑧. According to the assumption of
steady-state process, the equilibrium equation is

2 (1 − 𝜈)∇(∇ ⋅ 𝒖) − (1 − 2𝜈) ∇ × (∇ × 𝒖) = 0. (2)

In order to describe the plant root growth as an inclusion problem,
we assume that the growing phenomenon involves only the tip region
of the embedded cylinder. We denote the domain of the growing zone
𝐶, the surrounding matrix as 𝑀 , and we split 𝑀 into two subdomains
𝐶+, 𝐶−, 𝐶+ ∪ 𝐶− = 𝑀 as in Fig. 2. Therefore, we assume that the
growing domain, 𝐶, is cylindrical, with radius 𝑅 and length 𝐿, and that
the growth occurs only in the axial direction. The cylinder is closed at
both ends and subjected to the outer pressure 𝑝 on the bottom surface
at 𝑧 = 𝐿 and 𝑝 in the radial direction. The upper part of the matrix is
a linear elastic isotropic thick-walled cylinder, 𝐶+, of inner and outer
radii 𝑅1 and 𝑅2, respectively. 𝑝 is the pressure applied at 𝑅1. We then
consider a linear elastic isotropic cylinder, 𝐶−, of radius 𝑅2. We suppose
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that the cylinder 𝐶− is closed at the bottom end (at 𝑧 = 𝐿2) and the
top end is subjected to axial pressure 𝑝 over a circle of radius 𝑅1. In
order to meet the experimental conditions, we require that there is no
displacement over the whole outer surface of 𝑀 . First, we compute
stresses and displacements in the elastic matrix, 𝑀 , with a cylindrical
hole, and then in the elastic cylinder, 𝐶. In the case of the elastic
matrix, Eq. (2) has the following solution1

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑢+𝑟 (𝑟) =
𝐶+
1 𝑟
2

+
𝐶+
2
𝑟

𝑖𝑛 𝐶+,

𝑢+𝑧 (𝑧) = 𝐶+
3 𝑧 + 𝐶+

4 𝑖𝑛 𝐶+,

𝑢−𝑟 (𝑟) =
𝐶−
1 𝑟
2

𝑖𝑛 𝐶−,

𝑢−𝑧 (𝑧) = 𝐶−
3 𝑧 + 𝐶−

4 𝑖𝑛 𝐶−,

where 𝑢+, 𝑢− are the displacements of the upper and lower part of the
matrix, respectively. Thus, we look for values of the constants such that
the following boundary conditions

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝜎+𝑟𝑟 = −𝑝 𝑟 = 𝑅1, 𝑧 ∈
(

0, 𝐿1
)

,
𝑢+𝑟

(

𝑅2
)

= 0 𝑧 ∈
(

0, 𝐿1
)

,
𝑢+𝑟

(

𝑅2
)

= 0 𝑧 ∈
(

𝐿1, 𝐿2
)

,
𝑢−𝑧

(

𝐿2
)

= 0 𝑟 ∈
(

0, 𝑅2
)

,
𝑢+𝑧

(

𝐿1
)

= 𝑢−𝑧
(

𝐿1
)

𝑟 ∈
(

𝑅1, 𝑅2
)

,
𝑢+𝑧 (0) = 0 𝑟 ∈

(

𝑅1, 𝑅2
)

,

and the equilibrium 𝜋𝜎+𝑧𝑧
(

𝑅2
2 − 𝑅2

1
)

− 𝜋𝑝𝑅2
1 = 𝜋𝜎−𝑧𝑧𝑅

2
2 at 𝑧 = 𝐿1 are

satisfied. By neglecting the terms of higher order then 𝜀2, we obtain

𝐶+
1 =

−2𝑝𝜖2

𝐸𝑚

(

1 + 𝜈𝑚
)

,

𝐶+
2 =

𝑅2
1(1 + 𝜈𝑚)
𝐸𝑚

{

𝑝
𝜖2𝜈𝑚(1 − 𝜒)

𝜈𝑚

+𝑝

[

1 + 𝜖2

1 − 2𝜈𝑚

(

−1 +
2𝜈2𝑚(1 − 𝜒)
1 − 2𝜈𝑚

)]}

,

𝐶−
3 =

𝜖2𝜒
𝐸𝑚(1 − 𝜈𝑚)

(

𝑝 + 𝑝
2𝜈𝑚

1 − 2𝜈𝑚

)

, 𝐶−
1 = 0, 𝐶−

4 = 0,

where 𝜒 = 𝐿1∕𝐿2, 𝜖 = 𝑅1∕𝑅2, 𝜐𝑚, 𝐸𝑚 are the Poisson ratio and Young
modulus of the elastic medium, respectively. In a similar way, in the
case of the elastic cylinder, the solution of Eq. (2) is given by 𝑢𝑟 (𝑟) =
𝐶1𝑟∕2 and 𝑢𝑧 (𝑧) = 𝐶3𝑧 with (𝑟, 𝑧) ∈ 𝐶. By imposing the following
boundary conditions

⎧

⎪

⎨

⎪

⎩

𝜎𝑟𝑟 = −𝑝 𝑟 = 𝑅, 𝑧 ∈ (0, 𝐿) ,
𝜎𝑧𝑧 = −𝑝 𝑧 = 𝐿, 𝑟 ∈ (0, 𝑅) ,
𝑢 (0) = 0 𝑟 ∈ (0, 𝑅) ,

the solution, in the case of the elastic cylinder, is given by 𝐶1 =
[−𝑝

(

1 − 𝜈𝑐
)

+ 𝜈𝑐𝑝]∕𝐸𝑐 and 𝐶3 = (2𝜈𝑐𝑝 − 𝑝)∕𝐸𝑐 , where 𝜐𝑐 , 𝐸𝑐 correspond
to the elastic cylinder coefficients. In order to have the contact at the
interface between the matrix and the elastic cylinder, we require the
following compatibility equation
{

𝑅 + 𝑢𝑟(𝑅) = 𝑅1 + 𝑢+𝑟 (𝑅1),
𝐿 + 𝑢𝑧 (𝐿) = 𝐿1 + 𝑢+𝑧

(

𝐿1
)

,

the radius and length of the deformed elastic root are equal to the
radius and length of the deformed matrix, respectively. By exploiting
the compatibility conditions at the contact and after some algebra,
we obtain the expressions for axial, 𝑝, and radial pressure, 𝑝, in a

1 All the derivatives with respect to 𝜃 vanish and there is no dependence
of the angle 𝜃.

dimensional form

𝑝 = 𝐸𝑐

(

1 − 𝜈𝑐
) (

𝑅 + 𝑅1𝐴2
) (

𝐿 − 𝐿1
)

