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Abstract

The problem of the evaluation of the generalized stress-intensity factors for re-entrant corners in multi-layered struc-
tural components is addressed. An approximate analytical model based on the theory of multi-layered beams is presented.
This approach provides a simple closed-form solution for the direct computation of the Mode I stress-intensity factor for
the general problem of a re-entrant corner symmetrically meeting a bi-material interface. For the self-consistency of the
theory, re-entrant corners in homogeneous materials and cracks perpendicular to bi-material interfaces can also be gained
as limit cases of this formulation. According to this approach, the effects of the elastic mismatch parameters, the value of
the notch angle and the thicknesses of the layers on the stress-intensity factor are carefully quantified and the results are
compared with FE solutions. FE results are obtained by applying a combination of analytical and numerical techniques
based on the knowledge a priori of the asymptotic stress field for re-entrant corners perpendicular to a bi-material inter-
face and on the use of generalized isoparametric singular finite elements at the notch tip. A good agreement between
approximate and analytical/numerical predictions is achieved, showing the effectiveness of this approach.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the pioneering paper by Zak and Williams (1963), cracks in bi-material structural elements have
been deeply investigated, both from the theoretical (Cook and Erdogan, 1972) and the experimental (Wang
and Chen, 1993) point of view. In spite of this, cracks are only a particular case of the more general problem
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of re-entrant corners. In this context, the power of the stress-singularity at the vertex of re-entrant corners
in homogeneous materials has been given by Williams (1952). From a numerical point of view, Walsh
(1974) extended conventional finite element procedures to non-zero angle notch problems and the Recipro-
cal Work Contour Integral was introduced by Carpenter (1984) to compute fracture mechanics parameters
for a general corner in a homogeneous structure. Size-scale effects were firstly considered by Leicester
(1973) and afterwards experimentally and theoretically investigated by Carpinteri (1987) and by Carpinteri
and Pugno (2000).

As far as re-entrant corners in heterogeneous materials are concerned, the evaluation of the power of the
stress-singularity for the case of butt tensile joints was extensively investigated in the last decade (Reedy,
1993; Reedy and Guess, 1993). This study was subsequently extended by Qian and Akisanya (1999) to a
more general geometrical configuration and a detailed investigation of the corresponding stress-singularity
was proposed (see Fig. 1(a)).

In this paper we consider the general geometrical configuration depicted in Fig. 1(b), where the interface
lies along the y-axis.

Hence, an approximate analytical solution (Carpinteri and Pugno, 2000) based on the theory of multi-
layered beams is herein presented. This model provides a simple closed-form expression for the direct com-
putation of the Mode-I stress-intensity factor for the general problem of a re-entrant corner symmetrically
meeting a bi-material interface. For the self-consistency of the theory, re-entrant corners in homogeneous
materials and cracks perpendicular to bi-material interfaces can also be gained as limit cases of this formu-
lation. According to this approach, the effects of the elastic mismatch parameters, the value of the notch
angle and the thicknesses of the layers on the stress-intensity factor are carefully investigated and quanti-
fied. The results are compared with FE solutions that are obtained by using a combination of analytical and
numerical techniques based on the knowledge a priori of the asymptotic stress field and on the use of gen-
eralized isoparametric singular finite elements at the notch tip. In this case, in fact, the power of the stress-
singularity depends both on the notch angle, and on the elastic mismatch parameters. Hence, a preliminary
asymptotic analysis of the stress field has to be performed, since the power of the stress-singularity for this
problem has not been found in the Literature. Therefore, this result can be considered as a generalization to
those obtained by Williams (1952) and by Zak and Williams (1963) concerning, respectively, a re-entrant
corner in a homogeneous material and a crack perpendicular to a bi-material interface.
a b

Fig. 1. Schematic of a re-entrant corner in a structure with (a) horizontal interface and (b) with vertical interface.
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From the comparison, a good agreement between approximate and analytical/numerical predictions is
achieved, demonstrating that the approximate solution can be particularly useful from the engineering
point of view. In fact, the values of the stress-intensity factors can be gained by applying a single formula
with a significative saving in computational time compared to the FE approach, with the possibility to eas-
ily perform parametric analyses. Moreover, it has to be remarked that the model can also be extended to
other engineering configurations, such as the problem of a re-entrant corner in a multi-layered plate in
tension.
2. Approximate solution

In this section the approach proposed by Carpinteri and Pugno (2000) is briefly summarized.

