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Adhesive attachment systems consisting of multiple tapes or strands are
commonly found in nature, for example in spider web anchorages or in
mussel byssal threads, and their structure has been found to be ingeniously
architected in order to optimize mechanical properties: in particular, to
maximize dissipated energy before full detachment. These properties
emerge from the complex interplay between mechanical and geometric par-
ameters, including tape stiffness, adhesive energy, attached and detached
lengths and peeling angles, which determine the occurrence of three main
mechanisms: elastic deformation, interface delamination and tape fracture.
In this paper, we introduce a formalism to evaluate the mechanical perform-
ance of multiple tape attachments in different parameter ranges, where an
optimal (not maximal) adhesion energy emerges. We also introduce a
numerical model to simulate the multiple peeling behaviour of complex
structures, illustrating its predictions in the case of the staple-pin architec-
ture. Finally, we present a proof-of-principle experiment to illustrate the
predicted behaviour. We expect the presented formalism and the numerical
model to provide important tools for the design of bioinspired adhesive
systems with tuneable or optimized detachment properties.
1. Introduction
Spider silk is a biological fibrous material that displays exceptional mechan-
ical properties [1] and comes in many different types, each with specific
functions and properties [2]. Silk is the base construction material of spiders,
and is used to fabricate complex structures such as the spider web.
In addition to the main structure, the attachment between the silk threads
and the substrate (figure 1a) plays an important role in determining the func-
tionality of silk-based architectures. For example, it was shown that the
contact, usually performed through adhesive-coated ‘silken’ threads called
‘attachment discs’ [3], differs in geometrical features depending on its prey-
capture or locomotion functions [4]. To create a safe attachment between
the dragline and the substrate, spiders create a structure referred to as a
‘staple-pin’ attachment. An array of perpendicular (or random, i.e. a disk)
silken threads are used to ‘coat’ the main thread on which the external
load is applied (figure 1a) [5]. When staple-pin structures are subjected to a
peel test, different types of behaviour have been observed in natural systems
[6]. The detachment occurs in some cases by delamination of the secondary
tapes, which corresponds to the failure of the interface between the system
and the substrate, and in other cases by the breakage of the secondary
tapes themselves. The occurrence of these two mechanisms suggests that

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2019.0388&domain=pdf&date_stamp=2019-11-27
mailto:nicola.pugno@unitn.it
http://orcid.org/
http://orcid.org/0000-0002-2886-4519
http://orcid.org/0000-0002-3242-3716
http://orcid.org/0000-0003-4164-8631
http://orcid.org/0000-0002-3935-7467
http://orcid.org/0000-0003-2136-2396


(b)(a)

(c) rigid tape

P

F
j

P

d d

qlim qlimq0 q0

la + ld
la + ld + DL

lala

ld ld

elastic tape(d)

100 mm

Figure 1. (a) Spider web anchorage; (b) schematic representation of a staple-pin attachment structure: F is the applied external load,w its angle with respect to the substrate.
(c,d) The symmetric double peeling system viewed as a sub-domain of the staple-pin in the rigid (c) and elastic (d ) tape cases. In (d ), the additional elastic deformation before
delamination is illustrated with dashed lines. P is the applied load, la is the attached tape length, ld is the detached tape length, ΔL is the tape elongation, δ is the vertical
displacement of the load application point, θ0 is the initial peeling angle, θlim is the limit angle just before the full delamination of the tapes. (Online version in colour.)
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the adhesive energy of the tape/substrate contact is high
with respect to the fracture energy of the adhesive tapes,
and that elastic deformation plays an important role in the
total dissipated energy under the load of the staple-pin
system. The compliance of the adhesive tapes, associated
with a low contact angle in such structures has been attrib-
uted to a spider strategy to develop maximum adhesive
strength out of a minimum amount of material and artificial
systems mimicking the spider attachment disc have recently
been introduced [7], with the aim of optimizing the maxi-
mum detachment force and the total dissipated energy
out of minimal contact area and material use.