+ 2𝜈𝑐 (𝐿 − 𝐿1𝐴1)(𝑅 − 𝑅1)
(

1 − 𝜐𝑐
) (

𝑅 + 𝑅1𝐴2
) (

𝐿 + 𝐿1𝐵1
)

− 2𝜈2𝑐 (𝐿 − 𝐿1𝐴1)(𝑅 − 𝑅1𝐴1)
,

(3.1)

𝑝 = 𝐸𝑐
𝜈𝑐

(

𝑅 − 𝑅1𝐴1
) (

𝐿 − 𝐿1
)

+ (𝐿 − 𝐿1𝐵1)(𝑅 − 𝑅1)
(

1 − 𝜐𝑐
) (

𝑅 + 𝑅1𝐴2
) (

𝐿 + 𝐿1𝐵1
)

− 2𝜈2𝑐 (𝐿 − 𝐿1𝐴1)(𝑅 − 𝑅1𝐴1)
,

(3.2)

where

• 𝐴1 = 𝜖2 𝐸𝑐
𝐸𝑚

𝜐𝑚
(1−𝜒)(1+𝜐𝑚)
𝜈𝑐 (1−𝜐𝑚)

,

• 𝐴2 =
𝐸𝑐
𝐸𝑚

(1+𝜐𝑚)
(1−𝜐𝑐 )

[

1 − 𝜖2 + 𝜀2

1−2𝜐𝑚

(

2𝜐2𝑚(1−𝜒)
1−𝜐𝑚

− 1
)]

,

• 𝐵1 = 𝜖2 𝐸𝑐
𝐸𝑚

(1 − 𝜒)(1 + 𝜐𝑚)

• 𝜖 = 𝑅1∕𝑅2, 𝜒 = 𝐿1∕𝐿2.

3. Theoretical translation of biological phenomena

We present a mathematical model describing the effect of mechan-
ical stresses on plant root growth. The model shows how the axial
stress at the contact affects the plant root growth in the surrounding
environment. When the soil is hard to penetrate, an individual root may
stop growing [9]. Therefore, we use a Fracture–Regrowth Cycle, FRC,
as in [33] by including also the condition that the root stops its growth
when a threshold axial pressure is reached. If 𝑝𝑓𝑟 is the fracture stress
of the surrounding elastic medium and 𝑝𝑐 is the maximum pressure that
a root can exert to grow, two cases can occur:

(a) 𝑝𝑓𝑟 ≥ 𝑝𝑐 . The elastic root can grow until the axial stress 𝑝 reaches
the critical value and there is no fracture of the elastic matrix,
i.e. the root stops growing when 𝑝 = 𝑝𝑐 . It may be the limit case
of a root growing in very strong soils.

(b) 𝑝𝑓𝑟 < 𝑝𝑐 . The axial stress 𝑝 can reach the fracture stress 𝑝𝑓𝑟
and a new growth cycle begins. In particular, each cycle starts
with the initial length equal to the growing zone length and ends
when the axial stress, 𝑝, at the contact reaches soil failure, 𝑝𝑓𝑟.
Therefore, the root relaxes, the increase in root length is stored,
and a new cycle starts with the updated root length.

We focus on the case (b) and Algorithm 1 shows a brief outline
of the solution algorithm implementing the FRC. In the following
Subsections, we introduce the growth equations coupled with Eq. (3.1)
to compare our theoretical results with the experiments in artificial
soils (see Appendix A for details). In particular, the artificial soils were
prepared with different Phytagel concentrations (PC) and different nu-
trient concentrations were obtained using Murashige and Skoog Basal
Salt Mixture (MS). In the first case, we compare the theoretical results
with data collected in different Phytagel concentrations, while in the
second case with an excessive nutrient concentration in the artificial
soil medium. In addition, for the first case, we compare our theoretical
results with data from experiments in different real soil compactions
(for more details see [9]).

In this work, the main assumptions related to the growth process
are the following:

• The root is cylindrical and is a linearly elastic, homogenous, and
isotropic material;

• The surrounding matrix is a linearly elastic, homogenous, and
isotropic fracturable material;

• The growth is related to a single isolated root in the axial direc-
tion;

• The growth is uniformly distributed at the root apical zone due
to cell division and extension;

• The growing zone has the same length and number of cells at the
beginning of each FRC;

• The pressure is zero at both ends of each FRC.

3
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3.1. Case I: axial expansion

3.1.1. Growth equation
By exploiting a similar approach to Lockhart [20] and by taking

into account the soil impedance as in [21,39–41], we can describe the
growth process with the following model2

1
𝑉

⋅
𝑑𝑉
𝑑𝑡

= 𝛷
(

𝑝 − 𝑝𝑐
)

+ , (4)

where 𝑉 is the volume of the root growing zone, 𝛷, [𝛷] = (MPa ⋅ s)−1,
is related to the extensibility of wall of a plant cell and 𝑝𝑐 is the
threshold value introduced at the beginning of this Section. The model
(4) captures the most commonly accepted phenomenon related to the
influence of soil physical properties on root growth, i.e. roots grow
slower in denser soils. In order to consider not only the influence of
the soil impedance on the root growth but also the input power from
the surrounding matrix, the energy rate of consumption due to the
metabolism and growth, we adopt the growth model reported in [33]
but considering the axial pressure as confining pressure

𝜂 𝑑𝑁
𝑑𝑡

+ 𝑝𝑑𝑉
𝑑𝑡

+ 𝛽𝑁 = 𝛾𝑁𝜌, (5)

where

• 𝑁 = 𝑀∕𝑚 = 𝑉 ∕𝑣 represents the total number of cells in the
growing zone of the plant root; and 𝑀 (𝑉 ), 𝑚(𝑣) are the mass
(volume) of the root growing zone and average mass (volume)
of a single cell, respectively;

• 𝜂 is the energy required to create a new cell;
• 𝛽 is the metabolic rate for a single cell;
• 𝛾𝑁𝜌 = 𝛼 (𝑚)𝜌 𝑁𝜌 = 𝛼𝑀𝜌 is the input power from the surrounding

matrix and 𝜌 = 3∕4. Since we focus on the growth of the
primary root, we assume that the plant seed continuously supplies
nutrients and the surrounding matrix is only an external source of
water. In the case of older plant roots, we can consider the matrix
is a continuously-replenished medium.

• 𝑝 is the axial pressure experienced by the growing root tip at the
boundary between root and matrix.

