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Abstract A new quantum action-based theory,
dynamic quantized fracture mechanics (DQFM), is
presented that modifies continuum-based dynamic
fracture mechanics (DFM). The crack propaga-
tion is assumed as quantized in both space and
time. The static limit case corresponds to quantized
fracture mechanics (QFM), that we have recently
developed to predict the strength of nanostruc-
tures. DQFM predicts the well-known forbidden
strength and crack speed bands—observed in atom-
istic simulations—which are unexplained by con-
tinuum-based approaches. In contrast to DFM and
linear elastic fracture mechanics (LEFM), that are
shown to be limiting cases of DQFM and which
can treat only large (with respect to the “frac-
ture quantum”) and sharp cracks under moderate
loading speed, DQFM has no restrictions on treat-
ing defect size and shape, or loading rate. Simple
examples are discussed: (i) strengths predicted by
DQFM for static loads are compared with experi-
mental and numerical results on carbon nanotubes
containing nanoscale defects; (ii) the dynamic frac-
ture initiation toughness predicted by DQFM is
compared with experimental results on microsec-
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ond range impact failures of 2024-T3 aircraft alu-
minum alloy. Since LEFM has been successfully
applied also at the geophysics size-scale, it is con-
ceivable that DQFM theory can treat objects that
span at least 15 orders of magnitude in size.
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1 Introduction

Two classic treatments of linear elastic fracture
mechanics (LEFM) are Griffith’s criterion (1920),
an energy-based method, and a method based on
the stress-intensity factor developed by
Westergaard (1939). These have been shown to
be equivalent, as in the correlation between (sta-
tic) energy release rate and stress-intensity factors
formulated by Irwin (1957). An extension towards
dynamic fracture mechanics (DFM) was proposed
by Mott (1948), which included in Griffith’s ene-
rgy balance the contribution of the kinetic energy.
Dynamic stress-intensity factors were then also
proposed, as well as the dynamic generalization of
Irwin’s correlation, see the Freund’s book (1990).
Since LEFM and DFM can be applied only to large
and sharp cracks under moderate loading rates, we
choose to modify them by accounting for the dis-
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continuous nature of matter and crack propaga-
tion, in both space and time.

Considering a balance of action quanta during
crack propagation results in a more flexible theory
without ad hoc assumptions. We call this Dynam-
ics quantized fracture mechanics (DQFM; note:
we use the term “quantized”—as introduced by
Novozhilov—not “quantum”, that could be erro-
neously linked to quantum mechanics). Forbidden
strength and crack speed bands clearly emerge. As
quantized fracture mechanics (QFM; Pugno and
Ruoff 2004), allows one to predict the strength of
defective structures under quasi-static loading, so
DQFM can predict the strength (or the time to
failure) under dynamic loading as well as the crack
tip evolution. A comparison between QFM and
experimental/ numerical investigations on fracture
strength of carbon nanotubes (CNTs), and between
DQFM and experimental data on the dynamics
fracture toughness of 2024-T3 aircraft aluminum
alloy, is presented.

A considerable body of literature on fracture
in discrete lattices has been developed over the
past 25 years. In particular, the earliest work of this
kind was probably by Slepyan (1981). This was fol-
lowed by a number of important advances (Mar-
der 1991; Marder and Liu 1993), summarized in
a very complete work (Marder and Gross 1995).
Moreover, researchers have published a number
of related papers (e.g. Pechenik et al. 2002; Heizler
and Kessler 2002; Kessler and Levine 2003). Even
if all these papers presented important ideas, we
believe that our theory still represent an original
contribution in this area, as a natural extension
of DFM and QFM, in Griffith’s sense. In partic-
ular, analytical predictions can be easily obtained
by applying DQFM, in contrast to the previously
mentioned approaches.

2 Dynamic fracture mechanics

According to the principle of conservation of ene-
rgy, during crack propagation the total energy (sum
of the potential W, kinetic T, and dissipated Ω,
energies) is a constant. Thus, ∂/∂A(W+T+Ω) = 0,
where ∂Ω/∂A = GdC is the dynamic fracture ene-
rgy (dissipated per unit area A created) of the
material. The dynamic energy release rate is de-
fined as Gd = −∂(W + T)/∂A. The quasi-static

