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Abstract

The stress field and fracture propagation due to thermal loading in multi-layered and/or functionally graded com-
posite materials are extensively analysed. Regarding fracture, we have focused the attention on delamination between
the layers due to brittle or fatigue thermally induced crack propagations. The statically indeterminate stress analysis is
solved coupling equilibrium, compatibility and constitutive equations. Fracture analysis is based on the classical Grif-
fith�s criterion rewritten for composite structures under thermal loading. As an example, a two-layer prismatic structure
is considered, each layer being composed by a different functionally graded material. The solution is particularized for
the case of a linear grading. The size and shape effects are discussed and an optimization procedure is proposed. A
numerical application of the findings to hard metal and diamond based cutters concludes the paper.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The spatial variation of the physical properties of the materials is an attractive alternative to composite
solids, opening new possibilities for optimizing both materials and structural components to achieve high
performance and efficiency. Such materials are collectively referred to as functionally graded materials or
FGMs. Gradual variation of material properties in FGMs, unlike abrupt changes encountered in discretely
layered systems, is known to improve failure performance while preserving the intended thermal, tribolog-
ical, and/or structural benefits of combining dissimilar materials. Consequently, the concept of using
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FGMs, for improving material performance, has recently received considerable attention from the research
community (Paulino, 2002). On the other hand, it also poses at the same time challenging mechanics prob-
lems including the understanding of stress distribution and fracture behavior. These open problems will be
considered in the present paper.

Pioneer papers on fracture mechanics of FGMs were written by Atkinson and List (1978), Delale and
Erdogan (1983) and Eischen (1987). They show that the asymptotic crack tip stress field presents the same
square root singularity as that encountered in homogeneous materials. More recently, Erdogan (1995) pro-
pose the multiplication of the conventional stress at a given point in crack tip vicinity by the ratio of the
Young�s modulus evaluated at that point to the Young�s modulus at the crack tip. This hypothesis satisfies
the equations of compatibility exactly, although—being limited in its own region of dominance—it obvi-
ously does not satisfy the equilibrium conditions.

Extensive research on various aspects of fracture of isotropic FGMs has been recently conducted, not
only under mechanical loads, as previously discussed, but also under thermal loads (Jin and Noda,
1993; Erdogan and Wu, 1996; Jin and Batra, 1996; Wang et al., 2000; Jin and Paulino, 2001; Wang and
Noda, 2001), Mixed-Mode I, II (Eischen, 1987; Ozturk and Erdogan, 1997, 1999) and Mode III (Babaei
and Lukasiewicz, 1998). Experimental investigations on fracture of FGMs are limited by the high costs
of the facilities required for processing FGMs. Relatively fewer experimental and numerical investigations
of the fracture behavior of FGMs have been conducted. Among the few experimental investigations on
FGMs, Parameswaran and Shukla (1998) have shown that increasing toughness in the direction of crack
growth reduces crack jump distance in discretely layered FGMs. The extension of the crack analysis to
the more general case of a re-entrant corner (Carpinteri and Pugno, 2005) in FGMs has been recently pro-
posed (Carpinteri et al., in press).

In this paper we focus the attention on the stress field and fracture propagation due to thermal loading in
multi-layered and/or functionally graded composite materials. The related size and shape effects are also
discussed. The statically indeterminate stress analysis is solved coupling equilibrium, compatibility and con-
stitutive equations, and extending the approach already established for torsional loading on bi-component
prismatic or cylindrical (Pugno, 1999, 2001; Pugno and Surace, 2000, 2001; Pugno and Carpinteri, 2002)
beams in static or dynamic regime. Regarding fracture, the attention is posed on delamination between
the layers due to brittle or fatigue thermally induced crack propagations. Fracture analysis is based on
the classical Griffith�s criterion rewritten for composite structures under thermal load. The same approach
was successfully applied by Pugno and Carpinteri (2002) to study the crack propagation under mechanical
loading in prismatic and cylindrical homogeneous adhesive joints. This analysis can be considered the nat-
ural extension to thermal loading and functionally graded materials of the research on axially loaded tubu-
lar structures (Pugno and Carpinteri, 2003). An example of application to hard metal and diamond based
cutters (Lammer, 1988; Huang et al., 1997) concludes the paper.
2. Thermal stresses in FGMs

The problem of residual stresses (induced by hot bonding of two different layers) is equivalent, neglecting
the algebraic sign, to the problem of thermal stresses induced by a temperature increase in an already
bonded two-layer structural component. This principle can be summarized as DT + bonding � bond-
ing � DT. As a consequence, we could study the problem of residual stresses induced in a composite struc-
ture (Fig. 1) bonded at an increased temperature DT, as the problem of thermal stresses induced by a
decreased temperature (minus) DT.

