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A B S T R A C T

In this work we describe two different models for interpreting and predicting Reflection Electron Energy Loss
(REEL) spectra and we present results of a study on metallic systems comparing their respective computational
cost and accuracy. These approaches are the Monte Carlo (MC) method and the Numerical Solution (NS) of the
Ambartsumian-Chandrasekhr equations. The former is based on a statistical algorithm to sample the electron
trajectories within the target material for describing the electron transport. The latter relies on the numerical
solution of the Ambartsumian-Chandrasekhar equations using the invariant embedding method. Both methods
receive the same input parameters to deal with the elastic and inelastic electron scattering. To test their cap-
ability of describing REEL experimental spectra, we use copper, silver, and gold as case studies. Our simulations
include both bulk and surface plasmon contributions to the energy loss spectrum by using the effective electron
energy loss functions and the relevant extensions to finite momenta. The agreement between MC and NS the-
oretical spectra with experimental data is remarkably good. Nevertheless, while we find that these approaches
are comparable in accuracy, the computational cost of NS is several orders of magnitude lower than the widely
used MC.

Inputs, routines and data are enclosed with this manuscript via the Mendeley database.

1. Introduction

Electron beam analysis is a widely used tool for materials char-
acterization [1] due to the ease of handling, detecting, bending, and
counting charges with high spatial and spectral resolution by electro-
magnetic fields. In particular, Reflection Electron Energy Loss (REEL)
spectroscopy enables one to evaluate both optical properties [2] and
chemical composition [3,4] by probing the material under investigation
via mono-energetic electron beams.

Specifically, after acceleration to the desired kinetic energy the
electron beam (primary beam) interacts with the specimen through
elastic and inelastic scattering processes. The fraction of primary elec-
trons elastically reflected from the target surface appears in the spec-
trum as a peak of high intensity with respect to the inelastic

background. Typically, the inelastic background structure emerges
from single-particle excitations, such as inter- and intra-band transi-
tions, inner-shell and Auger decay ionisation, and collective excitations,
such as phonon and plasmon oscillations. Additionally, primary and
secondary electrons, which are not trapped within the sample, emerge
with characteristic energies that are the fingerprint of the underlying
electronic structure of the solid.

Thus, the materials response to the interaction with external elec-
tromagnetic fields can be used to access information on a variety of
physical properties, particularly electronic and optical observables.
Notably, this information is entirely encoded in the dielectric function
of the material q W( , ), which generally depends on both transferred
momentum (q) and energy loss (W). With regard to charge transport
within a medium, the knowledge of this quantity allows one to calculate
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the electron inelastic mean free path (IMFP) via the Ritchie theory [5].
In the latter approach the IMFP depends on the energy-loss function
(ELF), which is defined by the inverse of the imaginary part of the di-
electric function. The ELF, which is only a property of the target ma-
terial, is thus a fundamental quantity directly related to the energy
deposited by charged particles [6–8]. Typically, the ELF can be com-
puted by using three different approaches [9,10]: i) from ab initio si-
mulations [11,12]; ii) semi-empirically [13], by using experimental
measurements of optical or electron energy loss spectra (EELS); iii)
from model calculations within the electron gas theory [14].

In practice, the accurate computation of the ELF over the whole
momentum dispersion, is still challenging for ab initio simulations due
to the high computational cost of including local field effects (LFE), and
exchange and correlation beyond the Random Phase Approximation
(RPA). The dielectric function can be obtained by using either many-
body perturbation theory (MBPT) [11,12] or time-dependent density
functional theory (TDDFT) [10,13,15].

In the semi-empirical Drude-Lorentz (DL) model [16,17], which will
be outlined below, the assessment of the ELF relies on experimental
data, which typically cover only a limited range of the target excitation
spectrum for vanishing momentum transfer (long wavelength limit of
the dielectric response). Basically, within this model the experimental
ELF at =q 0 is equalized to the analytical ELF obtained by using the
Lindhard dielectric function in plasmon-pole approximation [18]. The
extension to finite q, which accounts for the dispersion of the excitation
spectrum along the momentum axis, is finally obtained by imposing
typically a quadratic polynomial dependence on the transfer mo-
mentum modulus. This model works well for 3D metals, where the
Fermi electron-gas theory can be safely applied. In the case of semi-
infinite medium, such as a slab, one adds a linear dependence of the
plasmon frequency on momentum transfer to deal with the surface
plasmon dispersion [10]. A variant to the DL approach is the Penn
model [19], where the ELF is written as a convolution of the imaginary
part of the inverse Lindhard dielectric function with a spectral density
function determined from the experimental optical data.

Finally, a third approach is based on the use of the Mermin energy
loss function (MELF), which provides automatically the ELF at finite
transfer momenta starting from optical data through the analytic
properties of the Mermin dielectric function [20] without the need to
make a choice on a particular dispersion relation. This is a fundamental
difference with the previous cases.

In this respect, we notice that the major shortcomings of the DL and
MELF methods are represented by the use of i) experimental optical
data, often showing substantial discrepancies among different data sets;
ii) the RPA to the electron gas theory to treat the electron-electron in-
teraction; iii) the first Born approximation, which neglects exchange
effects and is strictly valid only at high energies or for small scattering
potential. The latter are all sources of error in the assessment of the ELF
via the DL and MELF models, which must be carefully evaluated. At
variance, the ab initio approaches, while computationally more ex-
pensive than the DL and MELF semi-empirical methods, can in principle
deliver the most accurate results concerning the ELF [13].

In this work, in particular, we present two different computational
methods for simulating REEL spectra: i) the Monte Carlo (MC) approach
[21,22], and ii) the numerical solution (NS) of the Ambartsumian-
Chandrasekhar (AC) equations using the Invariant Embedding Method
(IEM) [23]. These methods are applied to the simulation of the REEL
spectra of three metals: copper, silver and gold. In order to compare the
accuracy of these approaches, tests were performed by using the same
input data with respect to elastic and inelastic interactions. In parti-
cular, we take into account both bulk and surface plasmons, for the
latter by means of an effective dielectric function of the materials.
Elastic interactions are assessed via the Mott theory [24], while energy
losses due to inelastic scattering events are modelled via the Ritchie
dielectric formalism [25].