For simplicity, we consider a uniformly distributed growth at the apical
zone through cell division and cell extension. Clearly, since we pursue
an approach based on the mechanical interaction between the root and
the soil, we disregard to model the water flow in both the root system
and the surrounding soil. The Eq. (5) is of the growth equation proposed
in [33]. This approach has been applied to a wide range of biological
phenomena [42,43]. For example, the authors of [33] developed a
model for tumor invasion, considering the effect of interfacial pressure
as an extension of the West, Brown, and Enquist law [44]. The root
elongation rate is sensitive to variations in axial pressure [45,46], but
insensitive to radial pressure [47]. This aspect explains the presence of
the mechanical term in Eqs. (4) and (5) due to the axial pressure. We

2 (𝑓 (𝑥))+ = max(𝑓 (𝑥), 0).

will further assume that the root is cylindrical (as in Fig. 2) and grows
only in length. Therefore, an increase in length is related to an increase
in volume and in the number of cells through
𝑑𝐿
𝑑𝑡

= 1
𝜋𝑅2

𝑑𝑉
𝑑𝑡

=
𝑣0
𝜋𝑅2

𝑑𝑁
𝑑𝑡

,

where 𝑣0 is the single cell volume that we consider constant. Note that
if 𝜌 = 1 and if 𝑝 is small, with proper values of 𝑣0, 𝜂, 𝛾, 𝛽 we can
recover the Eq. (4) from the Eq. (5).

3.1.2. Dimensionless formulation
We recast the growth problem in a dimensionless form. We intro-

duce the dimensionless quantities 𝐿∗ = 𝐿∕𝐿0, 𝑡∗ = 𝑡∕𝑡𝑟𝑒𝑓 , where 𝐿0
represents the length of the growing region and 𝑡𝑟𝑒𝑓 is the duration of
the experiment. We assume 𝐿0 = 3 mm and 𝑡𝑟𝑒𝑓 = 3 days.

Remark 1. 𝐿∗
1 represents the initial length of the elastic cylinder in

each cycle and we assume zero pressure at both ends of the cycle.
Therefore, we can write 𝐿1 = 𝐿0𝐿∗(𝑡0), where the adimensional length
𝐿∗(𝑡0) is ‘‘updated’’ at the beginning of each cycle.

Omitting the ‘‘*’’, in the case of axial growth, i.e. 𝑅 = 𝑅1, we can
rewrite Eqs. (3.1) and (3.2) as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑝 = 𝛩1
𝐿 − 𝛩2
𝐿 + 𝛩3

,

𝑝 = 𝛩4
𝐿 − 𝛩2
𝐿 + 𝛩3

,
(6)

where

• 𝛩1 = 𝐸𝑐
𝛬1
𝛬2

,

• 𝛩2 = 𝐿
(

𝑡0
)

is the root length at the beginning of the FRC;
• 𝛩3 =

𝛬3
𝛬2

𝜖2 𝐸𝑐
𝐸𝑚

𝐿(𝑡0)(1 − 𝜒)(1 + 𝜐𝑚),

• 𝛩4 =
𝐸𝑐
𝛬2

[

𝜐𝑐 − 𝜖2 𝐸𝑐
𝐸𝑚

(1 − 𝜒) 𝜐𝑚(1+𝜐𝑚)(1−𝜐𝑚)

]

,

• 𝛬1 = 1 − 𝜐𝑐 +
𝐸𝑐
𝐸𝑚

(1 + 𝜐𝑚)
[

1 − 𝜖2 + 𝜀2

1−2𝜐𝑚

(

2𝜐2𝑚(1−𝜒)
1−𝜐𝑚

− 1
)]

,

• 𝛬2 = 𝛬1 +
𝐸𝑐
𝐸𝑚

(

1 + 𝜐𝑚
) 2𝜐𝑚𝜐𝑐𝜀2(1−𝜒)

(1−𝜐𝑚)2
− 2𝜐2𝑐 ,

• 𝛬3 = 𝛬1 −
𝐸𝑐
𝐸𝑚

(

1 + 𝜐𝑚
) 2𝜐2𝑚𝜀

2(1−𝜒)

(1−𝜐𝑚)2
− 2𝜐𝑚𝜐𝑐

1−𝜐𝑚
,

and [𝛩1] =
[

𝛩4
]

= MPa and [𝛩2] =
[

𝛩3
]

= 1.
By considering the stop of the root growth when 𝑝 reaches the

critical value 𝑝𝑐 , from Eq. (5) we have 𝛽 = 𝛾
(

𝛩2+𝛩3𝑝𝑐∕𝛩1
1−𝑝𝑐∕𝛩1

)𝜌−1
and we

introduce the scaling parameter 𝛩1 for the adimesionalization of the
axial pressure, 𝑝, as an upper bound for 𝑝𝑐 .

In addition, we analyze how the axial stress at the contact can
affect the biomechanical properties of plant root penetration depending
on the surrounding matrix. Since the change in length is slow, every
moment of the growth process can be represented as a static state
and we can interpret the mechanical process of root growth as an

4
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Fig. 3. Plot of the ratio between the root length at 𝑝 = 𝑝𝑓𝑟 and the root initial length in
adimensional form, 𝐿𝑓𝑟∕𝐿(𝑡0), considering the critical growth pressure as 𝑝𝑐 = 0.5 MPa,
the root Young modulus as 𝐸𝑐 = 10 MPa, the Poisson ratio for both root and soil as
𝜐𝑚 = 𝜐𝑐 = 0.49, the root and hole radius as 𝑅 = 𝑅1 = 0.588 mm, and the outer radius
of the soil as 𝑅2 = 30 mm.

inclusion model. The inclusion model analyzes in detail the mechanical
expansion of an elastic cylinder in a cylindrical hole of an elastic
fracturable medium. In particular, we study the sensitivity of the root
length to the variation in the fracture stress, 𝑝𝑓𝑟, and the Young
modulus, 𝐸𝑚, of the surrounding matrix. Therefore, we analyze the
variation in the root length, 𝐿𝑓𝑟, when the axial contact pressure is
equal to 𝑝𝑓𝑟. From Eq. (6), we can obtain the expression of root length
in the dimensionless form at 𝑝 = 𝑝𝑓𝑟

𝐿𝑓𝑟 =
𝐿
(

𝑡0
)

+ 𝛩3
𝑝𝑓𝑟
𝛩1

1 − 𝑝𝑓𝑟
𝛩1

, ∀𝑝𝑓𝑟 < 𝛩1. (7)

Since 𝐿1 ≪ 𝐿2, we consider 𝜒 = 𝐿1∕𝐿2 → 0, but we maintain the
order of approximation of 𝜖 = 𝑅1∕𝑅2.