condition refers to T ≈ 0; thus, it is simply G = GC,
with G = −∂W/∂A the (static) energy release rate
and GC the (static) fracture energy. This repre-
sents the well-known Griffith’s criterion, used for
predicting the strength of cracked structures un-
der quasi-static external loads. On the other hand,
Gd = GdC allows one to consider dynamic exter-
nal loads for predicting strength and time to failure
and to describe the evolution of the crack tip. Let
us assume a crack of length l and speed v = dl/dt,
where t is time. From DFM, for a significant fam-
ily of problems, it is expected that Gd(l, t, v) =
g(v)Gd(l, t, 0), where g(v) is a universal function
of the crack tip speed (see Freund 1990):

g(v) ≈ 1 − v/cR (1)

with cR Rayleigh’s speed. Introducing the function
gC as:

gC = GdC

GC
(2)

the simplest assumption corresponds to gC ≈ 1.

The Irwin’s correlation
(

G = (K2
I /E′)+(K2

II/E′)

+ ((1 + v)/E)K2
III

)
connects the (static) stress-

intensity factors KI,II,III for opening (I), sliding (II),
and tearing (III) crack propagation modes with the
(static) energy release rate G, through the elastic
constants of the material ( E′ = E for plane stress,
or E′ = E/(1 − v2) for plane strain, where E is
Young’s modulus and v is the Poisson’s ratio of the
material). The extension in the dynamic regime
yields the dynamic Irwin’s correlation as Gd =
(AI(v)K2

dI/E′)+(AII(v)K2
dII/E′)+((1+v)/E)AIII(v)

K2
dIII, where KdI,II,III, are the dynamic stress-

intensity factors and AI,II,III(v) are universal func-
tions of the crack tip speed v. In addition, from
DFM, for a significant family of problems, it is ex-
pected KdI,II,III(l, t, v) = kI,II,III(v)KdI,II,III(l, t, 0),
where KI,II,III(v) are again universal functions of
the crack tip speed v (see Freund 1990):

kI(v) ≈ 1 − v/cR√
1 − v/cD

, kII(v) ≈ 1 − v/cR√
1 − v/cS

,

kIII(v) ≈ 1 − v/cS, (3)

where cD =
√

E
ρ

1−v
(1+v)(1−2v)

and cS =
√

E
ρ

1
2(1+v)

are
the longitudinal and shear wave speeds respectively



Dynamic quantized fracture mechanics 161

and ρ is the material density (cR ≈ 0.9cS). Thus,
the dynamic Irwin’s correlation implies in general:

AI,II,III(v) = g(v)

k2
I,II,III(v)

. (4)

By rearranging the previous formulas one
derives the condition for the incipient crack prop-
agation in the quasi-static regime (T ≈ 0) in the
stress-intensity factor based treatment, i.e., KI,II,III
= KI,II,IIIC, where KI,II,IIIC are the (static) critical
stress-intensity factors or alternatively called the
(static) fracture toughness. In dynamics the previ-
ous relation becomes KdI,II,III = KdI,II,IIIC, where
KdI,II,III are the dynamic stress-intensity factors
and KdI,II,IIIC represent the dynamic critical stress-
intensity factors, or the dynamic fracture tough-
ness. Note that to distinguish between KdI,II,IIIC(v)

and KdI,II,IIIC(v = 0), the former is called the dyn-
amic fracture propagation toughness and the latter
the dynamic fracture initiation toughness; in the
same manner, GdC(v) and GdC(v = 0) are the dyn-
amic fracture propagation and initiation energies.

Defining the functions kdI,II,IIIC as:

KdI,II,IIIC = kI,II,IIICKI,II,IIIC (5)

for consistency with the energy balance it must be
true that:

gC

k2
I,II,IIIC

= g(v)

k2
I,II,III(v)

= AI,II,III(v). (6)

We expect gC = gC(v) and kI,II,IIIC = kI,II,IIIC(v)

and for v = 0 gC = kI,II,IIIC = 1. According to
Eq. 6 the dynamic fracture propagation toughness
and energy cannot be considered both coincident
with their initiation values since gC = kI,II,IIIC = 1
cannot be satisfied for v �= 0. In addition, at the
incipient crack propagation the dynamic fracture
initiation toughness and energy should be identical
to their static values. The experiments in general
do not agree with this result; however we will show
this to be a consequence of adopting the classi-
cal criterion rather than due to the real nature of
materials.