Let us consider the two-layered structural component reported in Fig. 1. The axial equilibrium along the
longitudinal axis (x) provides the tangential stresses at the interface of the two layers (Fig. 1) (Pugno and
Surace, 2001):
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Fig. 1. Composite structure.
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sðxÞ ¼ � 1

b
dN 1ðxÞ
dx

ð1Þ
where N1(x) is the axial load in the first layer at a generic cross-section x and b is the width of the FGM
structure.

Due to the axial equilibrium, the axial loads in a generic cross-section x can be written as
N 1ðxÞ ¼ NðxÞ; N 2ðxÞ ¼ �N 1ðxÞ ¼ �NðxÞ ð2Þ

where N2(x) is the axial load in the second layer.

The sum of the forces absorbed by the two elements must be equal to zero. On the other hand, the rota-
tional equilibrium suggests that the axial loads are applied at the interface level (y = 0). Satisfying the load
boundary conditions implies that the axial load must be equal to zero at the extreme faces (x = �c, 2c being
the length of the FGMS), as well as its first derivative must be equal to zero in the middle (x = 0) of the
structure, due to the symmetry of the problem (Pugno and Surace, 2000; Pugno, 2001; Pugno and Carpin-
teri, 2003):
Nðx ¼ �cÞ ¼ 0;
dN
dx

ðx ¼ 0Þ ¼ 0 ð3Þ
Function N(x), and thus the load absorbed by the two elements, can be found thanks to the displacement
compatibility of the two elements at a given cross-section. The axial loads, being applied at the interface,
result in stresses at the interface equal to kiNiðxÞ

Ai
, where Ai is the cross-section area and ki (a function of the

grading) represents the ratio of the stress at the interface to its mean value NiðxÞ
Ai

. Accordingly, the displace-
ments at the interface may be expressed as follows:
u1ðx; y ¼ 0Þ ¼ k1

Z x

0

NðnÞ
E1A1

dn� a1DT 1x ð4aÞ

u2ðx; y ¼ 0Þ ¼ k2

Z x

0

�NðnÞ
E2A2

dn� a2DT 2x ð4bÞ
where Ei is the Young�s modulus, ai the coefficient of thermal expansion and DTi the increment in temper-
ature, for the layer ith. The symmetry implies displacements equal to zero at x = 0. The algebraic signs—
before DTi—are due to our attention on residual stresses rather than on thermal ones.

For FGM ai and Ei are dependent on y and must be evaluated at y = 0, in Eqs. (4). For varying cross-
section area, Ai has to be considered as dependent on x. We herein consider constant cross-section areas.

The compatibility equation can be written noting how, after deformation, the relative displacement
Du between two points of the interface, can be evaluated as relative displacement between the two layers
or as shearing deformation of the interface, its thickness h being very small, i.e. (Pugno and Surace,
2000; Pugno, 2001; Pugno and Carpinteri, 2003):
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DuðxÞ ¼ u2ðxÞ � u1ðxÞ ¼ hcðxÞ ¼ h
sðxÞ
G

ð5Þ
where G is the (mean) shear elastic modulus of the interface.
Substituting Eq. (1) into Eq. (5), the compatibility equation can be rewritten as
dNðxÞ
dx

¼ �K�DuðxÞ; K� ¼ Gb
h

ð6Þ
where K� is the interface stiffness per unit length.
Inserting the displacement expressions (4) in the compatibility equation (6), gives the following integral-

differential equation in the unknown N(x):
1

K�
dNðxÞ
dx

¼ k1

Z x

0

NðnÞ
E1A1

dnþ k2

Z x

0

NðnÞ
E2A2

dn� a1DT 1xþ a2DT 2x ð7aÞ
By derivation of the previous relationship and recalling the boundary conditions of Eq. (3), the following
second order differential equation can be derived:
d2NðxÞ
dx2

