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Abstract
We present a smart robot structure that exploits anisotropic friction to achieve stick-slip locomotion.
The robot is made out of three components: a plastic beam, a planar dielectric elastomer actuator and
four bristle pads with asymmetric rigid metallic bristles. We show that when the robot is
electronically activated at increasing frequency, its structure exploits the resonance condition to reach
the maximum locomotion speed. The fundamental frequency of the structure is estimated both
analytically and numerically, allowing the range of frequencies in which the top locomotion speed
was observed during the experiments to be identified. The locomotion speed of the robot as a
function of the actuation frequency is estimated with a frequency response analysis performed on a
discretised model of the structure, revealing good agreement with the experimental evidence.

Keywords: actuator, dielectric elastomer, electroactive polymer, frictional anisotropy, resonator,
soft robotics

(Some figures may appear in colour only in the online journal)

1. Introduction

Nature has always been a source of inspiration for man to
construct a large variety of artefacts. Hence, on the one hand,
a large variety of artefacts have been made, all possessing, to
some extent, life-like features. On the other, the world of
modern technology is populated by machines made of strong,
rigid, inorganic materials which exploit thermo-mechanical,
electromagnetic and pneumatic/hydraulic energy conversion
principles. In very recent years the field of robotics has seen a
fast-growing interest and momentum in emerging knowledge

of mechanism and materials exploited by natural organism to
accomplish their living functions. Biologically inspired
design [1], artificial ethology [2], artificial life [3], bio-
robotics [4] and soft robotics [5] are different fields in which
these tendencies manifest themselves.

The propulsion and locomotion strategies proper of differ-
ent animal species have been of interest to biologists for cen-
turies and strongly revisited these days [6]. Boneless and
limbless soft-bodied animals have recently attracted the interest
of engineers trying to capture strategies and replicate functions
that different species use for survival in different environments.
Crawling, ciliary swimming, climbing, digging and burrowing,
regulation of particles-surface interactions and peristaltic trans-
port are all functions under scrutiny by bio-inspired designers.
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Inspired by the kinematics of inchworms, crawling robots
consisting of a deformable body driven by Dielectric Elastomer
Actuators (DEAs) have been recently reported in literature. In
particular, on the one hand, crawling robots based on the prin-
ciple of unimorph bending were proposed to be able to reach
locomotion speeds up to approximately one body length per
second without any need of pre-stretching the elastomer [7]. On
the other, saddle-like robots, while requiring a deformable
structure to hold a prestretched DEA around a minimum energy
configuration [8], have shown the capability to achieve higher
locomotion speeds, in the order of several body lengths per
second [9]. This kind of robot however presents a complex
manufacturing procedure. Indeed, since the saddle shape is
achieved upon demolding, when the robot bends to its rest state,
it is practically impossible to tune its shape after the manu-
facturing in case of need. To overcome this issue, a possibility is
to couple the DEA with an arch-like beam, which easily allows:
(i) the tuning of the length of the robot during the manufacturing
phase, (ii) the compensation for the creep deformation occurring
at a later stage, and (iii) the replacement of the DEA in case of
rupture.

Following this approach, in this paper, we describe a smart
structure endowed with locomotion capabilities which combine
resonant activation [10] and anisotropic friction [11]. While
operation at resonance provides a minimum in energy con-
sumption and speed changes, still maintaining this energy
minimum, by simply tuning body resonance, functional aniso-
tropy offers valid design options for direction-dependent or
orientation-dependent sliding [12]. The structure is actuated by a
dielectric elastomer actuator which, in addition to fast, silent
large stroke and durability [13], also has the capacity of self–
sensing [14] which easily enables closed-loop control [15].

2. Materials and methods

2.1. Concept design

The robot presented in this work consists of an assembly of
three components: a plastic beam, a planar DEA and four
bristle pads with asymmetric rigid bristles, see figure 1(a).

Since the actuator behaves as a spring with initial pretension
(as better explained in the following), when coupled to the
bent plastic beam it results in a self-standing structure in
which elastic energy is stored. From this configuration
(figure 1(b), top), owing to the capability of the dielectric
elastomer membrane to elongate upon application of a driving
voltage V [16], a part of the stored elastic energy is released,
allowing the robot to deform by increasing its length
(figure 1(b), centre): the back bristles stick to the ground and
the front bristles slip forward. In a second phase, when the
voltage V is switched off, the DEA shortens, returning to its
original length. This triggers the forward slip of the back
bristles while the front bristles are stuck to the ground
resulting in an overall net displacement dx (figure 1(b), bot-
tom). What is here described as a simple sequence of two
steps can be enhanced by exploiting the vibration properties
of the structure and impose an on-off frequency of the voltage
signal close to the resonance frequency of the robot.