2.1. Generalized stress-intensity factors

In the study of multi-layered beams under axial load and bending moment (Fig. 2), by assuming the con-
servation of the plane sections (Carpinteri, 1997), the stress is given by
rðyÞ ¼ EðyÞ
Er

N
A� þ

M
I�

y
� �

; ð1Þ
where Er is an arbitrary reference value of the Young�s modulus; N and M are, respectively, the axial load
and the bending moment at the specified section, and
A� ¼
Z
A

EðyÞ
Er

dA; ð2Þ
is the weighted area, as well as
I� ¼
Z
A

EðyÞ
Er

y2dA; ð3Þ
represents the weighted moment of inertia. The origin of the reference system, the elastic centroid, is defined
from the following relationship:
S� ¼
Z
A

EðyÞ
Er

y dA ¼ 0. ð4Þ
Considering a linear elastic homogeneous beam with an edge crack subjected to three-point bending
(Fig. 2, with c = 0 and E(y) = const.), the symmetric stress field around the crack tip can be written as
follows:
rij ¼ KIr�1=2SijðhÞ; ð5Þ
Fig. 2. Multi-layered beam under normal load and bending moment.
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where KI is the stress-intensity factor for the Mode I loading condition, r and h are the polar coordinates
represented in Fig. 1(b) and Sij is a function describing the angular profile of the stress field. Furthermore,
the analytical solution for the stress-intensity factor is given by
KI ¼
Pl

tb3=2
f ða=bÞ; ð6Þ
where t, b and l denote, respectively, thickness, height and span of the beam, whereas f is a shape function
depending on the geometry of the structure and on the ratio a/b, and can be expressed as follows (a/b < 0.6)
(Carpinteri and Pugno, 2000):
f ða=bÞ ¼ 2.9ða=bÞ1=2 � 4.6ða=bÞ3=2 þ 21.8ða=bÞ5=2 � 37.6ða=bÞ7=2 þ 38.7ða=bÞ9=2. ð7Þ

According to Eischen (1987), the asymptotic stress field at the crack tip, ~rij, for a structure made of a

functionally graded material has the same singularity order as that for a homogeneous material:
~rij ¼ eK Ir�1=2SijðhÞ; ð8Þ

where the superscript (�) denotes a heterogeneous structure. Eqs. (5) and (8) can be generalized to the case
of a re-entrant corner with angle c (see Fig. 2). When a re-entrant corner in a homogeneous element is con-
sidered and both the notch surfaces are stress-free, the symmetric stress field at the notch tip for the homo-
geneous structure is given by Carpinteri (1987)
r�
ij ¼ K�

I r
k�1SðcÞ

ij ðhÞ; ð9Þ
where the power k � 1 of the stress-singularity is provided by the following eigenequation:
k sinð2p� cÞ ¼ sin½kð2p� cÞ� ð10Þ

and ranges between �1/2 (when c = 0) and zero (when c = p), see Table 1. In the sequel, superscript (*)
denotes a structure with a re-entrant corner. On the other hand, when a re-entrant corner in a heteroge-
neous element is addressed, an analogous expression can be written
~r�
ij ¼ eK �

I r
k�1SðcÞ

ij ðhÞ. ð11Þ
Furthermore, if Buckingham�s theorem for physical similitude and scale modeling is applied and stress
and linear size are assumed as fundamental quantities, it is possible to write an equation analogous to Eq.
(6) which holds in the case of a re-entrant corner in a heterogeneous structure
eK �
I ðcÞ ¼