� a2NðxÞ ¼ b;
Nðx ¼ �cÞ ¼ 0

dN
dx

ðx ¼ 0Þ ¼ 0

8<
:

a2 ¼ K� k1
E1A1

þ k2
E2A2

� �
; b ¼ K�ða2DT 2 � a1DT 1Þ

ð7bÞ
This differential equation, together with the boundary conditions shown alongside, makes it possible to
determine the load, section by section. The solution of equation (7) is
NðxÞ ¼ C1e
ax þ C2e

�ax � b
a2

ð8Þ
The constants C1 and C2 can be obtained from the boundary conditions as
C1 ¼ C2 ¼ C ¼ b
2a2 coshðacÞ ð9Þ
so that
NðxÞ ¼ b
a2

coshðaxÞ
coshðacÞ � 1

� �
ð10Þ
Function N(x) being known, we finally can obtain the tangential stress at the interface through Eq. (1),
as well as the normal stresses in the two layers. We have to remind that the axial loads are applied at the
interface. For a graded layer, the axial stress can be obtained considering the classical theory of multi-
layered beams (that assumes the conservation of plane sections) as
rðyÞ ¼ EðyÞ
Er

N
A� þ

M
I�

y
� �

ð11Þ
where Er is a Young�s modulus reference value, N, M are respectively the axial load and the bending
moment and:
A� ¼
Z
A

EðyÞ
Er

dA ð12Þ
is the weighted area, whereas:
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I� ¼
Z
A

EðyÞ
Er

y2 dA ð13Þ
represents the weighted moment of inertia.
The origin of the reference system, from which we have to evaluate y in Eqs. (11) and (13), is defined by

the following relationship, defining the elastic centroid:
S� ¼
Z
A

EðyÞ
Er

y dA ¼ 0 ð14Þ
where S� is the weighted static moment.
Let us suppose the graded layer ith, with Young�s modulus linearly varying between Ei (value at the

interface) and Ei. Applying Eq. (14), we can obtain for each element (i = 1,2) the distance between the ori-
gin of the corresponding reference system and the common interface:
�yi ¼
hiEi þ 2hiEi

3ðEi þ EiÞ
ð15Þ
and, from Eqs. (12) and (13):
A�
i ¼

bhi
2Er

ðEi þ EiÞ ð16Þ

I�i ¼
bhi
Er

Ei
h2i
12

þ �y2i
2
� �yihi

3

� �
þ Ei h2i

4
þ �y2i

2
� 2�yihi

3

� �� �
ð17Þ
Introducing Eqs. (16) and (17) into Eq. (11) and considering the common reference system of Fig. 1, gives
the stresses in the two elements (constant along the z-axis), that are represented, for the considered example
of linear grading, by parabolic functions:
r1ðx; yÞ ¼
E1

Er

þ E1

Er

� E1

Er

� �
ð�yÞ
h1

� �
NðxÞ
A�
1

þ NðxÞ�y1
I�1

ðy þ �y1Þ
� �

ð18aÞ

r2ðx; yÞ ¼
E2

Er

þ E2

Er

� E2

Er

� �
y
h2

� �� �
�NðxÞ
A�
2

þ NðxÞ�y2
I�2

ðy � �y2Þ
� �

ð18bÞ
Evaluating Eqs. (18) at y = 0 gives finally the unknowns ki � ri (x,y = 0)Ai/Ni(x) as
ki ¼
Ei

Er

Ai

A�
i

þ Ai�y2i
I�i

� �
ð19Þ
For the case of non-graded layers (Ei = Ei), ki = 4 and Eqs. (18) become:
r1ðx; yÞ ¼
b

a2bh1

coshðaxÞ
coshðacÞ � 1

� �
1þ 6

y
h1

þ 1

2

� �� �
ð20aÞ

r2ðx; yÞ ¼
b

a2bh2
1� coshðaxÞ

coshðacÞ

� �
1þ 6

1

2
� y
h2

� �� �
ð20bÞ
that are linear functions. Obviously, the theory previously presented can be applied to different types of
grading.

As a matter of fact, the tangential stress can be obtained from Eq. (1) as
sðxÞ ¼ � b sinhðaxÞ
ba coshðacÞ ð21Þ
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The mean value of the tangential stress is zero. Its maximum absolute value is reached at the free ends:
smax ¼ jsðx ¼ �cÞj ¼ jbj
ab

tanhðacÞ � jbj
ab

ð22Þ
where the last equality is verified for real mechanical components (e.g., metal cutters), for which ac is of the
order of 10.