Calculated data of elastic and inelastic cross sections, mean free

paths, and cumulative probabilities [26] along with the computer codes
and routines used to perform these simulations [27–29] have been
made freely available in the Mendeley open access database.

2. Computational methods

2.1. Monte Carlo approach

In MC simulations, we assume that a mono-energetic electron beam
impinges orthogonal to a target surface. The scattering centers within
the material dissipate the primary electron beam via elastic and in-
elastic interactions. Within the MC approach one follows the trajec-
tories of electrons during their entire way inside and outside the solid
target, where they can be collected and recorded as a function of kinetic
energy and/or emission angle. The electron path is typically described
by an exponential law, so that the step length ( s) between two sub-
sequent collisions is given by:

=s rln( ),tot (1)

where = +(1/ 1/ )tot el inel
1 is the total mean free path, and r is a

random number uniformly distributed in the range 0 to 1. Otherwise
specified, by r we mean a different random number for each relevant
sampling.

The MC procedure applied to electron transport within the solid
proceeds then in the following way: the probability to undergo inelastic
collisions, given by =p /inel tot inel, is compared with r. Should the
condition <r pinel be satisfied then the collision is classified as inelastic,
otherwise is elastic. Upon inelastic events the electrons lose their ki-
netic energies according to the cumulative probability distribution:

=E W d
dW

dWP , ,
W

inel inel 0
inel

1

(2)

which is a function of the kinetic energy E and of the energy loss W. W
is determined by generating a second uniformly-distributed random
number r in the range 0 to 1, and by finding the value of Pinel that
equalizes r. The determination of the directional change of the electron
trajectories upon inelastic collisions will be discussed below.

At variance, elastically scattered electrons undergo only directional
change, which can be obtained by using the following elastic cumula-
tive probability:

=E d
d

dP , 2 sin ,el el 0
el

1

(3)

which is determined for a given kinetic energy E by varying the scat-
tering angle in the range [0, ¯]. The angular deflection of the trajec-
tory is assessed by generating a third random number r, and by finding
the value of the upper extreme of integration in Eq. (3) that equalizes
r. After a series of elastic and inelastic interactions, the electron can
reach the target surface and can be released provided that the emission
condition is fulfilled. This emission condition reflects the fact that the
target-vacuum interface represents by all means an energy barrier that
the electron has to overcome at the interface, and reads:

Ecos ,2 (4)

where is the incident angle formed by the electron direction of motion
inside the target material with respect to the surface normal, E is the
electron kinetic energy, and is the electron affinity or work function
of the metals. To determine the secondary electron emission spectral
features one needs to set the latter quantity for the materials under
investigation. The values = 5.4 eV for copper (the experimental value
is equal to 4.6 eV [30]), = 4.4 eV for silver (experimental value is
4.4 eV [30]), and = 4.7 eV for gold (experimental value is 5.3 eV
[30]) were set so to obtain the best agreement between MC simulations
and the secondary electron experimental data of the metals [16].
However, as we are interested in simulating high-energy REEL spectra
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(1 keV) we do not assess here the secondary electron emission.
A detailed description of how these scattering quantities are com-

puted will be presented in the Sections 4.1 and 4.2, while further details
on our MC approach can be found in Refs. [31,21]. The ensemble of
trajectories used in MC simulations of REEL spectra is assessed so to
reach statistical significance and low noise of the simulated data
( 109).

2.2. Numerical solution (NS)

The NS approach is based on the invariant embedding method de-
veloped by Ambartsumian and Chandrasekhar for radiative transfer
[32]. This method can be also applied to a system of non-linear equa-
tions to find the solution of the boundary problem for the electron
transfer [33]. First, we introduce for the sake of clearness the para-
meters that are needed in the description of this method.

The initial incident polar angle with respect to the surface normal is
indicated by 0, while the emission polar angle is named (see Fig. 1 for
a REELS typical experimental layout). The cosine of the incident angle
is designated =µ cos( )0 0 , while the cosine of the emission angle is
labelled =µ cos( ). The azimuthal angle is denoted by . The transfer
equation for the flux density N z W( , , ) of electrons travelling at depth
z in the direction = µ( , ) with energy =E E W0 can be written as
follows [34]:

= +

+ +

+

µ N z W N z W

N z x E W d

N z W x E W d

, , , ,

, , ,

, , , ,

z

W

1

1
0 inel 0

1
0

2
1

1
el 0

tot

inel

el

(5)

with the following boundary conditions:

=

=

N N W µ

N d µ

(0, 0, ) ( ) ( ) if 0 1,

( , 0, ) 0 if 1 0,
0 0

(6)

where E0 is the incident energy, = µ( , 0)0 0 is the initial direction, d is
the layer thickness, x inel is the normalized probability distribution of the
energy loss in a single inelastic event (also referred to as normalized
differential inverse inelastic mean free path (NDIIMFP)):

=x E W d E W
dW

, ( , )
inel

inel
1

inel
(7)

which satisfies the normalization condition:

=x E W dW( , ) 1.
E

0 inel (8)

In Eq. (5) x E( , )el is the normalized differential elastic scat-
tering cross section (DECS) [35]. DECS must fulfill the following nor-
malization condition:

=x E d, 2 .
0

2

1

1
el

(9)

Eq. (5) is solved within the one-speed approximation, so all the cross
sections are fixed at the initial energy of the electron and do not change
while it slows down. This means that E in the NDIIMFP and DECS is
replaced by E0. Hereafter, we drop the explicit dependence on the E0
variable of the cross sections for simplicity.