2.2. Robot components

2.2.1. Dielectric elastomer actuator. DEAs are electromechanical
transducers consisting of a thin layer of a dielectric elastomer
coated on both sides with compliant electrodes. When a voltage V
is applied across the electrodes, the attraction electrostatic forces
squeezes the soft dielectric layer causing a reduction of its
thickness and an expansion of its surface [16]. Since in our case
only a unidirectional actuation along the longitudinal direction
was needed, we equipped the DEA with stiffening elements
aligned in the transverse direction, as previously reported to be
effective for this purpose [17, 18]. The DEA was manufactured
by coupling two layers of an acrylic elastomer film (VHB 4910,
3M, USA), each of them featuring a thickness at rest of 1mm, a
width of 12.5mm and a length of 17.5mm, chosen because of its
well-known high electromechanical transduction performance in
terms of achievable active stress and actuation speed. To
manufacture the actuator, the two VHB 4910 membranes were
equi-biaxially pre-stretched by 300% and attached to individual
support frames allowing for obtaining an actuator with a length of
70mm and a width of 50mm. At this stage, such pre-strain
caused a thickness reduction of the coupled layers from 2 to

Figure 1. Schematic drawing of the locomotion robot (a) consisting of an assembly of three components: a plastic beam, a dielectric
elastomer actuator and four clawed pads featuring rigid bristles with an asymmetric orientation. The locomotion cycle (b) starts from the
initial self-standing configuration (top); when a voltage V is applied to the DEA, an elongation is induced resulting in a forward slip of the
front bristles (centre); finally, when the voltage is switched off the DEA shrinks, resulting in a forward slip of the back bristles (bottom).
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0.125mm in the regions between the stiffening elements. The use
of that pre-strain is justified by its well-known beneficial effect in
terms of increase of electromechanical actuation [19]. The
stiffening elements, consisting of wood sticks of 1.5mm in
diameter and 50mm in length, were aligned with a uniform pitch
of 10mm. The well-known adhesive properties of the VHB
material simplified the manufacturing process by ensuring a
proper bonding between the layers, also allowing for properly
retaining the stiffening elements enclosed between them as
schematically represented in figure 2. The DEA was eventually
removed from the support frames and coupled with the plastic
beam as better explained in the following. The compliant
electrodes consisted of carbon conductive grease (MGChemicals,
Canada). The mass of the actuator, measured with a precision
scale, accounted for 2.5 g. A schematic of the DE actuator is
represented in figure 2.

In order to measure the axial stiffness of the DEA about
the pre-stretched configuration, a set of three tensile tests with
a uniaxial tensile machine was performed with two-hour
interval between subsequent experiments to allow the
recovery of viscoelastic strains. In each test, the DEA was
secured to the load cell clamps with an initial length
correspondent to the original strain of 300% along the
longitudinal direction. The tests were performed with a speed

of 3 mm s−1 (corresponding to a strain rate of 0.043 s−1).
Results are shown in figure 3, in which the increment in force
required to elongate the specimen is reported.

By noting that the linear fit indicated with a red line
interpolates satisfactorily the experimental data, we computed

Figure 2. Schematic drawing of the DEA with embedded stiffening elements aligned along the transversal direction. When a load,
schematically represented by the weight of a mass m, pre-stretches the actuator, the initial length l0 is obtained (left). Upon application of a
driving voltage V and since the elongation along the other in-plane direction is prevented by the stiffening elements (therefore the transversal
dimension b does not change), the actuator elongates only along the longitudinal direction reaching the length l>l0 and the
thickness d<d0.

Figure 3. Tensile tests of the DEA to calculate the tensile stiffness
kDEA=29.85 N m−1 (performed with a strain rate of 0.043 s−1).
The average between three experiments are reported. The standard
deviation is within the size of the point used to represent the data.
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its slope that corresponds to the stiffness of the specimen,
namely kDEA=29.85 Nm−1.

The reproduction of the same test with a hyper-electro-
elastic model has proven to be difficult due to the lack of
reliable and extensive investigations of the behaviour of the
acrylic elastomer under investigation at large in-plane pre-
stretches. The work by Hossain et al [19] aimed at filling this
gap, however the studied transverse pre-stretch was only up
to 200%.

2.2.2. Plastic beam. The plastic beam of the robot was
obtained from a 1.5 mm thick flat sheet of solid polystyrene
plastic having a volumetric mass density of 1050 kg m−3, the
shape schematically represented in figure 4 was realized with
a Computer Numerical Control (CNC) milling machine. The
beam features a central part having a width of 20 mm and a
length of 100 mm and two side appendices where, by
exploiting the presence of interlocking holes (having a
2.5 mm diameter and 7 mm pitch), the clawed pads are
secured. A rectangular opening on each appendix allowed for
coupling the DEA to the plastic structure. The DEA was
secured to the structure by means of one rigid plastic bar per
side screwed to the structure as previously shown in figure 1.
Each rigid plastic bar and its screws accounted for a weight
of 1.25 g.

The polystyrene plastic was characterised by performing
a tensile test with a uniaxial tensile machine on five ‘dogbone’
specimens conforming to the type V shape reported in the
ASTM D638-03. The test speed was 0.0167 mm s−1. From
the average values of the experimental data reported in
figure 5 we see that the stress–strain curve begins with a toe
region. As stated in the Annex A1 to the ASTM D638-03, this
region does not represent a property of the material since it is
caused by a take up of slack and alignment or seating of the
specimen. Therefore, to obtain a correct value of the elastic
modulus, the stress–strain values must be compensated to
give the corrected zero point on the strain or extension axis by
following the reported procedure. According to such
procedure, the modulus of elasticity is obtained by extending

the initial linear portion of the load-extension curve and
dividing the difference in stress corresponding to any segment
of section on this straight line by the corresponding difference
in strain using the average original area of the cross section in
the gauge length segment of the specimen. Following this
procedure for the strain interval 0.014<ε<0.02, the
Young’s modulus Y=1.172 GPa was calculated.