Various theoretical approaches have been developed to
treat thin film peeling problems in the case of single [8,9]
and multiple tapes [10]. The objective of the latter is to
describe the behaviour of a system containing various simul-
taneously detaching tapes [11], which apply to natural
systems like gecko toes [12] as well as spider web anchorages.
However, the behaviour under the loading of multiple peel-
ing systems is not trivial and ad hoc numerical procedures
are required to simulate their delamination [13,14]. Various
numerical approaches have been developed to address
specific problems, such as adhesion to various types of sur-
faces [15], the influence of hierarchical structure [16], the
role of friction [17] and viscoelasticity [18]. These numerical
modelling tools are essential to design bioinspired artificial
micro-patterned surfaces with optimized properties [19],
including hierarchical structures [20].

Here, we develop analytical and numerical models to simu-
late the delamination and failure of coupled adhesive tapes,
also taking into consideration the elastic deformation and the
peeling angle variation under the load of the staple-pin attach-
ment. We propose a general numerical scheme to model the
detachment of staple-pin-like structures, introducing new
aspects to existing models such as tape fracture and 3D defor-
mation of the attachment devices.
2. Theoretical model
We consider the geometry shown in figure 1b. The attach-
ment system is built from an array of tapes attached
perpendicularly to the main cable on which a vertical exter-
nal load is applied. Considering a single tape from the
staple-pin structure, the problem reduces to studying the
symmetric double peeling system shown in figure 1c,d [1].
As shown in the figure, for simplicity we consider the
attached tape to be perfectly flat along its whole length, so
that there is a discontinuity in its curvature at the location
of the peeling line. This is an approximation whose validity
decreases for increasing substrate softness or tape thickness.

The detachment of tapes adhering to a substrate can be
theoretically described using Griffith’s energy balance. The
energy release rate during delamination can be defined as
the instantaneous variation of potential energy P per unit
area A, i.e. G ¼ �(dP=dA). The peeling front advances
when G reaches the critical energy release rate

G ¼ GC: ð2:1Þ
Writing the total potential energy as P ¼ Ue � V, where

Ue is the stored strain energy and V the work associated
with the external load acting on the system, this amounts to

1
w

@V
@l

� @Ue

@l

� �
¼ GC, ð2:2Þ

where l is the current detached length of the tape ðl � laÞ and w
its width.

2.1. Rigid tape case
We first consider an inextensible film, in which the contri-
bution of the stored elastic energy is neglected ðUe ¼ 0Þ,
which leads to the solution of the Rivlin equation [2]. According
to the latter, delamination occurs when T= Tdel and

Tdel(1� cos u) ¼ wGC, ð2:3Þ
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Figure 2. (a–c) External load P versus peeling angle θ for rigid tape symmetric double peeling for increasing critical energy release rate GC. Pdel is the delamination
load, Pc the critical ( fracture) load, Plim the load for complete delamination of the attached tape length la. (a) GC , G1: the tape delaminates over its entire
attached length la until θ = θlim ( path OAB); (b) G1 � GC , G2: the tape delaminates and then fractures for P = Pc ( path OA0B0); (c) GC � G2: the tape fractures
before delamination at θ = θ0 ( path OA00); (d ) corresponding dissipated energy W versus G. (Online version in colour.)
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where T is the tape tension, Tdel is its critical value for delami-
nation, and θ is the peeling angle, i.e. the angle between the
tape and the substrate. For the symmetric V-shaped double
peeling system in figure 1c, the applied external load P is

P ¼ 2 sin uT, ð2:4Þ

and peeling starts when the external load reaches the value Pdel

Pdel(u) ¼ 2wGC sin u
1� cos u

: ð2:5Þ

Overall, from an initial tape-substrate angle configuration
u0, when the external load is applied, the peeling angle
decreases as the structure detaches. This behaviour is
shown in a P versus u plot in figure 2, for w = 1 mm,
u0 ¼ 75� and three increasing GC values: (a) GC ¼ 1 kJ m−2,
(b) GC ¼ 2:5 kJ m−2 and (c) GC ¼ 4:5 kJ m−2. Starting from
an unloaded structure (P(u0) ¼ 0, point O) and increasing P,
the tapes will start to peel off at P ¼ Pdel (point A), leading
to a decrease in the peeling angle and consequently an
increase in Pdel. In this case, the peeling angle tends to zero
as the delamination proceeds and the peeling force increases
indefinitely (Pdel ! 1 for u ! 0). The admissible space of
load–angle configurations is V ¼ {P � Pdel}.