We consider 𝐿𝑓𝑟 = 𝐿𝑓𝑟(𝑝𝑓𝑟, 𝐸𝑚), i.e. as a function of both failure
stress, 𝑝𝑓𝑟, and the elastic modulus of the surrounding medium, 𝐸𝑚.
The plot of 𝐿𝑓𝑟(𝑝𝑓𝑟, 𝐸𝑚) is shown in Fig. 3, which highlights that when

1. 𝑝𝑓𝑟 = 𝑘 ⋅𝐸𝑚, 𝐿𝑓𝑟 is an increasing function of 𝐸𝑚 for values of 𝐸𝑚
enough small such that 𝐿𝑓𝑟 > 0 and 𝑝𝑓𝑟 < 𝑝𝑐 ;

2. 𝐸𝑚 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝐿𝑓𝑟 is an increasing function of 𝑝𝑓𝑟 such that
𝐿𝑓𝑟 > 0 and 𝑝𝑓𝑟 < 𝑝𝑐 ;

3. 𝑝𝑓𝑟 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 < 𝑝𝑐 , 𝐿𝑓𝑟 is a decreasing function of 𝐸𝑚 such that
𝐿𝑓𝑟 > 0.

The above analysis highlights the importance of considering the
concept of failure stress at a small value for Young’s modulus of the
elastic matrix.

3.2. Case II: axial and radial expansion

3.2.1. Growth equations
We couple equation (5) with the following

𝑑𝑅
𝑑𝑡

⋅
1
𝑅

=
(

1 −
𝛾𝐶𝑐
𝛾

)

+
⋅
𝑑𝑁
𝑑𝑡

⋅
1
𝑁

. (8)

Now, Eqs. (5) and (8) include both axial and radial growth. In
particular, the axial pressure, 𝑝, at the boundary between the root tip
and matrix depends on both root length and radius (see Section 2).
In Eq. (8), we take into account the estimated value, 𝛾𝐶𝑐 , of the previous
case, i.e. without nutrient in the soil, meaning that the plant seed
furnishes nutrients and the surrounding medium supplies continuously
only water (𝛾𝐶𝑐 corresponds to the parameter 𝛾 of the previous case,
Section 3.1.1). In order to include the effect of the nutrient in the
soil, Eq. (8) considers that the radial swelling occurs only when the
scaling parameter 𝛾 of the input power from the surrounding soil is
higher than 𝛾𝐶𝑐 (Fig. 4). By assuming that the root is cylindrical,
the increase in length, 𝐿, is given by 𝑑𝐿

𝑑𝑡 = 𝑣𝑜
𝜋𝑅2

(

𝑑𝑁
𝑑𝑡 − 2𝑁

𝑅 ⋅ 𝑑𝑅
𝑑𝑡

)

. We

consider that the total number of cells in a plant root is 𝑁 = 𝑉 ∕𝑣0,
where 𝑉 is the root volume of the growing zone and 𝑣0 is the average
of a single cell volume. We update 𝑣0 with the non-dimensional initial
root radius at each FRC to indicate the possible thickening of cells due
to the chemical stimulus.

3.2.2. Dimensionless formulation
We scale the variables 𝐿 and 𝑡 as in Section 3.1.2. In addition, we

scale 𝑅 = 𝑅0𝑅∗ where 𝑅0 the values of the top diameter at the third
day of life (see Appendix A).

Remark 2. 𝐿1, 𝑅1 represent the initial length and radius of the elastic
cylinder, respectively, in each cycle and we assume zero pressure at
both ends of the cycle. Therefore, we can write 𝐿1 = 𝐿0𝐿∗ (𝑡0

)

, 𝑅1 =
𝑅0𝑅∗(𝑡0), where the dimensionless length 𝐿∗(𝑡0) and radius 𝑅∗(𝑡0) are
‘‘updated’’ at the beginning of each cycle. By assuming the same length
growing zone and number of cells at the beginning of each FRC with an
increasing radius (𝑣0𝑁

(

𝑡0
)

= 𝜋𝐿(𝑡0)𝑅2(𝑡0)), we update the single cell
volume 𝑣0 with the non-dimensional initial root radius in each FRC,
i.e. 𝑣0 ∝ 𝑅∗2(𝑡0).

By omitting the ‘‘*’’ and assuming that the root growth ends when
𝑝 = 𝑝𝑐 , from Eq. (5), now, we obtain 𝛽 = 𝛾𝑁𝜌−1

𝑐 , 𝜌 = 3∕4,

𝑁𝑐 = 𝑁
(

𝑡0
)

1 + 𝑝𝑐
𝐸𝑐

(

𝑈1𝐵1−𝑈2𝐴1
𝑈1

)

1 − 𝑝𝑐
𝐸𝑐

(

𝑈1−𝑈2
𝑈1

) , (9)

where

• 𝑈1 = (1 − 𝜈𝑐 )(1 + 𝐴2),
• 𝑈2 = 2𝜈2𝑐

(

1 − 𝐴1
)

,

• 𝐴1 = 𝜖2 𝐸𝑐
𝐸𝑚

𝜐𝑚
(1−𝜒)(1+𝜐𝑚)
𝜈𝑐 (1−𝜐𝑚)

,

• 𝐴2 =
𝐸𝑐
𝐸𝑚

(1+𝜐𝑚)
(1−𝜐𝑐 )

[

1 − 𝜖2 + 𝜀2

1−2𝜐𝑚

(

2𝜐2𝑚(1−𝜒)
1−𝜐𝑚

− 1
)]

.

In the case of axial growth, Eq. (9) corresponds to Eq. (7).

4. Results and discussion

4.1. Case I: axial expansion

In this analysis, the surrounding medium is assumed to be an infinite
body with respect to the plant root, so that 𝑅,𝑅1 ≪ 𝑅2 and 𝐿,𝐿1 ≪ 𝐿2.
Therefore, to obtain the numerical solutions, we set 𝜒 = 𝐿1∕𝐿2 = 0, and
we assume 𝑅2 = 30 mm for both artificial and real soils. We then assume
that the critical growth pressure 𝑝𝑐 = 0.5 MPa (for the value range
of 𝑝𝑐 see, e.g., [9,17–19]), and the root Young modulus 𝐸𝑐 = 10 MPa
[48]. We assume that 𝑅1 = 𝑅 are equal to the values of the root apex
radius at the third day of life (see Appendix A) for artificial soil, and
𝑅1 = 𝑅 = 0.6 mm for real soils. Both Poisson’s ratios are 𝜈𝑚,𝑐 = 0.49
for Phytagel and 𝜈𝑐 = 0.49, 𝜈𝑚 = 0.45 for soils [49–51]. The values
used for 𝛾, 𝐸𝑚, 𝑝𝑓𝑟 are reported in Table 1 (𝐸𝑚, 𝑝𝑓𝑟 are obtained by
means of compression tests, Appendix A). In order to estimate only the
variation of 𝛾 with respect the different soil media, a constant value for
the parameter 𝜂, 𝜂 = 1 MPa ⋅mm3, has been chosen. Figs. 5 and 6 show
the evolution of the root length with time for artificial and real soils,
respectively. In order to assess the influence of 𝛾 on the variation of
the final root length, we carry out the theoretical predictions in both
artificial and real soil using all the combinations of the value for 𝛾 listed
in Table 1. The results by means of Eq. (5) are given in Fig. 7a, b.
The value of the scaling parameter 𝛾 of the energy released from the
seed increases with both the Phytagel concentration and the real soil
compaction (Table 1). By using artificial growth media, roots, which
were grown in harder soils, were longer than the roots grown in softer
soils, while in real soils this was not the case, see Figs. 5–7b. In the
only case of 0.6% Phytagel we obtain a lower final length in both the
numerical (Fig. 7b) and experimental results (see Appendix A).
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Fig. 4. Schematic diagram of the root control mechanism to nutrient stress. The initial conditions are differently updated if the root activates the radial swelling as a response
to nutrient stress (𝛾𝐶𝑐 < 𝛾). In such a case, the initial root length, diameter, and cell volume are updated and stored, otherwise, only the root initial length is stored. Each cycle
starts with updated initial conditions and ends when the soil medium fractures, i.e. the axial stress, 𝑝, at the contact equals the soil failure, 𝑝𝑓𝑟. Therefore, the root relaxes and a
new cycle starts with the updated initial conditions. Otherwise, the fracture in the matrix does not occur and the root grows until the growth critical pressure, 𝑝𝑐 .