It is very important to emphasize that the theory predicts a stress-concentration for the interface shear-
ing stresses at the free ends, for any given finite thickness h of the transition zone. On the other hand, a
stress-intensification (stresses tending to infinity) appears for vanishing thickness h.

The mean value of the axial load along the x-axis is
hNðxÞi ¼ 1

2c

Z þc

�c
NðxÞdx ¼ b

ca3
tanhðacÞ � b

a2
� � b

a2
ac� 1

ac

� �
� � b

a2
ð23Þ
that practically coincides with its maximum value:
Nmax ¼ Nðx ¼ 0Þ ¼ b
a2

1

coshðacÞ � 1

� �
� � b

a2
ð24Þ
This means that the axial load and the normal stresses are substantially constant along the longitudinal
axis.

On the other hand, the mean and maximum values for the stresses (18) are:
hriðxÞiy ¼
NiðxÞ
Ai

ð25aÞ

rimaxðxÞ ¼ kihriðxÞiy ð25bÞ

rimax ¼ jkihriðx ¼ 0Þiy j ¼
ki
Ai

b
a2

1

coshðacÞ � 1

� �����
���� � ki

Ai

jbj
a2

ð25cÞ
The maximum tangential and normal stresses (22) and (25c) act at different points. In any case, the crit-
ical condition from a stress viewpoint is reached when the equivalent stress (von Mises, Tresca, et al.) equals
its critical value.

It is important to note that the ratio:
�s ¼ 2smax

rmax

� 2hmin
i a
ki

ð26Þ
with rmax ¼ max rimax , appears of the order of the unity, so that shearing and normal stresses are competing.
In a multi-layered composite plate under axial load, an additional significant component of the stress

tensor is to be considered, besides the tangential and normal stresses previously discussed: this is the shear-
ing stress at the interface along the z-axis. It can be (prudently) estimated considering the deformation
imposed by the transversal contraction of the two layers. The transverse displacement at the interface
for the ith layer is
wiðx; zÞ ¼ � mikiN iðxÞ
EiAi

z ð27Þ
mi being the Poisson�s ratio at the interface for the ith layer. As a consequence, the shearing stress imposed
by the transversal contraction is
s?ðx; zÞ ¼
G
h
Dw ¼ G

h
ðw2 � w1Þ ¼

G
h

b
a2

m1k1
E1A1

þ m2k2
E2A2

� �
coshðaxÞ
coshðacÞ � 1

� �
z ð28Þ
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which, when m1 = m2 = m, becomes:
s?ðx; zÞ ¼
bm
b

coshðaxÞ
coshðacÞ � 1

� �
z ð29Þ
Its maximum value is
s?max ¼ s? x ¼ 0; z ¼ b
2

� �
� bm

2
ð30Þ
3. Thermal delamination in FGMs

The maximum stresses at the interface could result in a delamination between the two elements, i.e., a
brittle crack propagation between dissimilar materials. We will study this phenomenon from an energy
viewpoint following the approach proposed by Pugno and Carpinteri (2002, 2003).

By virtue of the energy balance, the following relationship between the variation in the total potential
energy dWtherm due to the thermal load and the fracture energy GdS must hold:
GdS þ dW therm ¼ 0 ð31Þ

where dS represents the incremental fracture area.

Since the applied load is zero, the variation in the total potential energy due to the thermal load is equal
to the variation in the elastic strain energy:
dW therm ¼ dL ð32Þ

Let us consider that, for imposed mechanical loading, the result is opposite (Pugno and Carpinteri,

2002), i.e.:
dW therm ¼ �dW mech ð33Þ

The strain energy release rate can be rewritten as
G ¼ � dW therm

dS
¼ � dL

dS
ð34Þ
Brittle crack propagation, i.e. delamination at the interface in the present case, really occurs when G reaches
its critical value GF, characteristic of the interface:
G ¼ � dL
dS