For the interpretation of REELS experiments one needs to estimate
the reflected electron flux, described by the so-called reflection function
R E W( , , , , )0 0 as the ratio of the outgoing electron flux to the in-
coming one. Here and after the normalized depth = z/ tot is used. The
reflection function within the Partial Intensity Approach (PIA) [36,34]
can be written as follows:

=
=

R E W R E x W( , , , , ) ( , , , ) ( )
k

k
k

0 0
0

0 0 inel
(10)

where the x W( )k
inel is the k-fold self-convolution of the NDIIMFP or the

energy loss spectrum after k successive inelastic scattering events:

=x W x W x d( ) ( ) ( ) ,k W k
inel 0 inel inel

1
(11)

In Eq. (11) =x E W W( , ) ( )inel
0

0 is the Dirac function, and
=x E W x E W( , ) ( , )inel

1
0 inel 0 is the normalized probability distribution of

the energy loss in a single inelastic event (Eq. (8)). By using µ and to
define the electron direction, R E µ µ( , , , , )k 0 0 can be rewritten most
conveniently by expanding in azimuthal harmonics identified by the
azimuthal index m:

=
=

R E µ µ R E µ µ m( , , , , ) 2 ( , , , )cos ,k
m

m k
m

0 0
0

0 0 0
(12)

where mm is the Kronecker symbol.
The partial intensities R E µ µ( , , , )k

m
0 0 can be found by using the

invariant embedding method (IEM) [23,33], which involves the fol-
lowing steps:

1. add a layer to the bulk, which is thin enough to allow only one
scattering event;

2. consider single scattering processes in that layer, which contribute
to the change of the reflection function of the system;

3. find a solution for Rk
m of the obtained system of equations.

Following these steps the partial intensity coefficients R E µ µ( , , , )k
m

0 0
can be obtained as follows [23,33]:

+ + = + + + +

+ + +

+ +

+ +

=

( )

( )

R R x R x x R R x R

R x R R x R

R

(1 )

(1 ) ,

k
m

µ µ k
m

k
m

k
m m

k
m

k k
m m

j

k

k j
m

j
m

µ µ k
m

1
0

1
el el el 0 el

0 el 0
1

1

el

1
0

1
1

(13)

where = +/( )el el inel is the single scattering albedo. By writing
=R R E µ µ( , , , )k

m
k
m

0 0 we dropped the variable dependence to simplify
the notation and the convolution operator is defined as follows:

 e - Source

 e - Detector

θ
θ0

ϕ

y

x

z

Fig. 1. Experimental layout of a typical REELS experiment.
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=F F F µ µ F µ µ dµ
µ

( , )· ( , ) .1 2 0

1
1 0 2 (14)

The ‘+’ and ‘−’ superscripts appearing in the DECS in Eq. (13)
refers to the sign of the cosine of the polar angle:

= =
= ± =

+x µ µ x µ µ µ µ
x µ µ x µ µ µ µ

( , ) ( , ), sign( · ) 1,
( , ) ( , ), sign( · ) 1.
el 0 el 0 0

el 0 el 0 0 (15)

Here the ‘−’ index is applied when the flux is backscattered, while the
‘+’ sign is used if the flux direction is not reversed. Eq. (13) implies the
following boundary conditions:

= =<R E µ µ R(0, , , ) 0, 0.k
m

k
m

0 0 0 (16)

Eq. (13) can be solved by discretizing the angular domain using e.g. the
Gaussian quadrature points and weights. Within this approach, we thus
finally obtain differential matrix equations that can be solved by using
either the backward differentiation formula (BDF) or the matrix ex-
ponential formalism [33]. The latter numerical method is based on the
discrete ordinate formalism, which reduces the Ambartsumian-Chan-
drasekhar equations to the algebraic Riccati and Lyapunov equations
[23].

Further details on the numerical calculations using this method can
be found in Refs. [37,23,33]. The ESCal software based on the MATLAB
platform was used to calculate energy loss spectra by the NS method
has been made available through the Mendeley database [28].

3. Logical flow of the calculations

To simulate REEL spectra with the MC and NS methods, a database

reporting information on elastic and inelastic scattering has to be in-
putted to the programs. In Fig. 2 the computing steps necessary to si-
mulate the energy loss spectra are summarized for both approaches.
This scheme refers to equations and calculations that will be presented
in the following sections.

Elastic scattering: As a first step, the differential elastic scattering
cross section d d/el is calculated for different values of the scattering
angle using the following Eq. (17). These values represent the input
information necessary to perform NS simulations of elastic scattering
events. To produce the input data used in the MC approach, the dif-
ferential elastic scattering cross section is integrated over the possible
elastic scattering angles to obtain the total elastic scattering cross sec-
tion el (see Eq. (18)). Then, the elastic cumulative distribution prob-
ability is evaluated for the full range of possible scattering angles (Eq.
(3)). This latter set of data are provided as input information to the MC
code suite for calculating the REEL spectrum. The whole calculation
concerning the elastic scattering is realized by running the MATLAB
code Elastic_calculation.m in the ESCcal environment. The code is made
publicly available through the Mendeley database [29].

Inelastic scattering: The description of the inelastic scattering is ac-
complished by evaluating and fitting the ELF in the optical limit (Eq.
(21)). The ELF is extended outside the optical limit using dispersion
laws as by Eqs. (25)–(27). To obtain the dataset required by the NS
approach, the differential inverse inelastic mean free path d dW/inel is
calculated for different energy loss (W) values (Eq. (22)). Moreover, the
total inelastic mean free path inel is obtained by integrating over the
range of possible energy losses (Eq. (23)). Finally, by using Eq. (2) the
cumulative inelastic scattering distribution is assessed and used as input
to the MC routine. The inelastic scattering datasets are obtained by

Fig. 2. Sketch of the logical flow of REEL spectra simulations.
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running the Inelastic_calculation.cpp program, which is provided also via
the Mendeley database [27].

By providing the relevant information on scattering processes in
terms of their probability of occurrence (cross sections) as well as the
macroscopic properties of the investigated target (density, atomic mass,
atomic number and work function) to the MC and NS code suites, the
REEL spectra can be computed. A detailed description of the calculation
of input data and relative formula is provided in the following sections.