2.2.3. Bristle pads. Two different types of bristle pads were
tested. The first one was obtained by 3D printing a
photopolymer resin (Clear FLGPCL02, FormLabs, USA)
with a stereolithography 3D printer (Form2, FormLabs, USA)
eventually exposed to UV rays for 20 min in order to increase
its hardness. The second one consisted of stainless-steel
bristles obtained from a commercial bristle belt used in the
textile industry for carding fibres. Figure 6 shows a picture of
each pad.

As shown in figure 6(a), the bristles of the 3D printed
pads were manufactured with six different angles with respect
to the vertical axis (from 15° to 65°). Despite the change of
the angle, each pad featured a constant height of 6 mm,
achieved by compensating the thickness of each base. Each
pad presented a total of 49 bristles arranged in seven rows and
seven lines aligned with a uniform pitch of 1.5 mm on a
squared base plate having a 16 mm side dimension. Each
bristle had a diameter of 0.7 mm ending with a sharp tip
printed with convergent semi-angle of 13°.

The stainless-steel pads were composed of six rows and
seven lines of bristles, aligned with a uniform pitch of
1.5 mm, for a total of 42 steel bristles on each pad. Each
bristle possesses a 5 mm straight part coming out from the
rubber substrate and an oblique part ending with a sharp tip
also measuring 5 mm in length. As shown in figure 6(b), the
oblique part presented an angle of 55° with respect to the
vertical axis for a total height of 11 mm.

As better described in the following, during the
locomotion tests of the robot both types of pads operated in
contact with a horizontal surface covered with baking paper.
For this reason, we measured the static friction coefficient

Figure 4. Schematic drawing of the plastic beam of the robot. All
dimensions are expressed in mm.

Figure 5. Tensile test of the styrene plastic material: experimental
stress–strain data and estimation of the Young’s modulus.
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against baking paper of each pad either in the case of forward
or backward sliding with an ad hoc custom-built setup, shown
in figure 7.

The setup consisted of three main components: a tensile
testing machine, a linear guide and a slider (figure 7). The
linear guide was made out of rigid polycarbonate, whose top
surface was coupled with a baking paper layer by means of
double-sided adhesive tape, constituting the reference surface
on which the samples were tested. The sample holder,
coupled with the different samples of the bristle pads,
constituted the slider, as shown in the close-up view of
figure 7. The sample holder, whose self-weight corresponded
to 7 g, also allowed for loading the sample with a
supplementary mass m=20 g, needed to maintaining a
proper contact with the surface of the linear guide during the
sliding. A double inextensible wire, connected to the grip of
the tensile machine, pulled the slider with a constant speed of
0.1 mm s−1. For each sample, the pulling force, i.e. the
friction force transmitted from the sliding surface to the load
cell trough a frictionless roller, was continuously recorded
during the sliding. The self-weight of each 3D printed bristle
pad was measured with a precision scale, the following values
were recorded: 0.46 g, 0.51 g, 0.60 g, 0.74 g, 0.93 g and
1.18 g for angles 15°, 25°, 35°, 45°, 55°, 65°, respectively.
The self-weight of the steel bristle pad accounted for 0.5 g.
The total weight of the slider was calculated by adding the
masses of the bristle pad, the sample holder and the
supplementary mass m, allowing for calculating the total
normal force applied to the sample for each test performed.

At the time of incipient sliding, when the detachment
force was reached, the static friction force corresponded to
the first maximum peak in the load-displacement curve.
After reaching this peak, the sample started sliding at an
approximately constant force value, corresponding to the
dynamic friction force. When this value had stabilized, the
test was stopped. The dynamic friction force was taken as
the mean value during the sliding phase. Since no adhesion
occurred, both the static and dynamic friction coefficients μs

and μd were calculated as the ratio between the friction force
(static and dynamic, respectively) and the applied nor-
mal load.

In figure 8, we report the experimental results obtained
from the friction tests for every pad configuration. From the
results, it can be deduced that while the 3D printed pads at
first sight seems to be characterized by a similar behaviour in
either forward or backward sliding, stainless steel pads exhibit
a substantial variation in the coefficient of friction with
respect to the sliding direction.

It is worth to point out that the friction coefficient for the
3D printed pads present variability related to the bristle’s

angle. Indeed, from figure 9 we see that both μs and μd peaks
at 35° in case of backward sliding, while it seems that the
optimum value for those coefficients in case of forward
sliding lies within the range 35°−45°. The relatively high
value of the friction coefficient for the pad whose angle is 15°
can be explained considering that the bristles may have
engaged with the baking paper surface during the sliding test.
For such a low value of the angle the entire load was applied
directly to the bristle tip, possibly inducing a slight
indentation.

As shown in figure 8 and highlighted in figure 10, for the
3D printed pads with a grade up to 35° the friction coefficient
measured during the backward sliding was greater than that
observed during the forward sliding. Conversely, when the
value of the angle increased beyond 35°, an opposite trend
was revealed. This trend may lead to the possibility of a
motion inversion of the robot simply triggered by a variation
of its actuation frequency.