3 Dynamic quantized fracture mechanics

In the DQFM treatment we assume the existence
of a fracture quantum and correspondingly the
energy balance has to be satisfied during a time

quantum, connected to the time needed to produce
a fracture quantum, which is finite as a conse-
quence of the finite crack speed. Thus, the quan-
tization (one might also call it “discretization”)
is assumed in both space and time. The energy
balance in the continuum space-time is “virtual”
and becomes real only for the real formation of a
fracture quantum. The classical energy balance is
thus rewritten as a quantum action balance, i.e., as:∫ t

t−�t �(W +T +Ω)dt = 0, where the finite differ-
ence is related to the quantized crack advance-
ment; thus, it is equivalent to 1/�t

∫ t
t−�t �/�A

(W+T+Ω)dt = 0 , where �A and �t are the time
and fracture quanta (the finite variations in the
integral are with respect to the crack surface area)
and 1/�t

∫ t
t−�t �/�AΩ dt ≡ GdC. Thus, DQFM

presents an analogy with quantum mechanics as a
consequence of the action quantum in each: GdC�

A�t, and h̄ (Plank’s constant), respectively.
Defining the dynamic quantized energy release

rate as:

G∗
d ≡

〈
〈Gd〉A+�A

A

〉t

t−�t
= −〈�(W + T)/�A〉t

t−�t

(7)

the criterion G∗
d = GdC describes the quantized

crack propagation under time-dependent loading
conditions (here 〈 f 〉x2

x1 represents the mean value
of f in the interval (x1, x2)).

The quasi-static condition corresponds to QFM
and becomes G∗ = GC (Pugno and Ruoff 2004),
where

G∗ ≡ 〈G〉A+�A
A = −�W/�A (8)

is the (static) quantized energy release rate (we
note that if Gd(l, t, v) = g(v)Gd(l, t, 0) is valid, then
G∗

d(l, t, v) = g(v)G∗
d(l, t, 0)). Correspondingly, the

dynamic quantized Irwin’s correlation is:

G∗
d = AI(v)K∗2

dI

E′ + AII(v)K∗2
dII

E′

+ 1 + v
E

AIII(v)K∗2
dIII, (9)

where K∗
dI,II,III are the dynamic quantized stress-

intensity factors (KdI,II,III > 0) defined by

K∗
dI,II,III ≡

√〈
〈K2

dI,II,III〉
A+�A

A

〉t

t−�t
. (10)

Thus, the incipient crack propagation in the quasi-
static quantized based treatment (Pugno and Ruoff
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2004) is K∗
I,II,III = KI,II,IIIC, where

K∗
I,II,III ≡

√
〈K2

I,II,III〉A+�A
A

, (11)

whereas in the general dynamic treatment of
DQFM it is:

G∗
d = GdC or K∗

dI,II,III = KdI,II,IIIC (DQFM). (12)

The criterion G∗
d = GdC can be used also for

mixed mode crack propagation (the crack will pro-
pagate in the direction of the maximum energy
release rate), whereas the criterion K∗

dI,II,III =
KdI,II,IIIC is valid only for pure crack propagation
modes.

In contrast to DFM, to apply DQFM for pre-
dicting the strength (or time to failure) of solids
GdC ≡ GC and KdI,II,IIIC ≡ KI,II,IIIC (for v = 0 gC
= kI,II,IIIC = 1) and thus, an ad hoc dynamic frac-
ture initiation energy or toughness does not have
to be postulated.

If KdI,II,III = kI,II,III(v)KI,II,III, the exp-
ressions for KI,II,III can be derived for hundreds
of cases from the stress-intensity factors handbooks
(Murakami 1986; Tada et al. 1985). Note that, as the
well-known Neuber—Novozhilov (Neuber 1958;
Novozhilov 1969) approach, our theory is still
based on continuum linear elasticity. There is, in
fact, a perfect parallelism between them. Thus, the
physical meaning of the stress-intensity factors is
obvious. However, we note that the assumption
of a discrete crack advancement — intrinsically
introducing and quantifying some “nonlinear” ef-
fects such as the R-curve behaviour — seems to
be a powerful tool for treating fracture in also in
complex materials.

In our treatment the fracture quantum has to be
considered as a characteristic material/structural
parameter. At nanoscale it could truly be coin-
cident with the atomic spacing (Pugno and Ruo-
ff 2004), but at larger size-scale it could be, for
example, of the order of the grain size or of other
macroscopic heterogeneities. In general, it has to
be considered as a free parameter to match the res-
ult of the tensional approach in the limit of crack
length tending to zero. In some cases this corre-
sponds to a fracture quantum increasing with the
size-scale and for this reason we have defined it
as a material/structural parameter. Similar consid-
erations hold for the time quantum. However, we

believe that the physics behind the fracture and
time quanta is connected to the discrete nature of
the energy flux during the crack propagation.