4. Calculation of input data

In the following sections we will provide all the details necessary to
calculate the elastic and inelastic cross sections, which are assessed by
using the Mott [24,38–41] and the dielectric theory [5,25], respec-
tively.

4.1. Elastic scattering

To simulate the elastic collisions, we solve according to the Mott
approach [24] the Dirac equation in a central field using the partial
wave expansion. In particular, for the materials under investigation in
this work, the calculation of the elastic scattering cross section was
performed using the analytic formulation of the atomic potential pro-
posed by Salvat [35,42]. The differential elastic scattering cross section
(DESCS) is computed as:

= +d
d

f g( ) ( ) ,el
2 2

(17)

where f and g are the scattering amplitudes, which describe the
asymptotic behaviour of the spherical component of the scattering
wave function. The DESCSs for copper, silver, and gold calculated by
using Eq. (17) are reported in Fig. 3 as a function of the scattering angle
for a beam kinetic energy of 1000 eV.
The total elastic scattering cross section (ESCS) is assessed by in-

tegrating the DESCS over the solid angle:

= =d
d

d d
d

d2 sin .el
el

0
el

(18)

Moreover, the elastic mean free path (EMFP), which is used in both MC
and NS simulations, can be computed from Eq. (18):

=
N

1 ,el
el (19)

where N is the atomic density.
Finally, the cumulative elastic probability distribution Pel is obtained

by using Eq. (3). The latter are plotted for the three materials under
investigation in Fig. 4 for =E 1000 eV.

Pel is used in the MC simulations for determining the change in the
direction of the beam electrons due to elastic collisions. The trajectory
angular deflection is assessed by generating a random number r (uni-
formly distributed between 0 and 1), and by finding the value of the
upper extreme of integration in Eq. (3) that equalizes r.

4.2. Inelastic scattering

Electron-electron interactions produce energy loss in the primary
electron beam. This loss can be assessed by evaluating the dielectric
function q W( , ) of the target material as a function of the transferred
momentum q and energy W. Within the dielectric theory developed by
Ritchie [25], the key ingredient is the ELF, which is defined as the
negative reciprocal of the imaginary part of the dielectric function:

=
q W

ELF Im 1
( , )

.
(20)

We notice that our system is modeled as a homogeneous and isotropic
sample, thus we drop the angular dependence of the momentum
transfer of the dielectric function, and we consider only its modulus.

In the optical limit (q 0), the ELF can be fitted by a sum of DL
oscillators as follows [5]:

=
=

+q W
A W

E W W
Im 1

( 0, ) ( )
,

n

n n

n n
2 2 2 2 2 (21)

where An is the excitation strength of the n-th oscillator, n the damping
constant, and En the excitation energy.

The optical ELF is then extended to finite transferred momentum by
applying dispersion laws [14] according to the presence of bulk or
surface plasmon excitation as outlined further below.

Moreover, from the ELF, the DIIMFP can be computed as:

=
+d

dW Ea
dq
q q W

1 Im 1
( , )

,
q

qinel
1

0 (22)

where a0 is the Bohr radius and E the electron kinetic energy. The limits
of integration in Eq. (22) are set to = ±±q mE m E W2 2 ( ) from
momentum conservation, while the angular deviation upon inelastic
scattering in MC simulations is computed according to the classical
binary collision theory, which gives = W Esin ( ) /2 . Nevertheless, we
notice that the angular pattern of inelastic collisions can also be re-
trieved by using the momentum-dispersed dielectric function. We re-
mind that the differential inelastic mean free path (DIIMFP) associated
with the electron motion within the bulk can be calculated according to
the Chen-Kwei theory [43,44] equivalently in terms of the momentum
transfer or of the polar scattering angle . In particular, the inelastic
collision angular range can be derived from the asymptotic behaviour
of the energy loss dispersion law, which is parabolic for high mo-
mentum transfer [45], and is found to be [0, ]max , where

= E/max . Then, we performed the REEL spectra simulations of Al
using our Monte Carlo approach by imposing the two extreme values of
the scattering angles to the electrons undergoing inelastic collision

= 0 rad and = max. The results are reported in Fig. 5 showing that
there is no appreciable difference by considering the maximum scat-
tering angle derived by the momentum transfer-energy loss dispersion
and the minimum value 0 rad (overlapping black and blue continuous
curves in Fig. 5). On the other hand, the value of the scattering angle
that one obtains from the classical binary approach in the small angle

Fig. 3. DESCSs of a) Cu, b) Ag, and c) Au as a function of the scattering angle. The kinetic energy of the primary beam is set to 1000 eV.
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approximation must be of course within the range [0, ]max . Thus,
modeling the scattering angle by using the binary collision theory can
be considered safe with respect to the interpretation of the REEL
spectra. This makes the MC approach robust with respect to changes in
the model used to describe the angular deflection upon inelastic scat-
tering.

Finally, the total IMFP can be obtained by integrating the DIIMFP in
the energy loss interval:

= d
dW

dW .
W

inel
1

0
inel

1max

(23)

The upper and lower integration limits are, conventionally, fixed to the
energy gap Eg ( =E 0g in metallic samples) and one half of the initial
kinetic energy E plus the energy band gap Eg, respectively.
Additionally, the application of Pauli’s exclusion principle leads to that

energy transferred by an electron of energy E cannot exceed E E[ ]f ,
where Ef is the Fermi energy for the metals. These two constraints set
the upper bound to energy transfer in inelastic collision events to