We now introduce a critical tape tension Tc = σcbw at which
the tape fractures, where σc is the tape strength and b the tape
thickness. Depending on the adhesive energy and the geo-
metrical and mechanical properties of the system, three
different behaviours can occur as a function of the critical
energy release rate GC (figure 2). When GC is smaller than a
given value G1 (GC , G1, figure 2a), the tape delaminates
over its full attached length la and the critical tension for frac-
ture is not reached during the process. The limit angle before
complete delamination can be derived from geometrical con-
siderations (figure 1c) as cos ulim ¼ (ld cos u0 þ la)=(la þ ld).
Assuming now that the tape fractures immediately before
reaching the peeling angle ulim, we derive from equation (2.3)
with Tdel = Tc

G1 ¼ Tc(1� cos ulim)
w

¼ Tc(1� cos u0)
w

ld
la þ ld

: ð2:6Þ

If GC is greater than a second given value G2 ðGC � G2Þ
the tape fractures before any delamination (and thus angle
change) occurs. This happens when the external load reaches
a critical value Pc ¼ 2 sin uTc (figure 2c). Again, from
equation (2.3) with u = u0, we have

G2 ¼ Tc(1� cos u0)
w

¼ la þ ld
ld

G1: ð2:7Þ

If GC lies between G1 and G2, i.e. G1 , GC , G2, the criti-
cal tension is reached after a finite delamination length
(figure 2b).

The overall dissipated energy W depends on the energy
release rate and the corresponding tape delamination
behaviour, as well as the tape fracture energy

W ¼ Wdel þWf, ð2:8Þ
where Wf ¼ Gfbw, and Gf is the critical energy release rate for
tape fracture. For full delamination with no fracture occurring
for GC , G1, the dissipated energy increases linearly with GC,
i.e. W = 2lawGC up to the value

W1� ¼ 2lawG1: ð2:9Þ

If the critical energy release rate reaches the value
GC ¼ G1, the entire attached region peels off and the tape
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fractures at the final delamination point (tape fracture is
assumed to take place instantaneously). This corresponds to
the maximum of dissipated energy, since tape fracture
energy should be additionally considered

W1þ ¼ 2lawG1 þ Gfbw: ð2:10Þ

ForGC values betweenG1 andG2, the tape delaminates for
part of its attached length and breaks when the applied load
reaches Pc, with the dissipated energyW decreasingwith dela-
minated tape length. Considering G1 =GC and la = lc in
equation (2.6), we can derive the delamination length lc after
which the tape breaks

lc ¼ ld 1� cosu0 � wGC

Tc

� �
Tc

wGC
: ð2:11Þ

Thus, the dissipated energy for G1 , GC , G2 is

W¼2lcwGC þ Gfbw¼2ldTc 1�cosu0 � wGC

Tc

� �
þGfbw: ð2:12Þ

When GC . G2, the dissipated energy associated with
delamination is zero, and only fracture energy remains, i.e.
W2 ¼ Gfbw. The three cases are illustrated in figure 2d,
where the dissipated energy is plotted as a function of the criti-
cal energy release rate adopting the test parameters ld = la =
0.2 mm, Tc = 5 N and Gf ¼ 10 kJ m−2. The limit values G1

and G2 are both highlighted.

2.2. Elastic tape case
Considering now additionally tape elastic deformation and
its contribution to energy balance (equation 2.2), equation
(2.3) becomes the Kendall equation [9]

Tdel(1� cos u)þ T2
del

2Ewb
¼ wGC, ð2:13Þ

where E is the tape elastic modulus. In this case, the peeling
angle changes as a function of the elastic deformation and
the detachment of the structure (figure 1d).

From a given initial configuration, it is possible to write the
relationship between the tape strain ε and the tape-substrate
angle u when the tape only deforms without detaching, as

ld(1þ 1) cos u ¼ ld cos u0: ð2:14Þ

Writing the tape tension as Tel ¼ Ewb1, we obtain

Tel ¼ Ewb
cos u0
cos u

� 1
� �

: ð2:15Þ

The external load P ¼ Pel for the initial elastic deformation
of the structure shown in figure 1d is therefore

Pel(u) ¼ 2sinuTel ¼ 2 sin uEwb
cos u0
cos u

� 1
� �

, ð2:16Þ

which for any given u assumes its maximal value for an initial
peeling angle of u0 ¼ 0.