Phytagel is a hard and brittle homogeneous gel [52] and, because
of its homogeneity, we can assume that the increase in Young modulus
leads to an increase in the fracture stress (see Section 3.1.2). In addi-
tion, Fig. 7c shows that 𝛾 increases linearly with respect to the Phytagel
concentration. Therefore, in the presence of artificial soils, the increase
in energy availability and the soil mechanical properties may enhance
root penetration.

4.2. Case II: axial and radial expansion

The theoretical results are performed by means of the Eqs. (5) and
(8) applied to the growing zone of the root and the related surrounding
medium (Fig. 2). We suppose that the soil is greater than the root,
i.e. 𝑅,𝑅1 ≪ 𝑅2 and 𝐿,𝐿1 ≪ 𝐿2 and we set the values of the parameters
𝜒 , 𝑅2, 𝑝𝑐 , 𝐸𝑚,𝑐 , 𝜈𝑚,𝑐 , 𝑝𝑓𝑟 and 𝜂 as in Section 4.1. The estimated values
of 𝛾 for Zea mays roots grown in artificial soil without nutrients are in
Table 1 and we refer to those values as 𝛾𝐶𝑐 in this Subsection. Since
the experimental data show an abnormal radial expansion only in the
case of the highest concentration of nutrients (MS4, see Appendix A) at
0.3, 0.6, and 0.9% Phytagel concentration, we compare the numerical
solution with the latter set of data. Since we have observed that the
radial swelling of 17% at the height of the meristematic area occurs
in the 5–6-day old roots for the MS4 concentration with respect to the
mature region, we consider the increase of 17% in the top diameter
at the 6-day age for the comparison with the numerical solutions (see
Appendix A). The estimated value of the parameter 𝛾 related to the
nutrient availability in the case of nutrients in the artificial soil at 0.3,
0.6, and 0.9% Phytagel concentration are 9.054 ⋅ 10−5, 1.157 ⋅ 10−4,
and 1.839 ⋅ 10−4 MPa ⋅ mm3/s. The value of the scaling parameter 𝛾
of the input power from the surrounding matrix increases with both
the Phytagel concentration and the MS concentration. The results from
the Eqs. (5) and (8) are given in Fig. 8. The numerical result of the
MS4 at 0.3% Phytagel concentration is smaller than the measured
data for the same elongation reduction. Moreover, we obtain a good
agreement with the evolution of the root length, while the root radius is
underestimated with respect to the experimental data. It is worth noting

that Eq. (8) cannot allow a decrease in root radius, since 𝛾𝐶𝑐 represents
the parameter related to the energy released by seed without nutrients
in soil and the soil medium is only an external source of water.

The biological mechanism observed in our experiments (Appendix
A) could be similar to salt toxicity as observed in [8]. In addition,
other studies show similar root apex swellings, e.g. after depletion of
gibberellic acid or ethylene and high calcium exposures [15,16,53].
In addition, investigations on the depolymerization of F-actin with
latrunculin B reveal also in very similar maize root apex swellings
and inhibition of the root cell elongation [13]. Therefore, a possible
adaptive strategy to nutrient stress could be the enlargement of cells
(as supposed in Section 3.2.2), inducing a swelling of root apex (see
Appendix A). This strategy should help cells to uptake more water and
create a stronger barrier to reduce toxic nutrient concentration [8].

5. Conclusions

The aim of this work is to present a mathematical model for the
growth of plant roots in a soil medium. In particular, we developed a
theoretical framework and an ad-hoc setup for better understanding the
contribution that mechanical stimuli play in the root growth in the case
of Z. mays primary root. Our theoretical and experimental studies may
be a further investigation to explain how plant roots could control the
growth in response to the contact with the surrounding medium. We
obtained different mechanical responses of the root growth depending
on different mechanical properties of its environment in agreement
with the experimental investigations (1) with different artificial soil
concentration and real soil compactness in absence of nutrients and
(2) with different nutrient concentrations in artificial soil. In all the
cases, the scaling parameter 𝛾 related to the input energy increases with
the artificial soil concentration and real soil compactness. In addition,
for artificial soils with high nutrient concentration we obtained the
reduction in root elongation as in experimental data but with an
underestimated radial expansion.

The mathematical model is based on continuum mechanics and
is a general formulation for any type of inclusion problem in the

6
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Table 1
Values of parameters used in the numerical solutions for the growth model. PC is the Phytagel concentration.

𝐸𝑚 (MPa) 𝑝𝑓𝑟± SD (MPa) 𝛾 (MPa mm3/s)

Phytagel

0.15% PC 1.02 ⋅ 10−2 0.0025 ± 7.2775 ⋅ 10−4 2.17 ⋅ 10−5

0.3% PC 1.82 ⋅ 10−2 0.0053 ± 0.0012 5.56 ⋅ 10−5

0.6% PC 4.23 ⋅ 10−2 0.0089 ± 0.0016 7.26 ⋅ 10−5

0.9% PC 7.43 ⋅ 10−2 0.0140 ± 0.0018 1.31 ⋅ 10−4

1.2% PC 8.09 ⋅ 10−2 0.0141 ± 0.0017 1.89 ⋅ 10−4

Real soil [9]
Low compaction 2 0.02 3.37 ⋅ 10−4

Medium compaction 25 0.04 6.3 ⋅ 10−4

High compaction 50 0.25 0.0029

Fig. 5. Comparison of the empirical data (red circles) in artificial soils (mean values ±SD) and analytical solution (blue line) at (a) 0.15, (b) 0.3, (c) 0.6, (d) 0.9, and (e) 1.2%
Phytagel concentration. Each step of the analytical solution represents a cycle, which ends with the fracture of the soil and begins after the relaxation of the root.