~P
�
l

tb1þk
~f
�ðc;EðyÞ; a=bÞ; ½eK �

I � ¼ ½F �½L��ð1þkÞ. ð12Þ
When the heterogeneous structure becomes homogeneous (symbols without superscript (�), E(y) = const)
and the notch angle c vanishes, Eq. (12) must coincide with Eq. (6). On the contrary, when c = p the stress-
singularity disappears and the generalized stress-intensity factor eK �

I assumes the physical dimensions of
stress and becomes proportional to the nominal stress
eK �
I ðc ¼ pÞ ¼ ~ru ¼

~P
p
l

tb2
~gðEðyÞ; a=bÞ. ð13Þ
Function ~gðEðyÞ; a=bÞ describes the reduction of the resisting cross-section and can be evaluated by inte-
gration over the ligament area according to Eq. (4) in case of a multi-layered beam
~gðEðyÞ; a=bÞ ¼ Ertb
2~y=4R

Alig
EðyÞy2 dA ; ð14Þ
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where ~y denotes the coordinate of the crack tip with respect to the reference system given by Eq. (4). For a
homogeneous structure it becomes
gða=bÞ ¼ ~gðEðyÞ ¼ const; a=bÞ ¼ 3=2

ð1� a=bÞ2
. ð15Þ
On the other hand, the remaining limit case of Eq. (12) concerns a crack in a multi-layered structure. In
this situation, the expression of ~f ðEðyÞ; a=bÞ has to be determined, as well as the general form of
~f
�ðc;EðyÞ; a=bÞ.

2.2. Approximate derivation of the generalized shape function

The analytical expression of the generalized shape function can be obtained by taking into account both
the relationship between the critical stress-intensity factor for a re-entrant corner and that for a crack
(Seweryn, 1994) and the relationship between the generalized critical stress-intensity factor and the brittle-
ness number ~s�ðcÞ, by generalizing some of the previous results by Carpinteri and Pugno (2000) strictly de-
rived for homogeneous materials only
eK �
ICðcÞ ¼ k~ru

2eK IC

~ru

 !2ð1�kÞ

; ð16aÞ

~s�ðcÞ ¼
eK �

ICðcÞ
~rub

ð1�kÞ ; ð16bÞ
where ~ru denotes the ultimate strength of the structure. From Eqs. (16) the following expression is derived:
~s�ðcÞ ¼ kð2~sÞ2ð1�kÞ. ð17Þ

In the opposite cases of a crack and a corner angle close to p (a flat angle) we obtain
~s�ðc ¼ 0Þ ¼ ~s ¼
eK IC

~ru

ffiffiffi
b

p ; ð18aÞ

~s�ðc ¼ pÞ ¼ 1. ð18bÞ
The last trivial equation means that, for an uncracked structure, the generalized brittle and ductile collapses
coincide.

Considering a three-point bending specimen and substituting Eq. (16b) into Eq. (12) in the critical con-
dition (eK �

I ¼ eK �
IC, ~P

� ¼ ~P
�
C), we obtain the non-dimensional failure load as a function of the generalized

brittleness number and of the shape function
~P
�
Cl

tb2~ru

¼ ~s�ðcÞ
~f
�ðc;EðyÞ; a=bÞ

. ð19Þ
This kind of collapse is always intermediate between brittle ðeK I ¼ eK ICÞ and ductile ð~r� ¼ ~ruÞ collapses. Eq.
(19) can be evaluated for a crack
~P
�
Cl

tb2~ru

¼ ~s
~f ðEðyÞ; a=bÞ

; ð20Þ
and for a flat angle
~P
p

Cl

tb2~ru

¼ 1

~gðEðyÞ; a=bÞ . ð21Þ
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In case of a structural element with a crack of a given relative depth, the transition between brittle and
ductile collapse (Carpinteri, 1987; Carpinteri and Pugno, 2000) arises when the failure loads given by Eqs.
(20) and (21) are equal. In this case we obtain
Table
Param

c

0�
15�
30�
45�
60�
75�
90�
~s ¼
~f ðEðyÞ; a=bÞ
~gðEðyÞ; a=bÞ . ð22Þ
If the notch angle is different from zero, the crack becomes a re-entrant corner and the transition arises
when the failure loads (19) and (20) are equal for
~s�ðcÞ ¼
~f
�ðc;EðyÞ; a=bÞ
~gðEðyÞ; a=bÞ . ð23Þ
Substituting Eqs. (22) and (23) into Eq. (17), we obtain the generalized shape function for a re-entrant cor-
ner in a bi-material structural component
~f
�ðc;EðyÞ; a=bÞ ¼ k~gðEðyÞ; a=bÞ 2