As discussed in multiple peeling theory [10], the overall
delamination problem can be treated as the superposition
of two independent single peeling processes, with each
tape loaded by its peeling tension. The external load at
delamination Pdel for a given critical energy release rate GC is

Pdel(u) ¼ 2 sin uEwb cos u� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� cos u)2 þ 2GC

Eb

r !
, ð2:17Þ
When P � Pdel, delamination occurs. As discussed in [14],
equation (2.15) is valid only for peeling angles u greater than
the curve maximum occurring at u ¼ umax, which corresponds
to an initial loading angle of u0 ¼ 0, since smaller u angles cor-
respond to negative initial loading angles. From these
considerations, we obtain the admissible space of load–angle
configurations as V ¼ {P(u) � Pdel(u)>P(u) � Pel(u)}.

The behaviour is shown in figure 3a–c, for test parameters
w = 1 mm, b = 0.01 mm, E = 1 GPa, ld = 0.22 mm, la = 1 mm,
u0 ¼ 75�, Gf ¼ 5 kJ m−2 and three increasing GC values:
(a) GC ¼ 1:8 kJ m−2, (b) GC ¼ 3 kJ m−2 and (c) GC ¼ 5 kJ m−2.
If the critical energy release rate is below G1, for a given
unloaded structure (P(u0) ¼ 0, point O), the system will first
undergo elastic deformation without delamination (segment
OA, along P ¼ Pel), and then both elastic deformation and
delamination with a variable peeling angle (segment AB).
The tape will then fully detach when its entire finite length
delaminates at u ¼ ulim (point B). Alternatively, if la is sufficient
for ulim to reach umax, the system will attain an equilibrium
state where delamination proceeds at a constant peeling
angle and load [14]. The corresponding peeling angle umax

can be derived by equating equation (2.16) for u0 ¼ 0 and
equation (2.17), leading to

2 cos3 umax � 3þ 2GC

Eb

� �
cos2 umax þ 1 ¼ 0, ð2:18Þ

whose (real) root can be obtained in closed form as

cos umax ¼ ðb� aÞ½ð1� i
ffiffiffi
3

p Þa� ð1þ i
ffiffiffi
3

p Þb�
12b

, ð2:19Þ

with a ¼ ð3þ ð2GC=EbÞÞ and b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½a3 þ 6ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
81� 3a3

p
� 9Þ�3

q
. In

the case u0 ¼ 0, this equilibrium state would be reached as
soon as the first delamination occurs. The more general
case of ulim , umax is considered in figure 3a. Introducing,
as for the rigid tape case, a fracture threshold Tc, for GC =
G1, the tape fractures when it reaches ulim. From geometrical
considerations (figure 1c), since the tape elongation at frac-
ture is DL ¼ T(la þ ld)=Ewb, we obtain

cos ulim ¼ ðla þ ldcosu0Þ=ðla þ ldÞ
ð1þ Tc=EwbÞ , ð2:20Þ

which gives the correct ulim value for the rigid tape case if
E→∞.

When GC ¼ G1, Tdel = Tc can be written as

Tc ¼ Ewb cos ulim � 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� cos ulim)

2 þ 2G1

Eb

r !
, ð2:21Þ

so that (also directly from Eq. (2.13))

G1 ¼ (1� cos ulim)
Tc

w
þ T2

c

2Ew2b
, ð2:22Þ

which again gives the correct value provided in equation (2.6)
for the rigid tape case (E→∞). Notice that if u ¼ umax occurs
for GC , G1, no tape fracture takes place, since delamination
proceeds thereupon at a constant load.