Figure 6. Bristle pads: resin 3D printed (a), stainless steel (b).

Figure 7. Experimental setup for the measurement of the friction
force generated at the interface between the testing surface and the
bristle pads. The bristle pad sample coupled to the sample holder and
loaded with a mass m=20 g constituting the slider. A double
inextensible wire allowed for pulling the slider with a tensile
machine along the linear guide covered with a layer of baking paper
showed in the enlargement of the picture.
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This behaviour has been already revealed in a bristle-bot
featured by flexible joints between the bristles and the substrate
[20, 21]. The one we present here possesses rigid bristles. We do
believe this is the reason why we were not able to observe such
motion inversion during the locomotion tests we performed.
Nonetheless, we also believe that a motion inversion is possible
by optimizing the bristle’s design.

2.3. Robot manufacturing

Upon coupling with the plastic beam, the DEA was subject to
a tensile load along the longitudinal direction. Due to the
highly viscoelastic behaviour of the VHB acrylic elastomer,
its length increased from 70 to 110 mm after 24 h, resulting in
an increase of its longitudinal pre-stretch from the initial
300% up to 529%. This caused a further average thickness
reduction of the DE membrane from 0.125 to 0.080 mm,
calculated assuming material incompressibility. As better
described in the following, during the locomotion tests the
robot was eventually loaded on its top with a lumped mass
m=9 g made out of two metallic bolts coupled together by
means of a double-sided adhesive tape of negligible weight.

2.4. Estimation of the fundamental frequency

The analysis of the locomotion of the robot requires the estimate
of the fundamental frequency fn of the system that is computed
in this section following two approaches: the one that is first
presented is based on the Rayleigh’s quotient method, the sec-
ond one relies on a finite element computation.

2.4.1. Analytical: Rayleigh’s quotient method. The
fundamental frequency of the robot is estimated through the
Rayleigh’s quotient [22] on the structure schematically
represented in figure 11. In this calculation, the asymmetry
induced by the bristles is neglected and therefore the structure
is considered symmetric and only its left-hand half is studied,
being composed of six sub-systems, namely the beam
segment EF, the parts AB, BD and DE, the spring DO and
the lumped mass m/2. Slider constraints are imposed along
the symmetry axis y in F and O.

The horizontal length l/2=55 mm and the height
h=25 mm correspond to the half-length of the dielectric
elastomer actuator and to the rise of the beam in the
operational configuration, respectively. The curved beam
DFD’ can be satisfactorily described by the sinusoidal
function

p
= +y x h x

l

l
sin

2
1( ) ( )⎜ ⎟

⎡
⎣⎢

⎛
⎝⎜
⎛
⎝

⎞
⎠

⎞
⎠⎟

⎤
⎦⎥

and its slope in D, namely y′(−l/2), provides the angle q.
When the square wave voltage signal is applied to the

elastomer actuator, the structure of the robot vibrates around
its initial configuration with the fundamental mode sketched
in figure 12. We assume that during this motion, the parts AB
and BD undergo a rigid rotation about point D as represented
in the detail of figure 12. By considering the static scheme of
the beam shown in figures 11 and 12, with an application of
the principle of the virtual work (see appendix) it is possible
to calculate that an arbitrary horizontal infinitesimal displace-
ment dx in D generates a vertical displacement in F whose
value is 1.772 d .x With reference to figure 11, we introduce
the curvilinear abscissa s on the beam segment DF, and
the coordinates η and ξ on AB and BD, respectively. The
displacements of the actuator DO is described by the
coordinate x.

When the system is vibrating in its fundamental
eigenmode, by assuming a separable solution for the generic
displacement w of its points, for each component of the
system we can formally write

y y w y y w= = +w W i jt t w w t, sin sin ,

2
n x y n( ) ( ) ( ) ( ( ) ( ) ) ( )

( )

where yW ( ) is an eigenfunction that approximately repre-
sents the shape of the system and ωn is the vibration circular
frequency. In equation (2), y represents the generic abscissa
describing each element of the structure and i and j are the
component of an orthonormal basis associated with axis x and
y, respectively. In particular, y º s for the segments DE and
EF, y hº for AB, y xº for the segment BD and y º x for
the spring DO. The vertical displacement of mass m/2
corresponds to the same quantity of the beam segment EF at
point F.

The Rayleigh’s quotient allows the evaluation of the
frequency fn =ωn/2π by equalling maximum strain (Umax)
and maximum kinetic (Kmax) energies computed for the
system by assuming the vibration mode described by

Figure 8. Static (a) and dynamic (b) friction coefficients of the six 3D
printed bristle pads (indicated with the values of the angles) and the
steel bristle pad.
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equation (2), namely

å å=
= =

U K , 3
i

i
i

i
1

6
max

1

6
max ( )

where the two energies are written as a sum of contributions
of the six subsystems, each described by index i running from

 

Figure 9. Static and dynamic friction coefficients of the 3D printed bristle pads for increasing value of the bristle’s angle.