Equations (1–12) define DQFM completely, pre-
dicting the failure strength σf, the time to failure tf
and the dynamic crack tip evolution v(t), for gen-
eral time-dependent loading conditions σ = σ(t),
assuming the energy release rate to be quantized in
both space and time. DQFM treats any defect size
and shape (as QFM, see Pugno and Ruoff 2004)
and loading rate. It is evident that interesting limit
conditions for DQFM are (we now omit the sym-
bols I,II,III):
⎧⎪⎪⎨
⎪⎪⎩

DQFM : G∗
d = GdC ≡ gCGC, K∗

d=KdC≡kCKC
�t = 0, v = 0→ QFM : G∗ = GC, K∗ = KC
�A = 0, �t = 0 → DFM : Gd = GdC, Kd=KdC
�A=0, �t = 0, v=0→LEFM : G=GC, K=KC

4 The tensional analog of the action-based
DQFM

Let us assume a fracture quantum of length a (e.g.,
�A ≡ ah in a plate having height h). The time
quantum is expected to be of the order of �t ≈ a/v.
Indicating with σy the stress acting at the tip (placed
at x = 0) of a defect, the stress analog of DQFM
for the strength prediction must be written as:

σ ∗
d ≡ 1

a�t

t∫

t−�t

a∫

0

σy(x, t)dx dt = σC. (13)

This crack propagation criterion has been formu-
lated as the dynamic extension of the Neuber—
Novozhilov criterion (Neuber 1958; Novozhilov
1969) and successfully applied in the study of dyn-
amic crack propagation under high loading rate
conditions by Morozov et al. (1990; see also Petrov
1996) that consider �t as an incubation time to
failure, a characteristic relaxation time upon micro-
fracture of a material. The analogy with DQFM for
predicting the structural strength and time to fail-
ure for pure crack modes is evident by rewriting
the DQFM criterion for crack propagation as:

K∗
d =

√√√√√ 1
a�t

t∫

t−�t

l+a∫

a

K2
d(x, t)dx dt = KC. (14)

where l denotes the crack length.
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5 The equation of the dynamic R-curve and
of the dynamic fracture resistance

For the continuum approach, the measured (super-
script (m)) dynamic fracture energy (which is unde-
fined in the classical treatment) Gm

dC is a function
(the so-called R-curve) of geometry, length and
crack/loading speed (and it is thus not a material
property, see Hellan 1985). To obtain the same pre-
dictions of DQFM by applying the classical DFM,
one is forced to assume an unrealistic dynamic
resistance curve (thus not a material property, e.g.,
a function of the crack length, structural size and
shape, time to failure, and so on. . .) GdC → G(m)

dC ≡
R. By comparing the DQFM and DFM treatments,
we find:

R = gCGC + Gd − G∗
d. (15)

Accordingly, if the continuum approach is used
in the stress-intensity factor treatment, one would
measure (subscript (m)) a dynamic fracture
toughness:

K(m)

dC = kCKC + Kd − K∗
d, (16)

observed to be different from KC (or equivalently
R from GC, also at the incipient crack propagation
(where ν = 0 and gC = kC = 1) (see Hellan 1985).
In contrast to DQFM, continuum approaches are
unable to explain why at the incipient crack prop-
agation R is different from GC, or K(m)

dC from KC .
As we are going to show, DQFM is able to quanti-
tatively predict such a fictitious discrepancy.

6 Simple examples of applications strength, time
to failure, and crack tip equation

We consider the Griffith’s case (a) of a linear elas-
tic infinite plate in tension, of uniform thickness
h, with a crack initial length 2l0 orthogonal to the
applied far field (crack opening Mode I). The mate-
rial is described by the fracture toughness KIC and
the fracture quantum at the considered size-scale
�A ≡ ah. For this case, as it is well known, KI(l) =
σ
√

π l, where σ is the applied time-independent far
field stress. In this first simple case we thus consider
a time independent stress-intensity factor. Accord-

ing to DQFM (or QFM) the failure strength is:

σf = KIC√
π(l0 + a/2)

. (17)

Note that in this case the tensional analog (the
static case of Eq. 13 and developed by Neuber–
Novozhilov (Neuber 1958; Novozhilov 1969), con-
sidering the complete stress field at the tip of a
crack, gives the identical result but in a less sim-
ple way, as demonstrated in (Taylor et al. 2005) in
which basically an extensive data fitting of QFM to
larger size experiments is successfully presented.
Inverting Eq. 17, the fracture quantum can be esti-
mated from the mechanical properties at a given
size-scale, σC = σf(l0/a → 0) and KIC, as a =
2K2

IC/(πσ 2
C).