For an increasing critical energy release rate ðG1�GC,G2Þ,
the tape deforms (segment OA0), then delaminates, and
fractures in B0 before the limit angle is reached (figure 3b).
Finally, for GC � G2 the tape deforms elastically and fractures
in A00 before delamination starts (figure 3b). The value of G2

can be obtained from equation (2.13) for Tdel = Tc combined
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with equation (2.15), giving

G2 ¼ 1� cos u0
(Tc=Ewbþ 1)

� �
Tc

w
þ T2

c

2Ew2b
ð2:23Þ

This expression tends to that in equation (2.7) for E→∞.
The dissipated and released energy W in the elastic tape

case is the sum of the released elastic, delamination and
fracture energies

W ¼ Uel þWdel þWf ð2:24Þ

where Uel is the elastic energy stored in the deformed tape
when complete detachment or fracture occurs. Thus, for
GC , G1, W increases with GC as

W ¼ 2(la þ ld)
T2
del

2Ewb
þ 2lawGC, ð2:25Þ

reaching a maximum value for Tdel = Tc at W1−, whereas
W1þ ¼ W1� þ wbGf in G1, where the additional tape
fracture energy leads to a discontinuity in W. After this
maximum value, W decreases with GC as the delamination
length decreases

W ¼ 2(lc þ ld)
T2
c

2Ewb
þ 2lcwGC þ wbGf, ð2:26Þ

where lc is the delamination length before tape fracture,
which can be deduced by inserting equation (2.20) with
θlim→ θ and la→ lc into equation (2.13) with Tdel = Tc. Finally,
the dissipated energy for GC � G2 is constant and only due to
the elastic deformation and fracture terms

W2 ¼ 2ld
T2
c

2Ewb
þ wbGf: ð2:27Þ
The load versus displacement curve in the optimal case
Wmax =W(GC ¼ G1) is shown in figure 4, together with the
contribution of the elastic and delamination energy, evaluat-
ing δ geometrically from figure 1(d). The resulting curve
displays an elastoplastic-like behaviour.

Notice that the above discussion can be generalized from
a 2D to 3D structure, in which the deformed detached length
of the tape is not aligned with the delamination direction, as
illustrated in figure 5. In this case, equation (2.3) is modified
as follows:

Tdelð1� cos u cos lÞ ¼ wGC, ð2:28Þ
where l is the angle defining the misalignment of the
detached tape and attached length, due to deformation or
initial conditions. Since the elastic energy variation and the
surface energy remain unchanged, equation (2.13) becomes

Tdel(1� cos u cos l)þ T2
del

2Ewb
¼ wGC: ð2:29Þ

When the attached and detached tapes are aligned (λ = 0)
the above equation coincides with equation (2.13). Solving
equation (2.29) provides the tension needed to detach the tape

Tdel ¼ 2Ewb cos u cos l� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� cos u cos l)2 þ 2GC

Eb

r !
:

ð2:30Þ
These equations are valid under the hypothesis that even

when l = 0, the load is equally distributed over the peeling
line, and that the width of the peeling line remains
unchanged (with respect to l ¼ 0). This could be an over-
simplification of the problem in some cases, and local load
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concentrations could appear, with a reduction of the peeling
force.
3. Numerical implementation
To simulate the delamination and fracture behaviour of arbi-
trary multiple tape structures, we adopt a general numerical
model based on mechanical equilibrium and energy balance
[14]. For a given structure in 3D space, mechanical equilibrium
is obtained using the co-rotational truss formulation [21].

The system is built using a frame of truss members sus-
taining axial load only, where the elements in contact with
the substrate act as peeling tapes. The bending stiffness is,
therefore, neglected. A member k of the system linking the
nodes i and j, is defined by its initial length l, thickness b,
width w, elastic modulus E. The stiffness kk of the kth truss
member in the local coordinate system (1D along the axis
of the truss member) is

kk ¼ Ekbkwk

lk
: ð3:1Þ

The material stiffness of this element in the global coordi-
nate system (3D) is obtained constructing the transformation
vector

L ¼ c1 c2 c3 �c1 �c2 �c3½ � ð3:2Þ
where c1, c2 and c3 are the element direction cosines in 3D
space

c1 ¼
xj � xi

lk
, ð3:3Þ

c2 ¼
yj � yi

lk
ð3:4Þ

and c3 ¼
zj � zi
lk

, ð3:5Þ

and x ¼ x y z½ � is the coordinate vector of a node under
the deformation of the system. The material stiffness matrix
Km is then written as