Figure 10. Variation of the backward versus forward sliding static
and dynamic friction coefficients of the 3D printed bristle pads for
increasing value of the bristle’s angle. The error bar associated with
each value of Δμs and Δμd is calculated according to the variance
sum law.

Figure 11. Schematic representation of the robot structure. Top:
longitudinal section. Bottom: top view of the detail of the connection
between curved beam, straight actuator and clawed pads (whose
perimeters are sketched with dashed lines) (left) and detail of the
cross sections (right). Coordinate z describes the out-of-plane axis.
Dimensions are expressed in mm.
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1 to 6, as detailed in the following. Note, however, that for
some elements the maximum strain energy is vanishing. It
should be emphasised that due to the form (2) of the
eigenmode, in the interval tä[0, 2π/ωn[ the maximum strain
energy for each element is reached at t=π/(2ωn), while the
maximum kinetic energy is to be sought at t=0.

Beam EF (i=1). For the beam segment EF, we assume
that its shape during the vibration is described by the shape
function = +W i js w s w sx y( ) ( ) ( ) whose components are

d p=w s
s

L
acos , 4x x( ) ( )⎜ ⎟⎛

⎝
⎞
⎠

d p=w s
s

L
b1.772 sin , 4y x( ) ( )⎜ ⎟⎛

⎝
⎞
⎠

where L=120 mm. The kinetic energy is therefore given by

ò m= wK s t ds
1

2
, , 5

L

L

1
12

2

1
2( ) ( )

/

/

where the mass per unit length μ1=0.0315 kg m−1 is
calculated over a length of 0.05 m (that corresponds to the
half-length of the central beam as shown in figure 4) and a
superposed dot indicates differentiation with respect to time.
The transverse component of the total displacement, which is
the one contributing to the elastic strain energy when the axial
elongation of the beam is neglected, is given by

g=w ws t s t s, , cos , 6tr ( ) ( ) ( ) ( )

where g p a b= - +2 ,/ with a = ¢- y xtan 1( ( )) and
b = - w s w stan .x y

1( ( ) ( ))/ The strain energy stored during the
deformation is

ò= wU YI s t ds
1

2
, , 7zz

L

L

1
12

2

tr
2( ( ) ) ( )

/

/

where Izz is the second moment of area of the beam cross
section (see figure 11) and a dash denote differentiation with
respect to the coordinate s.

Beam DE (i=2). The shape of the beam segment DE is
also described by the shape functionW s( ) defined through the
components (4). Assuming that the section vibrates as a rigid
body, the strain energy is U2=0, whereas the kinetic energy
can be written as

ò m= wK s t ds
1

2
, , 8

L

2
0

12

2
2( ) ( )

/

where the mass per unit length μ2=0.2983 kg m−1 is
calculated taking into account the weights of both the plastic
structure between points D and E (figure 11) and the rigid
plastic bar screwed on it.

Segment AB (i=3). This is a rigid body, therefore
U3=0. Considering a uniform mass distributed along AB
whose density (per unit length) is μ3=0.273 kg m−1 (μ3 is
comprehensive of the two bristle pads each weighing 0.5 g),
the kinetic energy of AB is given by

ò m h h=
h

wK t d
1

2
, , 93

0
3

2( ) ( )

where the components of the displacement along x and y are

h d x dq q= +w asin , 10x x( ) ( )

h x dq q h dq= - -w bcos , 10y ( ) ( )

respectively.
Segment BD (i=4). BD is considered as a rigid body as

well, then U4=0. Considering a uniform mass distribution
m =4 0.1181 kg m−1, the kinetic energy of BD can be written
as

ò m x x=
x

wK t d
1

2
, , 114

0
4

2( ) ( )

where the components of the displacement along x and y are
now given by

x d x dq q= +w asin , 12x x( ) ( )

x x dq q= -w bcos . 12y ( ) ( )

Dielectric elastomer actuator (i=5). The DE actuator
is modelled as a spring of length l/2, therefore the stiffness is
twice that computed in section 2.2.1, namely 2kDEA=
59.70 Nm−1. Moreover, μ5=0.0227 kg m−1 and the two
components of the displacement function are

d= -w x
x

l
a

2
, 13x x( ) ( )⎜ ⎟⎛

⎝
⎞
⎠

h =w b0. 13y ( ) ( )

Therefore, the kinetic energy is

ò m=
-

wK x t dx
1

2
, , 14

l
5

2

0

5
2( ) ( )

/

Figure 12. Schematic representation of the robot about the initial
configuration of equilibrium. An imposed horizontal displacement δx
in D induces a vertical displacement 1.772 δx in F. The magnification
shows the kinematics of the rigid motion of the structure about
point D.
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while the maximum value of the strain energy can be easily
written as

d=U k
1

2
2 . 15x5

max
DEA

2( ) ( )

Point mass (i=6). The mass possesses only kinetic
energy (i.e. U6=0) that can be written as

= wK
m

s
4

. 16y L6 2
2( ( )∣ ) ( ) /

Equation (3) can be solved for ωn to obtain the estimation
of the fundamental frequency fn. The values fn =24.29 Hz
and fn =19.77 Hz were calculated for m=0 and m=9 g,
respectively.