Let us assume in this example for the sake of
simplicity gC ≈ 1 and Gd ≈ g(v)G. The dynamic
evolution under the constant applied stress σf caus-
ing the initiation of the crack propagation, is pre-
dicted by DQFM as:

v
cR

= 1 − l0 + a/2
l + a/2

. (18)

According to Eq. 18 the Griffith’s crack is pre-
dicted to be unstable. The time evolution of the
crack tip could be obtained by solving the differ-
ential equation (18), where v = dl/dt. For LEFM
and DFM, the predictions of Eqs. 17 and 18 would
be the same if the fracture quantum is assumed to
be negligible. As expected, the results of the quan-
tized approach tend to the classical values if the
continuum hypothesis a/l, a/l0 → 0 is made. The
corresponding result for σf, in contrast to Eq. 17,
would be without meaning for l0 → 0, predicting
an infinite ideal strength. In contrast, if the fracture
quantum corresponds to the atomic size, the ideal
strength σC = σf(l0/a → 0) predicted by Eq. 17
is identical to Orowan’s prediction (1948) if multi-
plied by a factor of

√
π/4 ≈ 1, as discussed also by

Pugno and Ruoff (2004). Note that the experimen-
tally observed asymptote of v/cR < 1 for l/l0 → ∞
can be explained by generation of secondary cracks
from the tip of the predominant one (Holland and
Marder 1999) and thus can not be deduced from
the pure Griffith’s case (i.e., Eq. 18), in which no
interacting cracks are considered.
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By applying Eq. 15, and assuming v = 0, we find
the expression of the (static) R-curve as:

R = GC

1 + a/(2l0)
. (19)

thus, as expected (see Hellan 1985), R increases
and tends to GC for crack length tending to infinity.

Taking into account the blunting of the crack tip
(for example, due to the opening of two disloca-
tions at the tip, see Holland and Marder 1999), we
have to make the substitution GC → GC(1+ρ0/2a)

in the previous equations (Pugno and Ruoff 2004).
Equations 17 and 18 would become:

σf = KIC

√
1 + ρ0/2a
π(l0 + a/2)

= σC

√
1 + ρ0/2a
1 + 2l0/a

, (20)

v
cR

= 1 − l0 + a/2
l + a/2

1 + ρ/2a
1 + ρ0/2a

, (21)

where ρ and ρ0 are the tip radii of the cracks
of length l and l0 respectively, and σC = σf(l0 =
0, ρ0 = 0). Note that, if the continuum hypothesis
is made (a/l0, a/ρ0 → 0), Eq. 20 yields practically
the same result as the classical tensional approach
(maximum stress equal to material strength), for
which the stress concentration (σC/σf is 1+2

√
l0/ρ0

≈ 2
√

l0/ρ0 (small radii) as given by the Theory
of Elasticity. Thus, Eq. 20 represents the link bet-
ween concentration and intensification factors. It
predicts a finite strength that is size-dependent (in
contrast with the continuum tensional approach
coupled with the Theory of Elasticity) for geomet-
rical self-similar defects in an infinite plate.

We consider a complementary case (b), a
stationary crack, for which the stress-intensity
factor is independent from the crack length. In
particular, a semi-infinite crack in an otherwise un-
bounded body is considered. The body is initially
stress free and at rest. At time t = 0 a self-balanced
antiplane shear τ begins to act on the crack faces.

In this case, as it is well known, KIII(t) = 2τ

√
2cSt
π

(see Freund 1990). The time to failure tf is pre-
dicted by DQFM to satisfy the following relation-
ship (tf > �t):

2τ

√
2cS

π
= KIIIC√

tf − �t/2
. (22)

Note that, according to our time quantization, a
minimum time to failure exists and it must be of

the order of tf min ≈ �t. This could represent an
additional physical meaning of the time quantum.
On the other hand, by applying DFM, we obtain
the same result of Eq. 22 if the time quantum is
neglected. The equation of the R-curve, according
to Eq. 15, for v = 0 is:

R = GC

1 − �t/(2tf)
, (23)

and it decreases, tending to GC when time to fail-
ure tends to infinity. Since tf min ≈ �t, for this case,
the measured dynamic fracture initiation energy is
predicted approximately to be twice its static value
by varying the time to failure within several orders
of magnitude. If one applies the classical DFM,
then, according to DQFM, an “apparent” dynamic
resistance, doubled with respect to the static value,
is obtained. This behaviour is observed experimen-
tally, as we will discuss in the following.