= +W E E E Emin[( )/2, ]max g f .
In principle, exchange-correlation effects play an important role in

modeling charge transport in solids, as they lead to a variety of inelastic
phenomena, such as the polaron-electron interaction. A rigorous
treatment within the dielectric formalism of these many-body effects
can be achieved by calculating the energy loss function from ab initio
simulations, notably using many-body perturbation theory (GW) or
time-dependent density functional theory (TDDFT) [46,47]. These
methods are available at the expense of high computational cost. While
using these ab initio approaches is out of the scope of the present work,
we remind that here the calculation of the IMFP is based on the di-
electric function measured in the optical limit ( =q 0); these experi-
mental data do inherently include exchange-correlation effects.
Nevertheless, the inclusion of exchange-correlation effects beyond
mean-field is missing at finite momentum transfer, where we extend the
optical dielectric function via the DL model. We argue that these effects
should have a small impact on the REEL spectra at the energies we deal
with in this work ( 1 keV). To ground this statement on more quan-
titative basis we decided to perform the IMFP simulations by including
the exchange corrections via the Born-Ochkur model [9] using the full
RPA dispersion with both quadratic (see Eq. (26)) and linear (see Eq.
(27)) terms. Within this approximation, exchange effects are modelled
as follows:

=f k q
mv

q
mv

( ) ,exc

4 2

(24)

where m and v are the electron mass and velocity, respectively. The
factor [1+fexc] multiplies the integrand of Eq. (22) in the assessment of
the DIIMFP. In Fig. 6 we plot the IMFPs for Cu, Ag, and Au by (dashed
curves) and by not (continuous curves) including the exchange and
correlation corrections for different dispersion laws to finite momenta
(see Sections 4.2.1 and 4.2.2). We notice that the differences are not
significant, particularly when the energies are higher than ~ 100 eV,

Fig. 4. Cumulative elastic probability distributions of Cu (a), Ag (b) and Au (c) as a function of the scattering angle. The kinetic energy of the primary beam is set to
1000 eV.

Fig. 5. Monte Carlo simulations of the Al REEL spectra for different inelastic
scattering angles.

Fig. 6. IMFPs of a) Cu, b) Ag, and c) Au with (dashed curves) and without (continuous curves) the Born-Ochkur electron exchange corrections in comparison to
simulations by Tanuma et al. [48] (blue curve). The IMFPs are calculated using respectively the bulk ELFs at high q-limit (black curves, see Eq. (26)), the full 3D bulk
ELF (red curves, RPA, see Eq. (25)), and the effective ELF with the bulk-surface extension to finite momenta (green curves, BS, see Eq. (27)). Abscissa and ordinate are
reported in log-log scale to amplify the difference among the different treatments of the q-dispersion.
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considering that the figures are plotted in log-log scale. Thus, the REEL
spectra have been eventually simulated without including this ex-
change correction.

Furthermore, we notice that in a previous work [13] we carried out
the calculation of the frequency and momentum dependent dielectric
response of diamond and graphite in two ways: a full ab initio ap-
proach, in which we carry out time-dependent density functional si-
mulations in linear response for different momentum transfer vectors,
and a semi-empirical extended DL model. Ab initio calculated dielectric
functions of these two carbon-based materials lead to a better agree-
ment with experimental data of REEL spectra, inelastic mean free path,
and stopping power, more significantly in the low energy regime
(< 100 eV) with respect to the widely used DL model.

Nevertheless, while these discrepancies are particularly evident for
insulators and semiconductors beyond the optical limit (q 0), where
single particle excitations and excitonic effects become relevant, less
dramatic effect on the accuracy of MC simulations was found for semi-
metals, such a graphite. Indeed, metallic system are more effective in
screening excitons and charges than semiconductors. Here we deal with
all metallic systems, thus it is not surprising that exchange effects do
not play a paramount role in the interpretation of the REEL spectra,
particularly at high energy ( 1 keV), where the inelastic features are
independent of these effects to all extents and purposes.

We applied this scheme for interpreting the REEL spectra of Cu, Ag
and Au. First, we evaluate the ELFs describing only bulk plasmon ex-
citations. Second, the effective ELFs to account for both surface and
bulk plasmons are presented.

4.2.1. Bulk ELF
The bulk ELFs in the optical limit were obtained by using the best-fit

parameters provided by Denton et al. [49] and C.C. Montanari et al.
[50] for Au and Cu, while in the case of Ag the ELF was obtained by best
fitting the optical data from Smith et al. [51]. ELFs of these metals are
represented in Fig. 7).

The fit parameters are reported in Table 1.
We performed a check to test that our ELFs satisfy the f-sum rule, for

which the integral of the ELF multiplied by the energy loss must sum up
to an effective number of electrons per atom. Moreover, we have tested
the accuracy of our bulk optical data by using also the perfect-screening
sum-rule (ps-sum or ), which should reach unity for energy going to
infinity. To calculate the integrals above E 72.4max eV we used the
optical data reported in Ref. [52]. We notice that our results are in good
agreement with those presented by Tanuma et al. [53] and within the
error bars there reported. In Fig. 8 we plot the Zeff (left panel) for the
ELFs of Cu, Ag, and Au, while in the right panel we report the Peff . The
Z P,eff eff limiting values are also reported in Table 2.

The use of the optical ELF from experimental measurements is jus-
tified simply on empirical grounds, by comparing “a posteriori” our
simulations with the experimental data. Nevertheless, to ground this
observation on more firm quantitative basis we demonstrate that the
discrepancies obtained by using different dispersion laws are not

significant with respect to the assessment of the IMFPs in the energy
range considered in this work ( 1000 eV modulo the plasmon energy).
Indeed, the kinetic energy of the primary beam lies well above the
valence excitation of the metallic systems (a few eV). The most general
dispersion law derived within the RPA of the 3D electron gas to extend
the experimental optical data ( =q 0) to finite momentum transfer for
bulk plasmons is the following [14]

= + +q
m

q
m4

,np
2 2 2 2

2 2 4 4

2 (25)

where = E6 /5f (Ef is the Fermi energy of the material), np is the
plasmon n-peak energy, and m is the electron mass. We notice that this
expression asymptotically approaches the parabolic single-particle dis-
persion, as well as the limit value q( 0) np for negligible mo-
mentum transfer. At high momentum transfer, in particular, one ob-
tains

= + q
m2

.np
2 2

(26)

Moreover, for intermediate q, one cannot neglect the quadratic term in
the dispersion law for bulk plasmons Eq. (25).