2.4.2. Numerical: finite element analysis. The finite element
method (FEM) was used to numerically estimate the
eigenfrequencies and the modal shapes of a 3D model of
the robot. The model was developed with the Solid
Mechanics module of the COMSOL Multiphysics v. 5.0
software. In this model, the polystyrene plastic beam was
considered as a linear elastic material. While the Young’s
modulus Y was obtained with the tensile test reported in
section 2.2.2, the value of the Poisson’s ratio ν=0.32 was
adopted from literature [23]. We exploit the symmetry of the
structure by imposing a null displacement of the centreline in
F along x and z, and a roller constraint along both the edges in
D and D’ which corresponds to the static scheme reported
in section 2.4.1. We assume that the shape of the central beam
in the deformed configuration is given by (1) while all the
other dimensions are as reported in figure 4. The lumped
mass m and the masses due to the bristle pads, to the rigid bar
and its screws and the mass of the DEA are assigned as edge
loads along the edges defined by the points F, A, E and D,
respectively. The DEA is modelled as a linear spring by
assigning a ‘Spring Foundation’ constraint with 2kDEA=
59.70 Nm−1 in correspondence of each roller. The structure
was meshed with 9167, 6738, 1410 and 132 tetrahedral,

triangular, edge and vertex quadratic elements respectively by
using the COMSOL mesh subroutine. The meshed structure is
shown in figure 13. The eigenfrequencies and the correspondent
modal shapes, for both the loaded with m=9 g and the
unloaded case, were obtained by using the COMSOL’s
‘Eigenfrequency Study’ solver. The values fn =22.79Hz and
fn=18.12Hz were calculated for m=0 and m=9 g,
respectively.

2.5. Frequency response analysis: calculation of net
displacement and locomotion speed

In this section, we report about the FEM model developed to
calculate the overall net displacement of the robot dx during
each actuation cycle as a function of the actuation frequency f.
To do so we modified the numerical model presented in
section 2.4.2 by taking in account the viscoelastic response of
the DE actuator, as better explained in the following of this
section. This allowed the theoretical locomotion speed along
the x-axis v ,x namely

d=v f , 17x x ( )

to be estimated and compared with the experimental
measurements.

The structure was loaded with a force Fx, applied as a
step load in correspondence of the external edge identified on
the plastic structure by the point D (see figure 11) with fre-
quency f to simulate the effect of the voltage driving. The
force was set to Fx =0.25 N since for this value the total
displacement dx obtained from the model with a static analysis
was equal to that measured in the lab, namely d = 1 mm.x

The frequency response of the robot highly depends on
the mechanical damping of its deformable components: the
polystyrene plastic beam and the VHB 4910 DE actuator. The
damping of the polystyrene plastic beam was modelled with a
rate-independent isotropic structural loss factor η=0.04
[24], which is defined as the ratio of the energy dissipated per
cycle to the maximum strain energy stored. The frequency
response of the DEA requires a more accurate modelling due
to its highly frequency-dependent viscoelastic behaviour [25].
For this reason, we modelled it as a Kelvin–Voigt material,
which consists of a purely viscous damper and a purely elastic
spring connected in parallel [26] as shown in figure 14.

Figure 13. Mesh of the robot plastic structure about the initial
configuration of equilibrium. The DEA is not visually represented
since its presence is imposed as equivalent spring constraints to the
plastic structure.

Figure 14. Kelvin–Voigt model adopted to describe the viscoelastic
behaviour of the DEA.
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For this model, the relaxation time constant τ is

t =
C

k2
, 18d

x
( )

where Cd is the coefficient of viscous damping and 2kx is the
stiffness of the VHB material.

Since the elastomer is loaded with a time-dependent load,
it presents a rate-dependent viscoelastic behaviour that results
in a reduction of the relaxation time constant τ for increasing
values of the longitudinal stretch rate ld dt./ In particular, by
assuming the nonlinear nonaffine model presented in [27], we
find that such relation monotonically decreases for increasing
stretch rates with the law

t
l

=
-

A
d

dt
, 19

B

( )⎜ ⎟⎛
⎝

⎞
⎠

where A=2.94 s1−B, B=1.12 and ld dt/ is the stretch rate
of the elastomer (response) that we assume being coincident
with the frequency f (stimulus) of the voltage input of the
DEA during each actuation cycle between the range
 f1 30 Hz. By equating (18) and (19) we get the

expression of coefficient Cd as a function of the frequency f,
namely

l
=

-
C k A

d

dt
2 . 20d x

B

( )⎜ ⎟⎛
⎝

⎞
⎠

It is worth to point out that the model leading to
equation (19) is validated [27] with an experimental investigation
performed on VHB specimens longitudinally pre-stretched up to
6 times their initial length, for frequencies spanning over four
orders of magnitude (6.7·10−5− 0.67Hz). In our case we have
a biaxial stress state with a similar longitudinal stretch but also a
transverse stretch and higher actuation frequencies. However,
despite these discrepancies, due to the lack of both experimental
data and models available in literature, by taking into account
higher frequencies and biaxial stretch states, we adopt this model
to describe the behaviour of our DE actuator, although a certain
grade of approximation might be introduced.

The model was analysed with the COMSOL’s ‘Fre-
quency Domain Study’ solver in the range of frequencies
investigated in the experiments allowing for obtaining the
frequency dependent displacements of the structure reported
in section 3. The chosen frequency step was Δf=0.1 Hz.