Km ¼ kk LTL: ð3:6Þ

The external force vector Qe contains the components of
the external load acting on the system. Rather than directly
solving the linear system in terms of nodal displacements
Kmu ¼ Qe, an iterative scheme is implemented to address
the geometrical nonlinearity arising from this type of mech-
anical system. Indeed, large rotations of the truss members
are expected, which need to be taken into account in order
to obtain an accurate displacement field. We introduce the
geometric stiffness matrix as

Kg ¼ kkdlk
lk þ dlk

H, ð3:7Þ

where dlk is the elongation of the deformed element,
H ¼ hTh, h ¼ �I I½ � and I is the identity matrix. The
truss member contribution to the internal force vector is

Qi ¼ kkdlk LT: ð3:8Þ

Once all contributions are assembled in the linear system,
mechanical equilibrium is obtained by updating the nodal
displacement according to the following iterative scheme

uþ (Km þKg)
�1(Qe �Qi) ! u: ð3:9Þ

The 2-norm of the residual kQe �Qik is used as conver-
gence criterion. Therefore, the equilibrium between internal
and external loads is verified, including in the case of large
rotations.

In order to control the tape delaminations, the external
load is incremented iteratively, and the total potential
energy variation is calculated at each increment. The delami-
nation of a discrete length Dl of a member in contact with the
substrate leads to a modification of its length (and therefore
its stiffness) and of the coordinates of the node in contact

lþ Dl ! l ð3:10Þ
and

xþ Dx ! x: ð3:11Þ

The change in the attached node coordinate depends on
the direction of the attached part of the delaminating tape
respect to the detached one. It has two components on the
x–y substrate plane and a zero value in the z-direction
ðDl ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dxþ Dy
p Þ. At each step of the simulation, the

energy variation is verified for all the members in contact,
between the current state (a) and the state where the con-
sidered tape detachment has been incremented (b). The
external work variation associated with the detachment of
the tape k is the 1-norm of the product of the external force
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Figure 6. (a) Current deformed state (state a) of a V-shape 2D attachment
system under load. (b) Increment in the first tape detached length. (Online
version in colour.)
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vector and the difference between displacement after and
before detachment, i.e.

DV
Dl

¼ jQext(ub � ua)j: ð3:12Þ

The variation of elastic energy in the system is obtained as

DUe

Dl
¼ 1

2

XN
k¼1

[(kkdl2k )b � (kkdl2k )a], ð3:13Þ

where N is the total number of truss members in the system.
Detachment occurs, according to equation (2.2), when

DV
Dl

� DUe

Dl
� wGC: ð3:14Þ

Figure 6 illustrates the method used to check whether a
tape has delaminated or not for a simple V-shaped tape
system observed in the x–z plane. The displacement field
of the system as a response to the external load is first com-
puted (figure 6a). Then, for each element in contact with
the substrate, the detached length of the element is incre-
mented and the tape length and its attached node
coordinates updated. The new displacement field is then
computed to test if the element has delaminated, as
shown in figure 6b for the first element delamination test.
We then check if detachment has occurred by calculating
the variation of potential energy in (3.14). If not, the
system is reset and the next element delamination is veri-
fied. If no delamination is observed, the external load is
incremented, and so on until the whole system has been
fully detached.

Tape fracture is introduced by a simple removal rule
when one of the tape tensions reaches the critical value Tc.
If the tape geometry and loading are in the same plane, the
system can be reduced to a 2D problem.
4. Numerical results
We use the previously described numerical method to model
the complete staple-pin system shown in figure 1. The drag-
line, or cable that supports the external load is assumed to
have a diameter d� ¼ 0:2 mm with a circular cross-section
A� ¼ pd�2=4, an elastic modulus E� ¼ 100 MPa and a
length L0 ¼ 100 mm, for a total number of n ¼ 50 transversal
tapes with a spacing s = 1mm. We assume for each of these
tapes the following properties: w ¼ 1 mm, b ¼ 0:01 mm,
E ¼ 100 MPa, la ¼ 50 mm, u0 ¼ p=16, ld ¼ d�= sin u0 and
Tc ¼ 0:2 N. An example of the global load F vs. displacement
η response, together with the evolution of the deformed and
peeled system is shown in figure 7.