To determine quantitatively the impact of different dispersion laws
on the IMFP, in Fig. 6 we report this quantity for all metals under in-
vestigation using on the one hand the full (RPA, see Eq. (25)) and on the
other hand the asymptotic (high q-limit, see Eq. (26)) dispersion models
of the bulk ELF with (dashed line) and without (continuous line) ex-
change corrections. We notice again that the figures are in log-log scale
to enhance the differences between the two dispersion models. These
findings demonstrate that the impact on the IMFP of different disper-
sion laws for infinite 3D media, particularly in our energy range of
1 keV, is not significant. This evidence was already found previously
(see Ref. [45]). In that case a comparison between Monte Carlo REEL
spectra calculated, taking either the quadratic or quartic dispersion
laws, did not find relevant differences in both relative intensities and
peak energy positions of both bulk and surface plasmons between these
two limiting cases.

Additionally, by using the dispersion law for the transferred mo-
mentum of Eq. (25), DIIMFPs are calculated as by Eq. (22), which can
be integrated to obtain the IMFPs of Cu, Ag, and Au.

4.2.2. Effective ELF for including surface plasmons
An extension of the previous approach is represented by the inclu-

sion of surface plasmons in the description of the dielectric properties
and, thus, in the interpretation of REEL spectra. In general, the inclu-
sion of surface scattering is crucial to obtain an accurate evaluation of
the number of electrons emerging out of the solid and, thus, is of
paramount importance in the study of secondary electron generation
[16]. The effective ELF allows us to treat equally bulk and surface in-
elastic scattering events leading to energy loss, including effectively the
surface plasmons in the description of REEL spectra. Compared to the
bulk ELFs derived by electron transmission measurements, this

Fig. 7. Bulk energy loss functions of a) Cu, b) Ag, and c) Au in the optical limit (q 0) obtained using Eq. (21). These ELFs were obtained by best-fitting the optical
data reported in [51] for Ag, while we used the parameters from [50,49] for Cu and Au, respectively.
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approach lumps together the information on bulk and surface (and
interface) excitation within an effective ELF.

The effective ELFs of Cu, Ag and Au were obtained by Nagatomi
et al. [54] from experimental REEL spectra by applying the extended
Landau theory [55]. In particular, we have fitted this effective optical
ELF by using Eq. (21). This generalizes the DL procedure used pre-
viously to include surface plasmons. The best-fit parameters and the
ELFs are reported respectively in Table 3 and Fig. 9.

Additionally, the use of the effective ELF to include surface collec-
tive excitation leads to a dispersion law different from the bulk (see Eqs.
(25) and (26)), which reads [14]:

= + + +q q
m

q
m4

,np
2 2 2 2 2

2 2 4 4

2 (27)

where = E m3 /(5 )f p and = ne m4 /p
2 is the bulk plasmon

nominal energy (e is the electron charge).
The presence of a quasi 2D slab on top of the semi-infinite bulk

results in the addition of a linear term in the momentum transfer dis-
persion law Eq. (27). We also performed the calculation of the IMFP for
all metals under investigation by using this bulk-planar surface model
(BS) and the results are plotted in Fig. 6. Again the seemingly different
behaviour is due to the use of the log-log scale in the plot, which en-
hances intentionally the discrepancies, otherwise negligible above
1 keV. Furthermore, by applying the dispersion law for finite trans-
ferred momenta (Eq. (27)), we assessed the DIIMFP as by Eq. (22) using
the effective ELFs. The DIIMFPs for Cu, Ag and Au are reported re-
spectively in Fig. 10) for an initial kinetic energy of the beam equal to
1000 eV. By integrating the DIIMFs over the possible energy losses (Eq.
(23)) the IIMFP is obtained (see Fig. 6).

Moreover, the cumulative inelastic probabilities were calculated as
reported in Eq. (2). E WP ( , )inel , along with the IMFP, are used as input
data in the MC simulations of the REEL spectra for the three materials
under investigation.

Finally, to determine quantitatively the impact of the different
dispersion laws that characterize the 3D bulk and the bulk-planar sur-
face, we also report in the following sections the REEL spectra using
both the bulk and the effective ELFs in MC and NS approaches,

respectively, along with their relevant dispersion laws. Furthermore, we
discuss more extensively the impact of bulk and surface contributions
on REEL spectra by reporting simulations of Al, where the bulk and
surface plasmon peaks are well resolved in energy.

We stress that also the NS method requires the knowledge of the
DIIMFP and of the IMFP to compute the REEL spectra.

5. Results and discussion

MC and NS calculations were performed by fixing the primary
electron beam kinetic energy =E 10000 eV for all the different targets
(Cu, Ag and Au). In our simulations we assumed normal incidence of
the primary beam and collected all the electrons emitted from the
surface. Thus, our spectra are integrated between 0° to 90° with respect
to the normal to the surface and all over the azimuth angle. In MC
simulations we used 109 trajectories, in order to have a reliable sta-
tistics for calculating the REEL spectra. While our MC approach is of
course able to track the electrons within the solid down to their ulti-
mate cut off energy (the electron affinity , see Ref. [16]), here we do
not calculate secondary electron spectra and the simulated REEL
spectra energy range ( 1 keV) is well above this cut off. Thus, the
energy cut-off to simulate the REEL spectra was set to 900 eV, down
from the elastic peak at 1 keV.

In the NS approach K is the number of inelastic scattering events

Table 1
Fit parameters of Eq. (21) obtained for bulk ELFs. The best-fit parameters of Cu were provided by C.C. Montanari et al. [50], while for Au were given by C.D. Denton
et al. [49]. In the case of Ag the parameters were obtained by best-fitting the optical measurements by Smith et al. [51].