7 Strength and crack speed forbidden bands

Let us reconsider the Griffith’s case. As stated
for DQFM the crack length is quantized, and so
2l0 = n0a and 2l = na, (n0 and n are non negative
integer numbers) from which the quantization of
the strength and crack speed can be deduced. For
the Griffith’s case, from Eqs. 20 and 21 and assum-
ing a blunt crack due to adjacent vacancies (i.e.,
2ρ ≈ a), and time-independent blunt tips (ρ0 ≈ ρ)

we have:

σf = σC

√
5/4

1 + n0
, n0 > 0, (24)

v
cR

= 1 − 1 + n0

1 + n
, n ≥ n0 ≥ 0. (25)

The first (and largest) forbidden strength band
(between σC and the prediction for n0 = 1 ) is
in the range (1 − 0.8)σC; atomistic simulations of
two-dimensional lattices with adjacent vacancies
quantitatively agree with such forbidden bands (see
Pugno and Ruoff 2004); for example just one
vacancy is expected to reduce the strength by a
factor of ∼20%. Furthermore, DQFM derives for-
bidden crack speed bands. Starting from our simple
assumption of gC = 1, Gd = g(v)G, the first band
(between the predictions for n = n0, n0 + 1) is in
the range (0 − (1 + n0)/(2 + n0))v/cR; the small-
est (n0 = 0), corresponding to the crack initiation
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from a plain specimen, is (0 − 0.5)v/cR. Atomistic
simulations of crack evolution in two-dimensional
lattices qualitatively show such forbidden bands
(see Holland and Marder 1999). They imply hys-
teretic crack motion (hysteretic cycles in the crack
speed versus applied load curves), known as “lat-
tice trapping”. Postulated since the early 1970s, it
has been observed numerically but never experi-
mentally (see Holland and Marder 1999). Due to
the large size scale of the experiments (implying
large preexisting cracks, i.e., large values of n0)
such strength and crack speed forbidden bands are
difficult to observe; on the other hand, in contrast
to continuum based theories, DQFM implies such
strength and crack speed “quantizations”, which
may be detectable in nanoscale experiments.

8 Static resistance: an application for predicting
the fracture strength of defective nanotubes

The strength and fracture of the outer shell of
multi-walled (MW) carbon nanotubes (CNTs) is
reported by Yu et al. (2000). The tensile strengths
of this outer shell for 19 individual MWCNTs were
measured with a nanostressing stage having two
opposing atomic force microscope (AFM) tips, and
operated in a scanning electron microscope (SEM).
This tensile strength ranged from 11 to 63 GPa
for the set of 19 MWCNTs that were loaded (in
particular, values of 63, 43, 39, 37, 37, 35, 34, 28,
26, 24, 24, 21, 20, 20, 19, 18, 18, 12, 11 GPa were
measured).

From such experimental results, distinct clusters
of a series of decreasing values of strength, with
the maximum 63 GPa, and other values at 43, and
in the ranges 36–37, 25–26, 19–20 and 11–12 GPa,
were observed. The highest measured value of 63
GPa is lower than the ideal tensile strength of small
diameter CNTs, recently obtained with ab-initio
density functional theory (DFT, Ogata and Shibu-
tani 2003). If the fracture quantum is assumed to be
the distance between two adjacent broken chem-
ical bonds, i.e., a ≈ √

3r0, with r0 ≈ 1.42 Å and
adjacent vacancies are considered, i.e., 2l0 = n0a
in Eq. 20, the predicted strength quantizations for
n0 = 2, 4, 6, 8 (with ρ0 ≈ 0.8a ≈ 2.0 Å, shown
in Fig. 1a) are in close agreement with molecu-