Fig. 6. Comparison of the empirical data (red circles) in real soils and analytical solution (blue lines) at (a) low, (b) medium, and (c) high soil compaction. Each step of the
analytical solution represents a cycle, which ends with the fracture of the soil and begins after the relaxation of the root.

context of linear elasticity. This study may help to improve the current
knowledge of the behavioral strategies of plant roots as a starting point
for constructing more complete predictive models, e.g. related to the
mechanical properties of both the root tissues and the soil medium,
the hydraulics of root growth, an explicit distinction in the growth
process of cell division and cell elongation, and the assumption of a
cylindrical root. Thus, a multidisciplinary approach with the synergy
of modeling, engineering and plant science will be required towards a

better understanding of the mechanical behavior of complex biological
systems.
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Fig. 7. (a) In each soil medium we evaluated the variation of the root length at the sixth day of life, by considering all the combinations of the values for the scaling parameter
𝛾 of the input power from the plant seed, exploited in the numerical solution (Table 1); (b) The dotted line represents the variation of the root length in the numerical solutions
of Figs. 5 and 6; (c) The linear fit of 𝛾 and different concentrations of Phytagel (R-squared: 0.97; y = a⋅x, a = 1.498 ⋅ 10−2 MPa mm3/s).

Fig. 8. Numerical solution of (a)–(c) the length and (d)–(f) the radius evolution against time (blue line). The red circles are the empirical data (mean values ±SD) in the case of
MS4 concentration at (a), (d) 0.3, (b), (e) 0.6, and (c), (f) 0.9% Phytagel concentration.
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Supplementary material 
The presented data and analyses were obtained by planting Zea mays L. roots in water on filter paper for 2 

days and in artificial soil medium in presence of mechanical and nutrient stimuli for further 3 days at 25°C. 

We used scanning electron microscopy (SEM) to measure the morphology of 2-days old roots (Figure S.3.1) 

and root hair distribution (Figure S.3.2). Artificial soils were prepared with different Phytagel 

concentrations (PC) and different nutrient concentrations were obtained using Murashige and Skoog Basal 

Salt Mixture (MS). The data collected in artificial soils include (1) growth measurements and statistical 

analysis due to the influence of increasing Phytagel concentration to increase the mechanical impedance 

during the growth (Table S.4.1 and Table S.4.2); (2) growth measurements and statistical analysis due to 

an excessive nutrient concentration into the growing medium (Table S.4.3, Table S.4.4, and Table S.4.5). 

In the latter case, images of longitudinal sections of the swelling of the root apical zone are provided (Figure 

S.3.3).   

S.1. Supplementary Methods 

S.1.1. Experiments design 

S.1.1.1. Planting  

Seeds of Zea mays L. were sterilized in 80% ethanol for 3 minutes and then two times in 50% bleach 

solution (15 minutes for each time). After five rinses in sterile Millipore water, the seeds were placed on 

sterile filter paper into a dark growth chamber (25 ºC) for the germination. After 2 days, roots of 1.5 cm 

length were selected, transplanted into the artificial soil has to be tested and placed into a growth chamber 

with a photoperiod of 15 h of light (25 ºC).  

S.1.1.2. Artificial soils – Physical and chemical stimuli  

In order to test the influence of the soil hardness and nutrient availability in the root morphology and growth 

kinetics, two types of experiments were carried out. In both the two cases, the plant samples were prepared 
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as described in the previous Subsection and were placed into a plastic cylinder tubes of 3 cm diameter, 

where previously were poured the artificial soil has to be tested. 

In the first experiment, different soil compactions were obtained modifying the concentration of gel used 

as artificial soil. Five artificial soils were prepared using 0.15, 0.3, 0.6, 0.9, and 1.2% of Phytagel 

concentration, respectively. Phytagel (Sigma, Co.) is a common gelling agent used in plant culture practice; 

since high transparency, it allows to easily check and visualize the roots during the entire experiment. The 

approach used was to prepare media with increasing concentration of gel but without nutrients. Preliminary 

experiments were carried out to test the different concentrations of the gel to obtain strong, homogeneous 

and repeatable growth media; in fact, a high quantity of the Phytagel produces suspensions to much viscous 

and, for our experimental protocol, it was not possible to obtain gels stronger than 2%. The final gels 

concentrations used for the experiments were the following: 0.15, 0.30, 0.60, 0.90 and 1.2%; gels higher 

than 1.2% were excluded because during the preparation we observed non-homogeneous distributions of 

the materials after cooling. 

To obtain a complete and precise indication of the mechanical strength values at various concentrations, 

we tested the gels by means of uniaxial unconfined compression test. This method is largely applied to test 

the stiffness of gels or emulsions in the food industry, but also in literature is used for the characterization 

of hydrogels and gels [1]. The Young modulus of each soil was measured by means of Instron 4464 

(1mm/min testing speed and 5 mm displacement). We registered a maximum value of strength 80.9 KPa 

(correspond to 1.2% Phytagel) and the final root length of seedlings grown in these media suggests like the 

root seems to be stimulated in elongation respect to the lower hardness. 

In the second experiment, the samples were placed into soils with different nutrients availabilities. 

According to the protocol described by Murashige and Skoog [2], four different nutrients concentrations of 

MS (Murashige and Skoog Basal Salt Mixture, Sigma, Co.) were prepared at ph 5.8: MS1, MS2, MS3, and 

MS4 with 0.215, 0.43, 0.86, and 1.72% MS concentration (w/v), respectively. The experiments were 

repeated for three different Phytagel concentrations: 0.3, 0.6, 0.9%. 

S.1.2. Microscopical analysis 

Plants were carefully removed from the plastic tubes and then observed with Hirox (Digital microscope -

KH7700). The total length of root, top diameter, apex diameter, and hairless area were measured. 

In order to deeply investigate the root morphology, some samples (N=5) were studied by means of SEM 

(Scanning electron microscopy, Helios NanoLab 600i, FEI). In this case, the samples were fixed in 70% 

ethanol and then were dried by using a critical point drying apparatus (Supercritical Autosamdri, 931.GL-

Tousimis). Dried samples were mounted on aluminum stubs and sputter coated with a 5 nm thick layer of 

gold (Leybold DC Sputtering, Sistec). 
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Moreover, longitudinal sections of root were analyzed by means of SEM and inverted optical microscope 

(Nikon Eclipse Ti). In this case, the terminal portion (10 mm) of some plant roots (N=15) were excised. 

The samples obtained were fixed in a solution of 4% Paraformaldehyde, dehydrated first through a graded 

series of ethanol (30%, 50%, 70%, 85%, 95%, and 100 %) and then through a graded series of xylene (25%, 

50%, 75%, and 100%). Later, the samples were included in paraffin and cut by means of a microtome 

(Sliding Microtome SM2010R, Leica). 