~f ðEðyÞ; a=bÞ
~gðEðyÞ; a=bÞ

 !2ð1�kÞ

. ð24Þ
It has to be remarked that exactly the same result can be gained for the problem of plates in tension.
Substituting the generalized stress-intensity factor (16a) and the shape function (24) into Eq. (12), we

obtain the failure load for a multi-layered structural component with a re-entrant corner in a very synthetic
form
~P
�
C

~P
p

C

¼ P �
C

P p
C

� �2ð1�kÞ

. ð25Þ
At this point, we can observe that the ratio ~P
�
C=P

�
C is, as a first approximation, independent of the corner

angle. Consequently, we have (see Eq. (12))
~f
�ðc;EðyÞ; a=bÞ
f �ðc; a=bÞ ¼ ~gðEðyÞ; a=bÞ

gða=bÞ
ru
eK IC

~ru
eK IC

 !2ð1�kÞ

. ð26Þ
This equation is an identity for the limit case of a flat angle. On the other hand, considering the limit case of
a crack, we derive the expression of ~f ðEðyÞ; a=bÞ
~f ðEðyÞ; a=bÞ ¼ ru
eK IC

~ruKIC

~gðEðyÞ; a=bÞ
gða=bÞ f ða=bÞ; ð27Þ
1
eters k and x (defined in Section 3.2) for different values of c in case of a re-entrant corner

k x

0.500 0.250
0.500 0.250
0.501 0.251
0.505 0.253
0.512 0.258
0.524 0.266
0.544 0.279
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that can be further simplified by assuming rueK IC

~ruKIC
’ 1. Eventually, by introducing Eq. (27) into Eq. (24), the

shape function for a re-entrant corner in a multi-layered structural component is fully determined.
3. Analytical and numerical solution

From a numerical point of view, since the early finite element studies, it was recognized that, unless a spe-
cific treatment could be used, it would be necessary to have a very refinedmesh at the crack tip to approximate
the stress-singularity with normal elements. Three most important approaches that have been put forward in
the last decades in order to improve the accuracy and the rate of convergence to the solution: (1) hp-finite
elements (Schwab, 1998); (2) enriched elements (Benzley, 1974) and (3) singular elements (Barsoum, 1976).

As far as singular elements are concerned, Barsoum (1976) demonstrated that the inverse square root
singularity characteristic of linear elastic fracture mechanics can be obtained both in the 2D-8 nodes
(Q8) and in 2D-6 nodes (T6) isoparametric elements when the mid-side nodes near the crack tip are placed
at the quarter point. Furthermore, the concept of the quarter-point singular element has been generalized
by Staab (1983) in order to capture singularities of order different from �1/2. In fact, by varying the place-
ment of the mid-side node between the quarter-point and the mid-point position, it is possible to model a
singularity of a generic order. For instance, Lim and Lee (1995) applied this technique for modeling the
stress-singularity of a crack perpendicular to a bi-material interface and proposed a powerful method
for computing the stress-intensity factor.

In this section we apply the technique proposed by Lim and Lee to the more general problem of re-
entrant corners in multi-layered elements by using the public domain FE code FRANC2D (FRacture
ANalysis Code 2D) (Wawrzynek and Ingraffea, 1991; Wawrzynek, 1991). To this aim, the preliminary
computation of the order of the stress-singularity is required as an input for the numerical method. Hence,
since this information is not yet available in the Literature, we perform an asymptotic analysis of the stress
field according to the Muskhelishvili complex function representation. This analysis cannot be omitted,
since this is an extension of the previous studies by Williams (1952) and by Zak and Williams (1963) con-
cerning, respectively, the limit cases of a re-entrant corner in a homogeneous material and a crack perpen-
dicular to a bi-material interface.