Cu Ag Au

n En (eV) n (eV) An (eV2) n En (eV) n (eV) An (eV2) n En (eV) n (eV) An (eV2)

1 4.08 1.09 0.33 1 7.89 3.37 12.80 1 9.52 14.97 18.49
2 10.07 5.99 22.10 2 38.20 42.93 1109.46 2 15.92 6.26 25.85
3 19.05 8.16 88.91 3 59.58 29.93 480.38 3 25.58 2.18 11.12
4 27.21 8.16 112.54 4 73.81 20.12 300.6 4 38.09 26.67 973.52
5 78.91 152.38 2216.74 5 85.70 27.70 226.83 5 64.49 30.48 507.39

6 99.32 19.05 88.88
7 402.71 612.23 337.32

Fig. 8. Plot of Zeff (left panel) and Peff (right panel) versus Eeff (transferred energy) for Al, Cu, and Ag.

Table 2
Z P,eff eff limiting values of Cu, Ag, and Au represented in Fig. (8).

E (eV) Cu Ag Au

Zeff Peff Zeff Peff Zeff Peff

1 5.52e−05 0.017 9.24e−05 0.020 1.29e−04 0.028
10 0.09 0.275 0.17 0.336 0.1 0.272

108.5 7.28 0.950 18.63 1.156 16.65 1.121
1012 19.68 0.987 36.04 1.167 44.17 1.146
9886.4 27.07 0.987 48.46 1.167 70.74 1.147
29779 28.23 0.987 49.44 1.167 75.94 1.147
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that the electrons undergo before being considered at rest. A value of
=K 25 is large enough to ensure this. In this respect in Fig. 12 we

report the REEL spectra deconvoluted for the number of inelastic col-
lisions that electrons undergo in their way out of the solid. One can see
that for a number of inelastic collisions =K 5 the REEL spectra of Cu,
Ag and Au are already indistinguishable from those having inelastically
scattered more than 25 times ( =K 25). Thus the results must be con-
sidered safely at convergence for that large value.

The sample characteristic parameters used in the calculations are
summarized in Table 4.

5.1. Bulk ELF: REEL spectra

The REEL spectra simulated by the MC and NS approaches using the
bulk ELFs are reported in Fig. 11a)–c) for Cu, Ag and Au, respectively.
The spectra are also compared to the simulations carried out by Na-
gatomi et al. [54] (violet curve) and to the NS approach (cyan curve).
Our REEL spectra are obtained by using the full bulk ELF (green curve,
see Eq. (25)) and its quadratic approximation (black curve, see Eq. (26))
at high momenta.

We notice that the agreement between our simulated spectra and
those calculated spectra by Nagatomi [54] is rather satisfactory, as well
as the agreement obtained by using the two different numerical ap-
proaches. This means that, for a given set of input data, the accuracy of
MC and NS can be considered comparable for all intents and purposes.

In Fig. 12 we report the REEL spectra deconvoluted for the number
of inelastic interactions that electrons at most undergo in their way out
of the solid. We conclude that the main plasmon peak in the relevant
REEL spectra is due to electrons inelastically scattered only once. At
variance, electrons experiencing more than one inelastic collision
contribute to the REEL intensity at energies beyond the main plasmon
peak, leading to the so-called multiple plasmon excitations. Further-
more, we notice the good agreement between the spectral behavior

(resolved for the number of inelastic collisions) obtained using the two
different methods also in this case.

5.2. Effective ELF

Adopting an effective description of the ELFs to include surface
plasmon contributions, we calculated the REELs spectra of Cu, Ag and
Au by using both the MC and NS approaches. Our simulations are
compared with the relevant experimental data [54] in Fig. 13. We
notice that the use of effective ELFs, including the contribution of both
surface and bulk plasmons, leads to theoretical spectral lineshapes in
good agreement with REEL measurements. To carry out these simula-
tions we used the effective ELF with the dispersion law of Eq. (27) (BS,
green curve) and of Eq. (25) (RPA, black curve) in comparison to NS
(cyan curve) and experimental spectra by Nagatomi et al. (violet curve
[54]).

The good agreement of the REEL spectra, independently of the
dispersion law, basically shows that the latter have negligible effect on
the REEL spectra of Cu, Ag, and Au in the selected energy range. Thus,
even though the momentum dispersion for bulk and surface plasmons
has different spatial behaviour [14], on the basis of the analysis of the
IMFPs and REEL spectra we conclude that our results can be regarded as
robust with respect to momentum transfer dependence in Cu, Ag, and
Au in the range of energies of 1 keV to 900 eV.

Finally, in order to quantify the respective contribution of bulk and
surface inelastic scattering events to the REEL spectra, we simulate the
Al EEL spectra, where the surface and bulk plasmon peaks are well-
resolved in energy, by using both MC and NS. The effective energy-loss
function of Al was taken from Ref. [54]. In Fig. 14 we report the results
of our simulations, where we show again an excellent agreement be-
tween the two methods and the experimental spectra. Nevertheless, we
observe that in the case of our simulations the surface peak is clearly
well resolved at odds with the experimental spectrum owing to the

Table 3
The best-fit parameters (Eq. (21)) of effective ELFs of Cu, Ag and Au.

Cu Ag Au

n En (eV) n (eV) An (eV2) n En (eV) n (eV) An (eV2) n En (eV) n (eV) An (eV2)

1 4.28 2.09 5.80 1 4.09 1.70 13.80 1 6.40 8.77 46.92
2 7.90 5.79 67.00 2 5.91 2.80 8.42 2 11.11 6.52 26.16
3 11.45 2.20 6.50 3 7.73 2.13 21.16 3 15.53 5.62 30.56
4 14.76 5.20 5.20 4 10.98 2.30 3.72 4 23.68 7.72 148.97
5 18.30 7.16 95.00 5 16.58 4.80 15.80 5 31.90 6.90 110.32
6 26.51 5.16 50.12 6 20.58 18.20 190.83 6 42.82 15.60 220.60
7 48.91 25.30 146.00 7 24.10 2.90 33.60 7 50.51 11.20 65.50
8 60.30 9.30 28.20 8 32.75 5.60 53.60 8 60.12 10.70 132.50
9 76.20 9.00 75.20 9 44.48 16.20 220.30 9 81.65 16.78 143.20
10 95.20 45.00 330.00 10 52.75 6.50 102.20 10 125.60 60.30 250.50
11 130.40 90.30 180.20 11 65.09 9.20 138.50

12 75.21 16.50 140.70
13 83.15 17.30 120.50

Fig. 9. Effective energy loss functions of Cu a), Ag b), and Au c) in the optical limit (q 0) obtained using Eq. (21). These ELFs were obtained by best-fitting the
effective ELFs calculated by Nagatomi et al. [54].
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relatively low energy resolution (0.25% according to Nagatomi et al.
[54]). In light of these results, we notice that the accuracy achievable
by MC and NS approaches in REEL spectra simulations is comparable,
once the ELF and its extension beyond the optical limit are carefully
assessed.