¼ GF ð35Þ
The crack propagation will be stable, metastable or unstable, depending on the sign of the second order
derivative of the total potential energy:
d2W therm

dS2
¼ � dG

dS
¼ d2L

dS2

< 0; unstable

¼ 0; metastable

> 0; stable

8><
>: ð36Þ
Again, the result is opposite with respect to the imposed mechanical loading (Pugno and Carpinteri, 2002).
To solve the problem of crack propagation, it is necessary to evaluate the elastic strain energy of the

FGMS as a function of the crack length. The energy L absorbed by the FGMS is the sum of three quan-
tities, i.e., the elastic strain energy absorbed by the two layers (pedex 1, 2) and by the interface (pedex 3):
L ¼ L1 þ L2 þ L3 � L1 þ L2 ð37Þ

the interface being of a very small thickness h.
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The elastic strain energy per unit length can be obtained taking into account Eq. (11), as
dLðxÞ
dx

¼
Z
A

1

2

r2ðyÞ
EðyÞ dA ¼ 1

2Er

N 2ðxÞ
A� þM2ðxÞ

I�

� �
ð38Þ
so that, by the definitions in Eqs. (12)–(14), we have:
dLiðxÞ
dx

¼ kiN 2ðxÞ
2EiAi

ð39Þ
It is very interesting to note that axial load and bending moment remain energetically orthogonal also in a
graded beam, as derived in Eq. (38).

As previously shown, the shearing stresses of delamination at the interface present their maximum abso-
lute value at the ends of the FGM structure. The initial separation at the interface between the two adh-
erends is supposed to take place at these points: the debonding is represented by two symmetric cracks
of length a/2. The elastic strain energy of the FGM structure can be evaluated by considering that the axial
loads in the two elements are approximately coincident with b/a2 for a length 2c � a, and zero outside:
L ¼
Z c�a=2

�cþa=2

dL1ðxÞ
dx

þ dL2ðxÞ
dx

� �
dx ¼

Z c�a=2

�cþa=2

k1
2E1A1

þ k2
2E2A2

� �
N 2ðxÞdx ¼ a2

2K�

Z c�a=2

�cþa=2
N 2ðxÞdx

ffi b2ðc� a=2Þ
a2K� ð40Þ
From Eq. (35) we can obtain the critical value of the parameter b at delamination:
bd
cr ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bK�GF

p
ð41Þ
and Eq. (36) shows that the crack propagation is metastable:
d2L

dS2
¼ 0 ) metastable regime ð42Þ
If we consider DT1 = DT2 = DT, the critical thermal load becomes:
DT cr ¼
bcr

DaK� ð43Þ
where Da = ja2 � a1j.
On the other hand, considering a stress criterion at the interface (smax = su), from Eq. (22) we have:
bu
cr ffi suab ð44Þ
su being the ultimate shearing stress of the interface. Strength collapse shall precede brittle crack propaga-
tion if, and only if, the following dimensionless number will be larger than 1:
s ¼ bd
cr

bu
cr

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2GGF

s2uh

s
> 1 smax ¼ su
< 1 G ¼ GF

�
ð45Þ
From Eq. (35) we can also obtain the stress-intensity factor due to thermal loading. Since
G ¼ K2
I

E0 þ
K2

II

E0 þ
1þ m
E

K2
III ð46Þ
with E 0 = E for plain stress and E0 ¼ E
1�m2 for plain strain, in the present case of pure Mode II:
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KII ¼
ffiffiffiffiffiffiffi
EG

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�E

dL
dS

r
¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

2ba2K�

r
ð47aÞ
which, for DT1 = DT2 = DT, becomes:
KII ¼
ffiffiffiffiffiffiffi
EG

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�E

dL
dS

r
¼ Da

ffiffiffiffiffiffiffiffiffi
EK�

2ba2

r
DT ð47bÞ
This result allows to evaluate the fatigue life during thermal cycles by using the well-known Paris� law.
Assuming to replace the stress-intensity factor in Mode I with its equivalent value, which here coincides
with the stress-intensity factor in Mode II:
da
dN

¼ CðDKÞm ð48Þ
with N = number of cycles; DK = KII(max) � KII(min) = variation in the (equivalent) stress-intensity factor
due to the variation in the thermal load DT; C, m Paris� constants. Eq. (47b) exhibits a value of the stress-
intensity factor independent of a. The fatigue life of the FGMS due to thermal cycles can be estimated sim-
ply by integration of Eq. (48):
NTOT ¼
Z NTOT