3.1. Asymptotic analysis of the singular stress field at the vertex of re-entrant corners symmetrically meeting a

bi-material interface

In this analysis we study the geometry depicted in Fig. 1(b) which contains two stress free surfaces sym-
metrically oriented at h = c1 with respect to the x-axis. The case of plane isotropic elasticity in the absence
of body forces is addressed. In this case, according to Muskhelishvili (1953), the stresses and displacements
in the material m (m = 1, 2) around the interface corner can be expressed in terms of the complex potentials
wm and vm
rm
r þ ismrh ¼ w0

mðzÞ þ w0
mðzÞ � zw00

mðzÞ � �zz�1v0mðzÞ; ð28aÞ
rm
h � ismrh ¼ w0

mðzÞ þ w0
mðzÞ þ zw00

mðzÞ þ �zz�1v0mðzÞ; ð28bÞ

umr þ iumh ¼ 1

2lm
e�ih½j1wmðzÞ � zw0

mðzÞ � vmðzÞ�; ð28cÞ
where z = reih is a complex variable, l is the shear modulus, m is the Poisson�s ratio, j = 3 � 4m for plane
strain and j = 3 � 4m/(1 + m) for plane stress. The symbols ( 0) and (�) denote, respectively, a derivative with
respect to z and the complex conjugate of the variable. Following England (1971), the complex potentials
are assumed to have the following form as z ! 0:
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w1 ¼ Azk; v1 ¼ Bzk; for Material 1; ð29aÞ
w2 ¼ Czk; v2 ¼ Dzk; for Material 2; ð29bÞ
where A = A1 + iA2, B = B1 + iB2, C = C1 + iC2 and D = D1 + iD2 are complex constants and k defines
the power of the stress-singularity. By substituting Eqs. (29) into Eqs. (28), stress and displacement fields
in the two materials are derived
rm
r ¼ krk�1fXm

1 ð3� kÞ cos½ðk� 1Þh� � Xm
2 ð3� kÞ sin½ðk� 1Þh�

� Y m
1 cos½ðkþ 1Þh� þ Y m

2 sin½ðkþ 1Þh�g; ð30aÞ
rm
h ¼ krk�1fXm

1 ðkþ 1Þ cos½ðk� 1Þh� � Xm
2 ðkþ 1Þ sin½ðk� 1Þh�

þ Y m
1 cos½ðkþ 1Þh� � Y m

2 sin½ðkþ 1Þh�g; ð30bÞ
smrh ¼ krk�1fXm

1 ðk� 1Þ sin½ðk� 1Þh� þ Xm
2 ðk� 1Þ cos½ðk� 1Þh�

þ Y m
1 sin½ðkþ 1Þh� þ Y m

2 cos½ðkþ 1Þh�g; ð30cÞ

umr ¼ 1

2lm
rkfXm

1 ðjm � kÞ cos½ðk� 1Þh� � Xm
2 ðjm � kÞ sin½ðk� 1Þh�

� Y m
1 cos½ðkþ 1Þh� þ Y m

2 sin½ðkþ 1Þh�g; ð30dÞ

umh ¼ 1

2lm
rkfXm

1 ðjm þ kÞ sin½ðk� 1Þh� þ Xm
2 ðjm þ kÞ cos½ðk� 1Þh�

þ Y m
1 sin½ðkþ 1Þh� þ Y m

2 cos½ðkþ 1Þh�g; ð30eÞ
where Xm and Ym are either A and B when m = 1, or C and D when m = 2.
By considering the symmetry of the problem, we can write the following boundary conditions that rep-

resent the symmetry conditions along h = 0, the matching conditions along the vertical interface (h = p/2)
and the free edge boundary condition along h = c1
u2h ¼ 0 h ¼ 0; 0 < r < 1; ð31aÞ
s2rh ¼ 0 h ¼ 0; 0 < r < 1; ð31bÞ
r1
h � is1rh ¼ r2