2.6. Locomotion test: experimental setup and test procedure

The experimental setup here described was conceived to
measure the locomotion speed of the robot as a function of the
actuation frequency of the DE actuator. In this regard, a 0.3 m
long testing track consisting of a flat surface coated by a thin
sheet of baking paper to achieve homogeneous roughness was
used as a surface course. A laser optical transducer
(optoNCDT, Micro-Epsilon, USA) was used as finish line,
while a high-voltage amplifier (Model 10/10B, Trek Inc.,
USA) provided the driving voltage. The generator was con-
nected to the electrodes of the DEA by means of two thin
metal stripes and thin wires to avoid any constraint during the
locomotion. A square wave voltage signal V, with 6 kV of

amplitude, was provided to the DEA with frequencies within
the range 5–30 Hz. A custom made LabView program
allowed for simultaneously applying the driving voltage to the
DE actuator (thus triggering the locomotion of the robot) and
record the time of its application. Both the voltage and the
time counter were automatically switched off when the robot
reached the vertical laser beam located at the end of the
testing track. For each frequency tested, the average loco-
motion speed of the robot was obtained by measuring the time
needed to complete the full length of the testing track. Each
locomotion test was repeated five times, allowing for
obtaining the experimental speed values in terms of mean and
standard deviation. Figure 15 shows a picture of the exper-
imental setup used for the tests.

3. Results and discussion

The locomotion tests revealed that a forward displacement dx

was observed only when the robot was equipped with the
steel bristle pads. Conversely, a vibration about the starting
position, with no net displacement, was recorded when the
robot was equipped with the 3D printed bristles for any whole
frequency in the range 5–30 Hz. This evidence suggests that
the magnitude of the frictional anisotropy generated by the
robot’s bristles plays a key role for achieving a forward
motion. Indeed, as shown in figure 8, the 3D printed bristles
featured a much smaller frictional anisotropy compared to the
steel ones; this result justifies the inability of the robot to
advance on the surface chosen for the experiments. The
experimental values of the locomotion speed measured during
the tests performed with the steel bristles are shown with blue
circles in figure 16.

In particular, figure 16 (bottom) reports the locomotion
speed measured for the robot loaded with a lumped mass
m=9 g whereas figure 16 (top) shows the results for the case
of unloaded robot. We observe that the locomotion speed
increased in both cases up to a maximum value, namely
3.0 cm s−1 at an actuation frequency of 19 Hz in the former
case and 4.7 cm s−1 at f=23 Hz in the latter. The two ver-
tical dotted lines drawn in each graph mark the fundamental
frequencies fn estimated with the two methods described in
section 2.4.

The data reported figure 16 show that for both the cases
of unloaded and loaded robot, the maximum value of the

Figure 15. Picture of the experimental setup.
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experimental locomotion speed lies within the range of fun-
damental frequencies calculated with the two proposed
methods. In particular, the Rayleigh’s quotient method gives
an upper-bound estimate of fn whereas the FEM calculations
provide values that are approximately 6.5% and 9.5% lower
with respect to the former for the unloaded and the loaded
robot, respectively. From the superposition between the
experimental data and the locomotion speed model predic-
tions, calculated with the FEM frequency response analysis
described in section 2.5, we see that the model predicts a
rising locomotion speed up approximately to the fundamental
frequency. For higher values of the frequency f, the model
foresees lower values of the speed vx in a fairly good agree-
ment with the experimental data. In the absence of any
damping mechanism or constrain, we would have theoreti-
cally expected an unbounded, asymptotic behaviour for the
locomotion speed at the fundamental frequency fn computed
via FEM (indicated with ‘FEM’ in figure 16), that also
represents the resonance frequency for the system. In the
current framework, the peak of the locomotion speed is
slightly shifted to the right with respect to fn as, in

equation (17), the displacement is multiplied by the frequency
f itself.

The behaviour highlighted in the previous paragraph can
be explained by considering that the frequency response of
the robot is given by a combination of its eigenmodes. Indeed,
for increasing value of the actuation frequency from zero to
the first eigenvalue, the structure would tend to vibrate
according to the first eigenmode, as represented in figure 17
(top). Since the first eigenmode is symmetric, the net dis-
placement dx is given by the sum of two components that are
equal in modulus. Conversely, when the robot vibrates
according the second eigenmode (shown in figure 17, bot-
tom), which is asymmetric, the net displacement dx sharply
decreases. This behaviour highlights the importance of iden-
tifying the correct value of the first eigenfrequency in order to
maximise the locomotion speed.

As previously anticipated, the fundamental frequency fn
of the robot decreases at an increase of the weight of the
lumped mass. Figure 18 shows the experimental data points
correspondent to the value of fn measured at the maximum
locomotion speed (i.e. in correspondence with the natural
vibration frequency) and the outcome of both FEM analysis
(red solid line) and Rayleigh’s quotient method (solid blue
line), the former interpolating a finite number of points whose
distance along the abscissa corresponds to Δm=0.1 g. The
agreement between tests and theory is very good.