For SEM analysis, longitudinal sections with 10 μm thickness, was mounted on a special slide and then 

covered with gold (5nm) (Leybold DC Sputtering, Sistec). 

For inverted optical microscope (Nikon Eclipse Ti), a longitudinal section with 5 μm thickness was stained 

with 1% methylene blue for 5 minutes and then mounted with BioMount HM (Bio-Optica). The images of 

sections were obtained with a CCD camera (DS-5MC USB2, Nikon). 

S.2. Supplementary Data Analysis  

S.2.1. Gross root morphology and kinetics in water 

The morphology of two days old primary root of Zea mays L. has been studied by means of scanning 

electron microscopy (SEM). The root has a total length and a diameter at the base of the seed (called top 

diameter in the rest of this work, please refer to Figure S.3.2) of 16±5 mm and 1.25±0.07 mm, respectively. 

The samples, due to the drying process needed for SEM analysis, have shown a size reduction of 0.25% 

and 5%, respect to the physiological conditions, in length and top diameter, respectively. The plants grown 

in sterile Millipore water, show a root entirely covered by a dense network of hairs (13 μm diameter), except 

for the terminal part (apical part) that is instead completely hairless (called hairless area in the rest of this 

work, please refer to Figure S.3.2) (Figure S.3.1a-b). In 2-days old roots, the hairless area extends almost 

for 3 mm length (including meristematic and elongation region) and root diameter 3 mm above the tip 

(called apex diameter in the rest of this work, please refer to Figure S.3.2) is 1.11±0.04 mm. The growth 

kinetics has been monitored for 6 days age (we analyzed N=39, 27, 28, 30 samples at 3, 4, 5, and 6 days 

since germination, respectively). The total root length has shown a growth rate of 28.3 mm/day, the top 

diameter has been almost constant (1.26±0.08 mm), the hairless area has significantly increased until has 

covered the entire root length at 6-day age (no presence of root hairs); meanwhile the apex diameter has 

decreased of 26% respect to the value at 2-day age. 

S.2.2. Physical stimulus – Soil hardness 

The influence of soil hardness has been evaluated using the same artificial soil with five different Phytagel 

concentrations. Total length, top diameter, and apex diameter have been measured at 3, 4, 5, and 6 days 

since germination (Table S.4.1). A different growth rate has been observed increasing the soil hardness: 
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18.7, 21.8, 21.9, 22.9, and 23.4 mm/day have been found for 0.12, 0.3, 0.6, 0.9, and 1.2% Phytagel 

concentration, respectively. ANOVA analysis results are reported in Table S.4.2. 

S.2.3. Chemical stimulus – Nutrients availability 

The influence of nutrients availability has been evaluated using four different concentrations of MS medium 

dissolved in artificial soils. In this case, the soil hardness has been kept constant. In order to be sure that 

soil hardness does not influence the plant behavior, the experiment has been repeated for three different soil 

hardnesses (0.3, 0.6, and 0.9% Phytagel concentration). Measurements of length and top diameter were 

carried out at 3, 4, 5, and 6 days since germination. The growth rate and the root length and thickness are 

reported in Table S.4.3 and Table S.4.4. ANOVA analysis was used and reported in Table S.4.5. To 

investigate swelling of diameter in the apical zone of the primary root, longitudinal histological sections of 

root presenting this morphological feature have been carried out. This morphological feature has been found 

only in 5-6 days old plants growth in soil with a MS4 of nutrients concentration. This swelling has been 

observed at the height of the elongation zone and presents a diameter 17% thicker than mature region 

diameter (generally, the diameter in the elongation zone is 43% smaller than the diameter in the mature 

zone). In Figure S.3.3, a general swelling of the apex is evident due to a transverse and radial enlargement 

of cells in stele tissues. Also, an irregular cellular division in the cortex has been shown, respect to the 

isodiametric and ordered cells in the control plants (Figure S.3.3). 

S.3. Supplementary Figures  

 
Figure S.3.1: SEM images of 2 days old Z. mays root. a) Root structure. maz, mature zone; ez, elongation zone; tz, transitional 
zone; and mz, meristematic zone. The scale bar equals 1 mm. b) Root hairs, present in the mature zone. The scale bar equals 200µm. 
c) Root apex characterized by root cap and sloughing cells. The scale bar equals 200 µm. d-e) Enlargement of black boxes in (c). 
The scale bar equals 100 µm. 
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Figure S.3.2: Gross structure of shoot. len, root total length; td, top diameter; ad, apex diameter; and ha, hairless area.  

 

 
Figure S.3.3: Light microscopy images. Longitudinal sections of six days old maize root tips grown in air (control) and under high 
concentration of nutrients (MS4). The black rectangular frames in (a) and (b) indicate cortex tissue detail observed in (c) and (d), 
respectively. In (c) are visible the cortex cells that appear isodiametric and uniformly placed; differently, in the stressed roots (d), 
the cells are irregular. The arrows indicate the enlargement observed in stele tissues in plants under high concentrations of nutrients 
(b) and the normal development in control samples. CT = cortex tissue; ST = stele tissue. Bar = 200 μm. 
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S.4. Supplementary Tables  

  Day 

Soil Measurements 
(mm) 

3 4 5 6 

0.15% PC L 43.88±10.56 61.50±5.76 100.06±10.37 122.06±13.07 

Øseed 1.28±0.09 1.36±0.09 1.43±0.06 1.34±0.11 
Øapex 1.08±0.10 1.05±0.04 1.05±0.04 0.99±0.07 

N 8 8 16 16 

0.3% PC L 50.25±10.71 85.88±14.55 111.31±8.96 137.79±16.21 
Øseed 1.41±0.11 1.36±0.09 1.37±0.06 1.36±0.08 

Øapex 1.21±0.07 1.09±0.04 0.99±0.04 0.96±0.07 
N 8 8 16 19 

0.6% PC L 61.88±12.38 89.38±15.07 111.06±13.00 130.50±16.05 

Øseed 1.39±0.12 1.36±0.09 1.41±0.11 1.35±0.07 
Øapex 1.19±0.14 1.21±0.03 1.08±0.06 0.97±0.05 

N 8 8 17 18 

0.9% PC L 61.50±5.76 85.00±14.14 112.50±9.95 146.62±9.36 
Øseed 1.38±0.10 1.34±0.09 1.37±0.10 1.38±0.08 
Øapex 1.17±0.09 1.07±0.04 0.98±0.03 0.90±0.06 

N 8 8 14 13 
1.2% PC L 45.60±8.32 80.30±13.56 118.40±5.42 159.70±9.53 

Øseed 1.46±0.08 1.47±0.05 1.51±0.10 1.50±0.08 
Øapex 1.23±0.10 1.07±0.03 1.08±0.07 0.96±0.05 

N 10 10 10 10 
Table S.4.1: Length, top diameter, apex diameter (mean±SD) of the primary root, and the number of measurements, considering 
five different soil hardness corresponding to different Phytagel concentrations (PC).  