h � is2rh h ¼ p=2; 0 < r < 1; ð31cÞ
u1r þ iu1h ¼ u2r þ iu2h h ¼ p=2; 0 < r < 1; ð31dÞ
r1
h � is1rh ¼ 0 h ¼ c1; 0 < r < 1. ð31eÞ
Substituting Eqs. (30) into Eqs. (31), a homogeneous system of eight linear equations in the eight un-
known coefficients Ai, Bi, Ci, Di (i = 1, 2) is derived. A non-trivial solution to the system exists only if
the determinant of the coefficient matrix vanishes. This occurs when the eigenvalue, k, satisfies the following
characteristic equation:
F ¼ 1� bþ 2að1þ a� ak2 þ bðk2 � 1ÞÞ
� �

sin pkþ aðb� aÞk2 sinðpk� 2c1Þ � ðaþ a2 � abÞ
� sin½2kðp� c1Þ� þ bk sinð2c1Þ � ð1þ aÞða� bÞ sin 2kc1 þ ðabk2 � a2k2Þ sinðpkþ 2c1Þ

¼ 0. ð32Þ

This equation depends both on the power of the singularity, k, and on the composite parameters, a and b,
as defined by Zak and Williams (1963)
a ¼ l1=l2 � 1

1þ j1

; ð33aÞ

b ¼ l1

l2

1þ j2

1þ j1

. ð33bÞ
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The eigenequation (32) can be considered as a generalization of the eigenequations given by Williams
(1952) and by Zak and Williams (1963) concerning re-entrant corners in homogeneous structures and a
crack perpendicular to a bi-material interface, respectively. In fact, we can observe that this expression con-
templates both such problems as limit cases. If we consider a homogeneous structure with a re-entrant cor-
ner, we can substitute a = 0 and b = 1 into Eq. (32), obtaining
F ¼ k sin 2c1 þ sin 2kc1 ¼ 0; ð34Þ

which represents the eigenequation given by Williams (1952). On the other hand, if we study a crack per-
pendicular to a bi-material interface, we can substitute c1 = p into Eq. (32), obtaining
F ¼ sin kp½k2ð�4a2 þ 4abÞ þ 2a2 � 2abþ 2a� bþ 1� ð2a2 � 2abþ 2a� 2bÞ cos kp� ¼ 0; ð35Þ

which represents the eigenequation given by Zak and Williams (1963). Eventually, in the particular case of a
crack in a homogeneous material (c1 = p, a = 0 and b = 1), the above expression becomes
F ¼ sin 2kp ¼ 0; ð36Þ

giving k = 1/2 and the well-known power of the stress-singularity. Analogously, in the case of a flat angle,
c1 = p, we obtain k = 1 and the singularity disappears.

Once the value of k has been computed from Eq. (32), seven of the height unknown constant terms can
be expressed in terms of the height. The last unknown constant can be normalized such that
rhðh ¼ 0Þ ¼ K�

I r
k�1, srhðh ¼ 0Þ ¼ K�

IIr
k�1. This allows to write the singular stresses and the displacements as
rij ¼ ~rij ¼ eK �
Nr

k�1SN
ij ðhÞ; ð37aÞ

ui ¼ ~ui ¼ eK �
Nr

kT N
i ðhÞ; ð37bÞ
where N is either 1 (Mode 1) or 2 (Mode 2). If a homogeneous structure with a re-entrant corner is con-
sidered, the solution of the above problem reduces to that given by Dunn et al. (1997). On the contrary,
as far as a crack perpendicular to a bi-material interface is concerned, the explicit expressions can be found
in Cook and Erdogan (1972). In both cases the asymptotic expressions of the stress field have been omitted,
since they can be found in the above cited papers.