6. Conclusions

In this work, the performances of MC method against NS of the
Ambartsumian-Chandrasekhar equations were compared in terms of
accuracy and computational cost for calculating REEL spectra of several
metals, such as Cu, Ag and Au. To obtain a fair comparison, the com-
putations were performed using the same input data in each test case,
that is the same IMFPs. Indeed, both approaches are very versatile as
they basically require input information on the materials dielectric re-
sponse to electromagnetic fields, which can be retrieved by using sev-
eral tools, from experimental measurements to ab initio simulations
[13]. The spectra obtained with these two methods are comparable and
show a good agreement with experimental data, even when including
an effective description of the ELF for dealing with surface plasmon
excitation. To account for surface collective motion of charge, the in-
vestigated samples are considered in the NS approach as multi-layer
systems, where the surface is characterised by a layer with different
scattering properties.

Using the MC approach one can follow directly the trajectories of
the scattered electrons, while within the NS method one solves the

integro-differential equations for the partial intensities of scattered
electrons with boundary conditions, which are similar to those devel-
oped by Ambartsumian and Chandrasekhar to study radiative transfer
problems. Basically, the latter method represents indeed a way to solve
numerically the transport equation using the backward differential
formula, which is equivalent to follow the electron trajectory via a MC
algorithm. The NS approach can handle both linear and nonlinear
problems and provides numerically exact solutions. We notice that the
only source of error in the NS approach, other than the V-trajectory
approximation, is due to the integration of the equation in a grid and, as
much as in the MC method, that error can be systematically reduced.
However, the convergence to the physical solution, which depends on
the geometry and physical environment of the medium through which
the electrons flow, is not automatically guaranteed in the NS approach.

It is notable that the NS method is considerably less expensive than
MC with respect to computational performance in the simulation of the
REEL spectra. For instance, it takes less than 0.5 s to reproduce the
REEL spectrum shown in Fig. 11 on an Intel Xeon CPU E5-1620
3.60 GHz. More in detail, a comparison of the computational efficiency
of these two methods was performed by using 2.9 GHz Intel Core i7
processor. On the one hand, the NS method running on one processor
takes only a total CPU time equal to 10 s to output a full REEL spectrum.
On the other hand, to deliver the REEL spectrum from MC simulations
the use of 4 CPUs for 70 min is required. This suggests that the NS
technique is a very promising and efficient tool for simulating REEL
spectra.

Nevertheless, while MC calculations require a larger CPU time, they
may provide the full spectrum of emitted electrons, which includes
multiple scattering and also the emission of secondary electrons. The
latter information is crucial e.g. to view images in the scanning electron
microscope (SEM) and cannot be achieved at this stage by the NS
method. In fact, a shortcoming of the NS approach can be found in its
extension to include other scattering mechanisms, such as for example
the production of secondary electrons due to direct photoionization,
resonant autoionization events, and Auger decay processes [31]. The
number of electrons is indeed constant in the transport equation. While

Fig. 10. DIIMFPs of Cu a), Ag b) and Au c) calculated using Eq. (22) and the effective ELFs, for a kinetic energy of the primary beam equal to 1000 eV.

Table 4
Target material characteristic parameters. Elastic and inelastic mean free paths
have been assessed at =E 10000 eV primary beam kinetic energy.

Cu Ag Au

density (g/cm3) 8.96 [50] 10.5[48] 19.32[49]
el (nm) 0.866 0.783 0.677

inel (Bulk ELF) (nm) 1.686 1.277 1.414
inel (Effective ELF) (nm) 1.713 1.369 1.418

Fig. 11. REELS of a) Cu, b) Ag, and c) Au calculated using the full 3D bulk (RPA, green curve, see Eq. (25)) and high-limit (black curve, see Eq. (26)) dispersion laws
in comparison to NS (cyan curve) and simulations by Nagatomi et al. (violet curve [54]).
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this issue could be in principle solved by including ad hoc source and
drain terms in some regions, the description of non-equilibrium sys-
tems, where electrons form and disappear, in the NS model is still a
major challenge. In MC approaches this extension, such as for example
for modelling the low-energy harmful secondary electron formation in
cancer treatment in biomedical context, has been already successfully
pursued [56].

Finally, we also remind that by using our MC approach is in prin-
ciple possible to assess the contribution of surface plasmons also
starting from a bulk ELF and without using the effective ELF [45]. This
is not the case of the NS approach, which cannot retrieve the surface
plasmonic characteristics starting from the bulk ELF.

Fig. 12. REEL spectra of Cu, Ag and Au, deconvoluted for the number of inelastic collisions that electrons undergo in their way out of the solid. On the left panel we
show MC simulations, while on the right panel we report the same quantities obtained by the NS approach. The primary beam kinetic energy is set to 1000 eV. The
data are normalized at a common height of the main plasmon peak.

Fig. 13. REELS of a) Cu, b) Ag, and c) Au calculated using the effective ELF with the dispersion laws of Eq. (27) (BS, green curve) and of Eq. (25) (bulk, black curve)
in comparison to NS (cyan curve) and experimental spectra by Nagatomi et al. (violet curve [54]).
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