Fig. 1 (a) Atomic n-vacancy defects and short blunt cracks
used for predicting the strength with QFM (Pugno and Ru-
off 2004): the crack length was imposed as na, whereas the
blunt tip radius was chosen to fit the ideal nanotube strength;
as shown, the blunt tip radius appears to be reasonable. The
fracture quantum length a is the distance between two adja-
cent parallel C–C bonds. (b) Holes used for predicting the
strength with QFM (Pugno and Ruoff 2004). The fracture
quantum is again fixed as identical to the length between two
adjacent parallel C–C bonds. (Note that “opened bonds” are
not shown in the figure, and for this reason it appears as if
the smallest circles seem to “underestimate” the defect size
(in reality, they do not))

lar mechanics (MM) calculations (Belytschko et al.
2002), see Pugno and Ruoff (2004). The result is
that the strength is strongly reduced by the pres-
ence of the nanoflaws. Thus, that materials become
insensitive to flaws at nanoscale (Gao et al. 2003)
cannot be considered of general validity.
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The initial crack speed, for the different cases of
n0 = 2, 4, 6, 8, would be estimated to be respec-
tively of v/cR = 3/4, 5/6, 7/8, 9/10 (but we note
that such estimations refer to the overly simplified
assumption of gC = 1, Gd = g(v)G).

Different kinds of defects, such as holes, might
be more stable than crack-like defects at the nan-
oscale (Hirai et al. 2003; Mielke et al. 2004).
Nanotubes with “pinhole” defects have been rec-
ently investigated by molecular dynamics (MD)
simulations (Hirai et al. 2003). In this context,
quantum mechanical calculations using DFT semi-
empirical methods and MM simulations have been
recently performed (Mielke et al. 2004). The re-
sults of the atomistic simulations were compared
with QFM, with close agreement (nano-holes are
as shown in Fig. 1b). We assumed for such (large)
nanotubes as the outer shell in the 19 MWCNTs
(the diameter varied from 20 nm to 40 nm), that
the cross-section reduction due to the presence of
defects was negligible. Interestingly, enforcing this
constraint the strength tends asymptotically to a
finite value (1/3.36 of the strength of the struc-
ture without the hole according to QFM, in agree-
ment with MM simulations, see Pugno and Ruoff
2004); this is however still larger than the small-
est values experimentally measured. Perhaps (i)
sharper defects as discussed above, or (ii) larger
holes (breakdown of the assumption of no reduc-
tion in cross-section), or (iii) “small” holes satisfy-
ing the cross-section constraint, but close and thus
causing a greater stress concentration between
them than would be the case if they were isolated,
are all possible reasons for strength values as low
as 11 GPa.

An additional intermediate type of defect was
numerically treated by Zhang et al. (2004); cor-
responding to an elliptical hole with size that we
define by an index i. Starting from a hole obtained
removing 6 atoms at the vertexes of an hexagon
(i = 1) the other defects, corresponding to larger
sizes and indexes i, are obtained removing the
lateral four carbon atoms at each blunt tip (see
Table 1). The comparison between QFM (only the
case of pinhole defect i = 1 was treated by Pugno
and Ruoff 2004, whereas here we simply consider
ρ0 ≈ 0.9a and l ≈ (2i − 1)r0, i = 2, 3, 4, 5, in
Eq. 20) and atomistic simulations (Zhang et al.
2004) is reported in Table 1. However, we note

that the numerically observed strength asymptote
for increasing crack length is “unexpected” and
thus unclear, infact for such a case the crack bec-
omes macroscopic and classical fracture mechanics
would suggest the strength decreasing to zero.

Considering an ideal strength for the experi-
mentally investigated MWCNTs of 93.5 GPa (as
computed by Belytschko et al. 2002), the corre-
sponding strength for an i = 1 defect is 64 GPa
(compared to the measured value of 63 GPa), for
an i = 3 defect is 43 GPa (in agreement with the
measured value), for an i = 4 defect is 37 GPa
(against the measured value of 39 GPa), for i = 5
defect is 34 GPa (against the measured values of 35
and 34 GPa), for i = 6 defect is 30 GPa (against the
measured values of 28 GPa), and so on. This could
represent a more plausible scenario (since elliptical
holes are chemically more stable than crack-like
defects) compared to the assumed linear defects
(and circular holes) that were discussed by Pugno
and Ruoff (2004). LEFM cannot treat blunt, or
short cracks, or holes; DQFM/QFM can.