3.2. Generalized singular elements and computation of the Mode I stress-intensity factor

According to the method proposed by Lim and Lee (1995), the position of the intermediate nodes in a
typical eight-node isoparametric element are moved from the normal mid-point position (Fig. 3). Placing
the origin at node 1 and denoting the length of the side 1–3 with l, then x1 = 0, x2 = xl and x3 = l. In this
configuration the x-coordinate is given by
x=l ¼ xþ 0.5nþ 0.5ð1� 2xÞn2 ð38Þ

and the parameter x represents the position of the mid-side node. The displacement variation along the
horizontal side is in fact given by
u ¼ ½1� 3ðx=lÞ/ þ 2ðx=lÞ2/�u1 þ ½4ðx=lÞ/ � 4ðx=lÞ2/�u2 þ ½�ðx=lÞ/ þ 2ðx=lÞ2/�u3; ð39Þ
whereas the strain in the x-direction is
ex � x/�1; ð40Þ

with a singularity of order / � 1.

The parameter x controls the power of the singularity. For cracks in homogeneous materials we set
x = 1/4 and we obtain the typical quarter point element. As far as a crack perpendicular to and terminating
at a bi-material interface is concerned, the parameter / is equal to k, according to Lim and Lee (1995). This



Fig. 3. Q8 isoparametric finite element and Q8 elements near a notch tip.

Table 2
Parameters k and x for different values of E1/E2 in the case of a crack perpendicular to a bi-material interface

E1/E2 k x

0.1 0.709 0.374
0.2 0.661 0.348
0.4 0.597 0.311
0.8 0.524 0.266
1.0 0.500 0.250
1.2 0.475 0.233
2.5 0.399 0.177
5.0 0.322 0.116
10.0 0.250 0.054
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result can be extended to the case of a re-entrant corner, where k is given by the previous asymptotic anal-
ysis. The position of the mid-side node, x, can be directly computed by a best-fit procedure, as demon-
strated by Lim and Lee (1995). Parameter x has been computed for different values of the angle of the
re-entrant corner in a homogeneous material (see Table 1) and for different elastic mismatches and for plane
stress conditions in the case of a crack perpendicular to and terminating at a bi-material interface (see Table
2).

Finally, the Mode I stress-intensity factor can be computed using a displacement correlation technique
(the reader is referred to Lim and Lee (1995) for more details). This method for computing the stress-inten-
sity factor has the advantage to be based on the calculated nodal displacements which, in a finite element
calculation based on a displacement formulation, are more accurate than stresses.
4. Comparison between approximate and analytical solutions

This section focuses on the evaluation of the shape function for some structural problems with cracks
and re-entrant corners. Considering a three-point bending bi-material beam with a crack, the effect of
the elastic mismatch on the Mode I stress-intensity factor is investigated (Fig. 4). Hence, the ratio between
the thicknesses of the two layers, h1/h2, has been kept constant in the simulations, whereas different values
of the ratio between the elastic moduli, E1/E2, have been taken into account (see also Table 2). In each sim-



Fig. 4. Notched bi-layered three-point bending beam.
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Fig. 5. Approximate vs. analytical results: generalized shape function ~f vs. relative crack depth a/b and Young�s ratio E1/E2 for a bi-
material three-point bending beam with a crack (h1/h2 = 2/3). (a) Approximate and (b) analytical.

Fig. 6. Approximate vs. analytical results: generalized shape function ~f vs. relative crack depth a/b for a bi-material three-point
bending beam with a crack (h1/h2 = 2/3) and different modular ratios.
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ulation, the non-dimensional crack depth, a/b, was varied from 0.0 to 0.8. The crack meets the horizontal
interface at a/b = 0.4.

The theoretical shape function predicted according to Eq. (24) is depicted in terms of a/b and E1/E2 in
Fig. 5(a). The corresponding result from asymptotic analysis and finite element computations is presented
in Fig. 5(b). A good agreement between the two approaches is achieved. A detailed comparison between
analytical and approximate solutions is presented in Fig. 6, where the cases corresponding to E1/E2 =
0.5 and E1/E2 = 2.0 are compared. The shape function corresponding to the limit case of E1/E2 = 1 is
the well-known shape function f for a homogeneous structure given by Eq. (7). When there is an elastic
mismatch, generalized shape functions present discontinuities in correspondence of the bi-material inter-
face. Generalized shape functions for configurations having modular ratios E1/E2 less than unity slightly
decrease when the crack tip approaches the bi-material interface. This implies that cracks are difficult to
propagate across the bi-material interface when the substrate is stiffer than the external layer.