We first consider the case in which the critical energy
release rate GC is small enough for the system to completely
peel-off over its entire attached regions without any fracture
(GC ¼ 0:04 kJ m−2 <G1 = 0.05 kJ m−2), applying a load per-
pendicular to the substrate at w ¼ p=2. The corresponding
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overall load–displacement curve is shown in figure 7a, dis-
playing an initial quasi-linear behaviour, and then a
constant-load plastic-like branch, where an equilibrium is
reached as the secondary transversal tapes are delaminating.
The whole structure detaches at approximately constant load,
apart from small oscillations in the force value due to the dela-
minating tapes. Various snapshots of the deformation profile of
the entire structure as it delaminates are shown in figure 7b,
highlighting the advancing delamination front as the load
application point displacement increases. The overall adhesive
force F as a function of the critical energy release rate is shown
in figure 7c, again for an external load perpendicular to the
substrate w ¼ p=2. This highlights the discussed transition
from delamination to fracture behaviour of the tapes at
G1 ¼ 0:05 kJ m−2. This value coincides with the optimal critical
energy release rate predicted with equation (2.22).

To analytically predict the global peeling force, energy
balance expressed in equation (2.2) can be applied to the
cable. The interaction between the cable and the substrate
occurs through the transversal tapes, each of which can dissi-
pate a total amount of energy W given by equation (2.24).
Dividing this value by the width of the tapes gives the
energy per unit length needed to detach the cable. Using
equation (2.13), the energy balance applied directly to the
cable becomes

F(1� cosw)þ F2

2E�A� ¼
W
s
: ð4:1Þ

Thus, the global peeling force becomes

F ¼ 2E�A� cosw� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1� cosw)2 þ 2W

sE�A�

r !
: ð4:2Þ

Comparing the maximum peeling force obtained in the
simulations with the theoretical one (indicated as F1) in
equations (2.25) and (4.2), a good agreement is found
(figure 7c).
5. Experimental validation
To further verify the validity of the presented model, a com-
parison is made with experimental results from [7], where
artificial staple-pin attachment discs were fabricated through
electrospinning and tested in peeling experiments on alu-
minium substrates with variable adhesive characteristics. As
schematically shown in figure 8a, a 30 µm-diameter nylon
fibre was pulled at a peeling angle of w ¼ p, leading to the
delamination, deformation and fracture of perpendicularly
placed polyurethane fibres. Typically, this leads to a delamina-
tion zone of relatively constant width, as shown in figure 8b.
Having derived single fibre tensile properties up to fracture,
it was, therefore, possible to estimate for each tested attachment
disc the dissipated energy in peeling and in deformation up to
fracture, as described in [7]. The larger the delaminated width
(2lc, see Section 2), the larger the dissipated energy. Three
different substrate adhesive properties were considered, i.e. a
perfluoro-plasma treated aluminium substrate, an untreated
substrate, and an oxygen-plasma treated aluminium substrate
(in order of increasing adhesive properties). This allows us to
compare model predictions to experimentally measured points.

A single polyurethane fibre in the staple-pin structure has
a diameter of 1.5 µm and an initial detached length approxi-
mately equal to the radius of the nylon fibre: ld = 15.0 µm. Its
Young’s modulus E and critical tension Tc are derived from
tensile tests as E = 10.7 MPa and Tc = 39.9 µN. The spacing
between fibres is approximately s = 15 µm. The average dela-
minated lengths before fracture for the three considered
substrates are lc1 = 2.01 mm, lc2 = 1.71 mm, lc3 = 0.45 mm.
Since in all three cases fracture takes place after the transver-
sal fibres have partially delaminated, the experimental
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scenario corresponds to the case G1 <GC <G2. The GC values
of the three experimental points are determined from their
delaminated length values lci, determined as explained
previously in §2.2 (after equation (2.26)) giving:

lc ¼ ld
1� cos u0 � wGC

Tc
� Tc

2Ewb

� �
1þ Tc

Ewb

� �
wGC
Tc

� Tc
2Ewb

� �
ð1þ Tc

EwbÞ
: ð4:3Þ

The total dissipated energy per unit length of the nylon fibre
L0 can be derived by taking the integral of the experimental
force/displacement curves and dividing them by L0, and cor-
responds in the three cases to average values of WT1/L0 =
0.065 J m−1, WT2/L0 = 0.050 J m−1, WT3/L0 = 0.029 J m−1. These
values are obtained at a collector velocity of 0.1 cm s−1 and
peeling rate of 1 mm s−1. Rate effects are not considered/
modelled in this work.