Despite the inability of the 3D printed bristles to trigger
locomotion for such low grade of frictional anisotropy, it is
worth to point out that the effect of the bristle’s angle on the
actuation performance might be relevant when the frictional
anisotropy reaches the threshold. Indeed, when a set of bris-
tles reaches the frictional anisotropy threshold for locomotion,
since the frictional anisotropy is null when both the back and
front bristle’s angle are either 0° or 90°, it must be that that for
an intermediate value of the bristle’s angle the frictional
anisotropy is maximised.

In our case, from the friction measurements performed on
the 3D printed bristles reported in figure 9, we see that both
the static and dynamic friction coefficients peak for an angle
of 35° for a backward sliding, while it seems that the max-
imum value is in the range 35°−45° when the sliding is
forward. The relatively high value of friction observed for the
angle whose value is 15° in both the backward and the for-
ward sliding might be explained with the indentation occurred
between the sharp tips and the paper, which is reasonable to
observe for such a low value of the bristle’s angle. Either the
identification of the optimum value of such an angle to
achieve the maximum locomotion speed or the investigation
of other kind of bristles might be the goals of a future work.

4. Conclusions

In this paper, we have presented the concept of a novel kind
of limbless resonating locomotion robot supported by four
pads with asymmetric metallic rigid bristles. The forward

Figure 16. Locomotion speed vx versus actuation frequency f:
experimental data and model prediction for the unloaded (top) and
loaded with m=9 g (bottom) robot. Bars represent the standard
deviation of measures. The two dotted lines represent the
fundamental frequency fn calculated with either the Rayleigh’s
quotient method (on the right in both plots) or the FEM modal
analysis (on the left in both plots).
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motion of the robot was generated by the voltage-driven
elongation of the dielectric elastomer actuator that triggers a
partial release of the elastic energy stored in the plastic beam,
enabling the stick-slip locomotion favoured by the frictional
anisotropy of the pads. The locomotion speed reached a

maximum in the vicinity of the fundamental frequency of the
system that was estimated either analytically or numerically.
The behaviour of the robot was successfully captured by a
numerical model where the damping characteristics of the
elastomer were simulated with a Kelvin–Voigt rheological
scheme.

We have also 3D-printed and tested similar robots
equipped with resin pads with different bristle’s angles.
However, all those systems proved not to be able to display
any forward motion. The reason is to be found in the lack of
anisotropy of the friction coefficients for the pads.

Acknowledgments

The authors gratefully acknowledge Dr A De Acutis and Dr C
De Maria for the manufacturing of the 3D printed bristle pads
and Dr G Frediani for the locomotion test setup. MG grate-
fully acknowledges support of the School of Engineering,
Cardiff University. NMP is supported by the European
Commission under the Graphene Flagship Core 2 grant no.
785219 (WP14 ‘Composites’) and FET Proactive ‘Neuro-
fibres’ grant no. 732344, as well as by the Italian Ministry of
Education, University and Research (MIUR) under the
‘Departments of Excellence’ grant L. 232/2016 and AR
901–01384—PROSCAN and PRIN-20177TTP3S.

Figure 17. Eigenfrequencies and modal shapes of a 3D model of the robot: first vibration mode for the unloaded (top left) and loaded with
m=9 g (top right) robot; second vibration mode for the unloaded (bottom left) and loaded with m=9 g (bottom right) robot.

Figure 18. Fundamental frequency versus lumped mass weight. The
experimental data corresponding to the peak values of the
locomotion speed, namely 19 Hz for m=9 g and 23 Hz for m=0
are marked by dots. The blue solid line represents the predictions of
the Rayleigh’s quotient method whereas the red solid one refers to
the FEM calculations performed with a step along the abscissa
corresponding to Δm=0.1 g.
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Appendix

The vertical displacement in F (δF) of the structure displayed
in figure 12 when the support D is subjected to a horizontal
displacement δx can be computed in two steps: (i) the one-
time redundant structure displayed in figure A1(a) is solved,
in particular the horizontal reaction XD is computed; (ii) the
vertical displacement in F of the statically-determined scheme
sketched in figure A1(b) is calculated. We refer to the coor-
dinate system Oxy reported in figure 12 and to the function (1)
for the shape of the arch. In addition, coherently with the
assumption adopted in section 2.4.1, the segment DE of the
beam is assumed to be rigid.

For the former problem, the second Castigliano’s theo-
rem can be invoked on the statically determined structure in
figure A1(b), and by noting that the bending moment function
is M(x, XD)=XD y(x), the solving equation for XD turns out
to be

ò òd =
¶
¶

= + ¢
-

M

YI

M

X
ds

X

YI
y x y x dx1 ,

A1

x
zz D

D

zz cl

0
2 2( ( )) ( ( ))

( )

where –cl (with c=0.4255) is the x-coordinate of point E.
This leads to XD=YIzz δx/Γ, where Γ is the value of the
integral in equation (A1).

For the latter calculation, the principle of virtual work is
applied by taking as a kinematical admissible scheme the real
structure, i.e. that in figure A1(b), whereas as a statically
admissible scheme (whose relevant quantities are denoted by *)
the auxiliary one reported in figure A1(c) is adopted. In part-
icular, by noting that M*(x)=x+l/2, the displacement δF
corresponds to
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