 

 

  ANOVA parameters 
Day Measurements dfTOT dfAMONG F p 

3 L 57 6 5.83 0.0001 

Øseed 57 6 5.13 0.0003 
Øapex 57 6 6.16 <<0.0001 

4 L 57 6 4.66 0.0008 

Øseed 57 6 4.78 0.0006 
Øapex 57 6 22.25 <<0.0001 

5 L 88 6 4.98 0.0002 

Øseed 88 6 3.83 0.002 
Øapex 88 6 47.85 0 

6 L 91 6 12.41 <<0.0001 
Øseed 91 6 7.62 <<0.0001 
Øapex 91 6 21.3 <<0.0001 

Table S.4.2: ANOVA analysis of root features gathered in Table S.4.1 (dfTOT, total group degrees of freedom; dfAMONG, among 
group degrees of freedom; F, F-test of Fisher; p, p-value). 
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 Group MS1 Group MS2 Group MS3 Group MS4 

Day L Ø L Ø L Ø L Ø 
0.3% PC 

3 28.9±9.4 1.5±0.1 30.0±3.3 1.4±0.1 30.0±1.4 1.6±0.0 16.0±6.9 1.2±0.1 

 N = 7 N = 4 N = 5 N = 8 
4 70.0±16.1 1.6±0.1 62.5±8.1 1.4±0.1 49.3±11.1 1.5±0.1 37.3±4.2 1.4±0.1 
 N = 7 N = 6 N = 8 N = 8 
5 84.6±13.0 1.5±0.1 87.5±10.4 1.4±0.1 64.4±14.2 1.4±0.1 39.1±5.5 1.4±0.1 
 N = 17 N = 16 N = 16 N = 17 
6 117.9±12.5 1.0±0.3 109.3±7.9 1.4±0.1 84.3±14.0 1.3±0.1 46.3±3.5 1.5±0.1 

 N = 7 N = 7 N = 7 N = 8 
0.6% PC 

3 40.4±11.0 1.5±0.1 46.9±5.9 1.4±0.1 40.8±3.8 1.5±0.1 26.2±6.6 1.6±0.1 
 N = 8 N = 8 N = 6 N = 8 
4 72.0±6.8 1.4±0.0 69.3±4.6 1.4±0.1 52.0±15.9 1.4±0.1 40.5±2.3 1.6±0.1 

 N = 8 N = 7 N = 6 N = 6 
5 97.9±9.0 1.4±0.1 93.0±6.0 1.4±0.1 84.0±4.9 1.4±0.1 42.9±9.5 1.5±0.1 
 N = 8 N = 8 N = 8 N = 7 

6 108.3±13.5 1.4±0.1 100.3±11.6 1.5±0.1 90.3±10.8 1.4±0.1 46.1±14.3 1.5±0.1 
 N = 16 N = 16 N = 16 N = 17 

0.9% PC 

3 46.4±4.6 1.4±0.1 44.4±5.4 1.5±0.1 43.1±6.1 1.4±0.1 25.8±5.0 1.5±0.1 
 N = 16 N = 14 N = 15 N = 16 

4 64.7±8.3 1.4±0.1 63.5±8.1 1.5±0.1 58.1±11.4 1.5±0.1 38.9±5.8 1.5±0.1 
 N = 15 N = 15 N = 16 N = 13 
5 97.9±4.6 1.4±0.1 92.7±6.5 1.4±0.1 72.7±9.3 1.4±0.1 50.4±3.9 1.4±0.1 

 N = 15 N = 15 N = 15 N = 15 
6 122.8±6.7 1.3±0.0 106.9±7.7 1.5±0.1 91.2±10.7 1.5±0.1 65.6±3.9 1.5±0.1 
 N = 8 N = 7 N = 6 N = 8 

Table S.4.3: Length and top diameter (mean±s.d. (mm)) considering four different nutrient concentrations (MS1, MS2, MS3, and 
MS4) and the corresponding measurements. The experiments were carried out for three different soil hardnesses (0.3, 0.6, and 
0.9% Phytagel concentration, PC).  

 

 Group MS1 Group MS2 Group MS3 Group MS4 
0.3% PC 17.4 16.7 13.0 7.8 

0.6% PC 18.0 17.3 15.0 8.5 
0.9% PC 18.9 17.3 14.8 10.2 

Table S.4.4: Growth rate (mm day-1) of roots in different soil hardnesses. (0.3, 0.6, and 0.9% Phytagel concentration) and nutrient 
concentrations (MS1, MS2, MS3, and MS4 nutrient concentration). PC is the Phytagel concentration.  
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 Day 3 Day 4 Day 5 Day 6 

 L Ø L Ø L Ø L Ø 

 0.3% PC 
dfTOT 23 23 28 28 65 65 28 28 

dfAMONG 3 3 3 3 3 3 3 3 
F 7.23 27.69 13.46 3.98 66.22 1.12 75.95 8.03 
p << 0.01 << 0.01 << 0.01 << 0.05 << 0.01 0.35 << 0.01 << 0.01 
 0.6% PC 

dfTOT 29 29 26 26 30 30 64 64 
dfAMONG 3 3 3 3 3 3 3 3 

F 10.74 3.01 19.33 5.4 79.97 9.58 80.47 0.36 
p << 0.01 < 0.05 << 0.01 < 0.01 << 0.01 << 0.01 << 0.01 0.78 
 0.9% PC 

dfTOT 60 60 58 58 59 59 28 28 
dfAMONG 3 3 3 3 3 3 3 3 

F 51.23 5.63 25.03 5.35 171.33 0.84 87.89 5.44 
p << 0.01 << 0.01 << 0.01 < 0.01 << 0.01 0.48 << 0.01 < 0.01 

Table S.4.5: ANOVA analysis of root features gathered in Table S.4.3 (dfTOT, total group degrees of freedom; dfAMONG, 
among group degrees of freedom; F, F-test of Fisher; p, p-value). PC is the Phytagel concentration.  

 
 
References 
[1] C. Yamamoto, Y. Sakata, T. Taji, T. Baba, S. Tanaka, Unique ethylene-regulated touch responses 

of arabidopsis thaliana roots to physical hardness, J. Plant Res. 121 (2008) 509–519. 
doi:10.1007/s10265-008-0178-4. 

[2] A. Pierret, C. Doussan, Y. Capowiez, F. Bastardie, L. Pagès, Root Functional Architecture: A 
Framework for Modeling the Interplay between Roots and Soil, Vadose Zo. J. 6 (2007) 269. 
doi:10.2136/vzj2006.0067. 

 