These experimental values can be compared to theoretical
values, using the system geometrical and mechanical par-
ameters: first, cosulim is calculated from equation (2.20)
(using the entire nylon fibre diameter to estimate w of the
polyurethane fibres), and from it, G1 and G2 using equations
(2.22) and (2.23). Then, the corresponding dissipated
energy per unit length is derived using equation (2.26), as
WT/L0 =W/s.

Results are shown in figure 8c, in terms of dissipated energy
(per unit length L0) as a function of critical energy release rate,
having assumed for simplicity u0�p=2. The experimental data
are compatible with the model predictions, i.e. the total energy
dissipated during peeling is found to be higher for surfaces
with smaller work of adhesion [7]. This results in a larger
volume of threads getting deformed during peeling, and in
higher total energy dissipated during the peeling process.
6. Discussion
Numerical and experimental data confirm model predictions
that the global adhesive force of the system is obtained from
the energy dissipated by discrete sub-regions rather than
from the maximum force they can carry. This has non-trivial
consequences. Spiders employ multiple types of silks with
different moduli and architecture to maximize the total work
during attachment, rather than maximizing the maximum
detachment force. For example, viscid silk threads used for cap-
turing flying or walking prey use stretch flagilliform silk
threads coated with glue droplets [4,22]. During peeling the
glue droplets stretch and results in the formation of a suspen-
sion bridge-like structure, with the force distributed over a
much larger volume of the silk thread [23]. This again results
in maximizing the total energy dissipated during peeling as
a result of stretching the flagilliform thread and multiple glue
droplets, in addition to the thermodynamic work of adhesion.

In the case of pyriform attachment disks, recent work has
highlighted how these structures are particularly efficient in
providing high pull-off resistance, as well as being robust,
given the large variation in the pulling angles occurring in
a real environment [5]. Also, it has been shown that the silk
anchor structure evolved and was optimized over millions
of years, with considerable effects on the robustness of web
attachment [24]. The large adhesion energy of the attach-
ments prevents the threads from peeling and this results in
less energy spent in stretching the peeled threads. Therefore,
the total energy involved in peeling is reduced.
Additionally, in biological adhesion, typical structures
often display a hierarchical architecture, which means that
energy dissipation mechanisms occur at different scale levels
simultaneously, each of them having a specific response to
different load distributions over its sub-units. At present,
most of the studies are focused on the detachment force of
the contact units [25]. The present work shows that from a
lower to an upper level, the dissipated energy of each contact
is more important than its maximum detachment force. This is
particularly important in cases in biological adhesion where
most of the contacts are realized using tape-like units, display-
ing a typical ‘elastoplastic’ behaviour such as that shown in
figure 4, where the maximum detachment force is not
sufficient to determine the total dissipated energy.
7. Conclusion
We have studied fibrous or tape-like attachment systems with
multiple contacts, such as those found in staple-pin structures
in spider webs, introducing a general analytical scheme that
includes both delamination and tape fracture, and validating
it with numerical simulations and experimental data. We
have shown that adhesive energy and mechanical strength
are synergetic in providing optimized load-bearing proper-
ties, i.e. the maximum load an attachment can support
before detachment. Additionally, we have shown that the
energy dissipated by the contacts, accounting for elastic
deformation, detachment and fracture, determines the
adhesive force of a multiple peeling system.

Since structures formed by arrays of contact units, usually
tape-like contacts, are recurrent in biological adhesives, the
model discussed could help to improve the understanding of
Nature’s strategies to enhance and optimize adhesion. This
approach could also be useful in the future for the design and
optimization of artificial bioinspired adhesives, maximizing
adhesive strength while minimizing material use.
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