On the contrary, when E1/E2 is greater than unity, the generalized shape functions clearly increase with
the crack length, because of the elastic mismatch. Unstable crack propagations are likely to occur in such
cases. Furthermore, the higher is the ratio between the elastic moduli, the higher is the value of the shape
function.
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Fig. 7. Approximate vs. analytical results: generalized shape function ~f vs. relative crack depth a/b and thicknesses ratio h1/h2 for a bi-
material three-point bending beam with a crack (E1/E2 = 1.8). (a) Approximate and (b) analytical.
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When the crack tip overcomes the interface, the approximate model predicts a shape function equal to
the classical one for homogeneous structures, independently of the ratio E1/E2. This result can be extended
to multi-layered structures in a straightforward manner: as a first approximation, from a fracture point of
view, the behavior of the tip in the last layer is not influenced by the remaining ones.

The effect of the thicknesses of the two layers on the shape function is investigated in Fig. 7. In these
simulations, the ratio between the elastic moduli is kept constant (E1/E2 = 1.8), whereas the ratio h1/h2
is varied from 0.1 to 10.0. Discontinuities in the shape functions can be seen whenever the crack tip reaches
the bi-material interface at a/b = h1/(h1 + h2). Also in this case, both approximate and analytical predic-
tions agree satisfactorily and we can observe that the higher is the ratio h1/h2, the higher is the value of
the shape function.
Fig. 9. Some original meshes for the finite element simulations concerning three-point bending beams with notch angles equal to 15�,
30�, 45�, 60�, 75� and 90�.
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Eventually, the effect of the notch angle on the shape function is considered in Fig. 8. In this case the
ratio between the elastic moduli is kept constant (E1/E2 = 0.4), as well as the position of the bi-material
interface (h1/h2 = 2/3). Notch angles equal to 0�, 15�, 30�, 45�, 60�, 75� and 90�, with non-dimensional
depths a/b from 0.0 to 0.6, are analyzed. Some original meshes for the finite element computations are de-
picted in Fig. 9. Both approximate and analytical approaches predict discontinuities of the shape functions
at the bi-material interface, as in the case of a crack. In this case, the higher is the value of the notch angle,
the higher is the value of the shape function.
5. Conclusions

Both approximate and analytical approaches herein presented permit to evaluate the shape function for
the computation of the stress-intensity factor in multi-layered structural components with cracks or re-
entrant corners. The asymptotic analysis of the stress-field near a re-entrant corner symmetrically meeting
a bi-material interface shows that the power of the singularity depends both on the elastic mismatch, and on
the notch angle. Limit cases of this geometrical configuration consist in the well-known problems of a crack
perpendicular to a bi-material interface and of a sharp re-entrant corner in a homogeneous structural com-
ponent. The asymptotic analysis provides the basis for a proper numerical modeling of the singular stress
field in the framework of generalized singular finite elements.

However, this combination of analytical/numerical techniques is rather complicate and time consuming,
particularly if we are interested in performing parametric studies. On the contrary, the approximate model
is particularly sound from the engineering point of view, since a single closed-form expression for the com-
putation of the generalized shape function is provided. Approximate and analytical formulations agree sat-
isfactorily, showing the effectiveness of this approach (Carpinteri and Pugno, 2000) which is worth using in
parametric analyses for a preliminary design of new components. In fact, it has to be remarked that anal-
ogous expressions can be obtained by considering multi-layered plates in tension or even other scenarios
involving multi-layered composite geometries.

For the particular benchmark case of a bi-material beam under three-point bending, the effects of elastic
mismatch, notch angle and layers thicknesses on the Mode I stress-intensity factor have been quantified and
reported in some useful diagrams. The predicted results are particularly important from an engineering
point of view, due to the fact that such situations are occurring very frequently in composite structural ele-
ments and a proper design should pay attention to them.
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