9 Dynamic resistance: an application for
predicting the time to failure under impacts

In this section we refer to the experimental work
discussed by Owen et al. (1998) on 2024-T3 aircraft
aluminium alloy impacts. Petrov and
Sitnikova (2004) applied Eq. 13 with respect to
time considering only the asymptotic part of the
stress field, thus σy(t) ∝ KI(t) (and σC ∝ KIC),
to rationalize some of the experimental results by
Owen et al. (1998). The expression of the dynamic
stress-intensity factor as applied to the experiments
is obtained by considering an infinite elastic plane
containing a semi-infinite crack subjected at t = 0
to a linearly increasing impact load. The measured
dynamic fracture initiation toughness can be obt-
ained according to Eqs. 14 and 16, where here
v = 0, so that kC = 1. According to DQFM, we find

the result: K(m)

dIC/KIC = 2t3/2
f

√
�t/

√
t4f − (tf − �t)4,

thus as a function of the time to failure. This func-
tion is reported as the solid line in Fig. 2 assuming
�t = 50 µs, whereas the dots refer to the DFQM
tensional analog of Eq. 13 fitted with good agree-
ment with the experimental results assuming
�t = 40 µs. Since the two criteria are different,
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Table 1 Comparison
between fracture
strengths of a (50,0)
carbon nanotube,
obtained by MM and by
QFM, with elliptical holes
of size i (the graph shows
the example of i = 1 and
the atoms (in black) that
would be removed to
generate the i = 2 defect)

Cσ σ i=1 i=2 i=3 i=4 i=5 i=6

Theo. 0.68 0.57 0.46 0.40 0.36 0.32
Num. (50,0) 0.64 0.51 0.44 0.40 0.37 0.34

1

1.2

1.4

1.6

1.8

2

2.2

-5 -4 -3 -2 -1 0 1 2 3

Log (t f /s)

K
dI

C
/K

IC

Fig. 2 Dynamic fracture initiation toughness over (static)
fracture toughness, as a function of time to failure for 2024-
T3 aircraft aluminum alloy. Solid-line obtained by DQFM
(�t = 50 µs); the dots are from the tensional analog of
DQFM shown to be in good agreement with the experi-
ments when fitted using �t = 40 µs (see Petrov and Sitnik-
ova 2004)

different values for �t were expected; however we
note that the two values are close. In addition, we
note that from the DQFM prediction, a minimum
time to failure tf ≈ �t is expected, correspond-
ing to a dynamic fracture initiation toughness of
K(m)

dIC ≈ 2KIC. Note that Owen et al. (1998) report
the observation of “a minimum time necessary to
initiate crack growth”, of the order of tf ≈ 75 µs,
and a dynamic fracture initiation toughness that
“reveals an increase of a factor of ∼ 2, as the load-
ing rate increases by seven orders of magnitude”
(or as the time to failure decreases). DQFM is thus
in good agreement with the experimental data and
with the criterion of Eq. 13.

DFM is unable to explain such observations
(e.g., the apparent variation of the dynamic frac-
ture initiation toughness). DQFM offers explana-

tions and it is of interest to see further experimental
data with which it could be assessed.

10 Concluding remarks

DQFM has been presented and used to study the
strength and time to failure of solids, as well as the
time evolution of the crack tip, also at nanoscale.

For example DQFM can be used as a tool in the
design of the Space Elevator megacable based on
CNTs (since no experiments or numerical atom-
istic simulations could be used for such a large
scale). For example, assuming in such a cable large
holes (very likely as a consequence of its large
size Carpinteri and Pungo 2005), DQFM predicts
an asymptotic limit value of σC/σf = 3.36; thus,
assuming the ideal nanotube strength of σC =
93.5GPa (Belytschko et al 2002), we obtain a fail-
ure stress of 28 GPa. Considering in addition the
actual nanotube cross-section area, we estimate the
ratio between the resistant and apparent cross-sec-
tion area as η ≈ π(R2

e − R2
i )/(2

√
3(Re + d/2)2),

with Ri, Re the inner and outer nanotube radii
and d ≈ 0.334 nm (i.e., the interlayer carbon spac-
ing); for Ri ≈ 0 and Re >> d, η ≈ π/(2

√
3) ≈

0.9 and the prediction for the cable strength is
η · 28 GPa ≈ 25 GPa. Since more critical defects
could also be present in such a cable, this can be
considered a statistically plausible upper bound
for its strength, thus much lower than the ideal
strength of nanotubes, today erroneously assumed
in the megacable design (see Pugno 2006 and the
related news at Nature, 22 May 2006: The space
elevator: going down? by J. Palmer).
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