0

dN ¼
Z 2c

a0

da
CðDKIIÞm

¼ 2c� a0

C Da
ffiffiffiffiffiffiffi
EK�

2ba2

q
ðDT ðmaxÞ � DT ðminÞÞ

	 
m ð49Þ
4. Example of application

As an example, we analyse in this section a hard metal cutter composed by two layers (hard cutting layer
and metal substrate), for which we assume the following reasonable parameters (see Lammer, 1988; Huang
et al., 1997):
E1 ¼ 4.7� 1011 Pa; E2 ¼ 8.3� 1011 Pa; G � E
2
¼ E1 þ E2

4
¼ 3.25� 1011 Pa;

h1 ¼ 10�2 m; h2 ¼ 10�3 m; h � 10�4 m; b ¼ 3� 10�3 m; c ¼ 5.5� 10�3 m;

ðA1 ¼ bh1; A2 ¼ bh2Þ;
a1 ¼ 5.2� 10�6 	C�1; a2 ¼ 2.23� 10�6 	C�1; su ¼ 109 Pa;

KIC1 ¼ 30� 106 Pa
ffiffiffiffi
m

p
; KIC2 ¼ 10.5� 106 Pa

ffiffiffiffi
m

p
; GF ¼ K2

IC

E
� ðKIC1 þ KIC2Þ2

4E
¼ 615 N=m.
Applying Eqs. (41), (43) and (44), the tangential strength limit condition is predicted when
DT u

cr ¼ 444 	C, before delamination, which is expected for DT d
cr ¼ 888 	C. In addition, shearing stresses

prevail over normal ones (�s ¼ 2.07, from Eq. (26)).
If we consider GF ¼ minfGF1;GF2g ¼ 120 N=m (fracture in the brittler layer rather than at the interface),

we obtain DT d
cr ¼ 443 	C, so that tangential strength overcoming and debonding are competing failure

mechanisms.
The axial load and the tangential stress along the x-axis are respectively reported in Figs. 2–4 for the case

DT1 = DT2 = 500 �C, as well as the stress in the cutter along the y-axis in the critical section (x = 0). The
stresses are found to be tremendously high for working temperatures of a few hundreds Celsius degrees.

In Fig. 5a and b, the equivalent Tresca�s stresses are reported along the x-axis at the interface (critical
section, y = 0), respectively on cutting layer (a) and on substrate (b). The strength collapse of the cutter
arises at the free ends of substrate (lower strength) and it is due to tangential stresses.
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Fig. 5. (a) Tresca equivalent stress on cutting layer. (b) Tresca equivalent stress on substrate.
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The value s?max � mb
2
, assuming m � 0.2, is equal to 1.45 GPa, which is comparable, as expected, with the

other maximum stresses.
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The estimation of the fatigue life for the cutter can be obtained considering the Paris� constants C and m.
Their typical values for metals are m = 1–4 and C � 1�3 · 10�15 (SI). For example, in cutting reinforced
concrete, the cutter presents different temperatures when it is in the metal or in concrete. The frequency of
the impacts against the re-bar, as well as the frequency of the thermal load, is of the order of 10 Hz. The
difference in the temperatures is of the order of 20 �C (total value around 300 �C). Introducing in Eq. (49)
DT (max) � DT (min) � 20 �C and a0 � 0, we obtain a fatigue life prediction of NTOT ffi 8.5 · 106 cycles
(m = 1, C � 2.875 · 10�15 in SI).
5. Shape/size effects and optimization

From the previous formulas, the influence of the geometrical parameters on the strength of the element,
as well as the related shape and size effects, can be derived. The maximum shearing stress is
smax �
ffiffiffiffi
G

p
ða2DT 2 � a1DT 1Þb
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
E1

h
h1
þ 1

E2

h
h2

q ð50Þ
The influences of the different geometrical parameters are described in Fig. 6. R is the size of self-similar
FGMS: i.e., h1 / h2 / b / h / R; r is the size of quasi-self-similar FGMS: i.e., h1 / h2 / b / r, in which we
consider h = constant, since it represents a parameter imposed by the chemistry of the bonding rather than
a free design parameter. The maximum shearing stress tends to vanish when the structural size decreases.
The tangential stress of Eq. (50) tends to infinity when the thickness of the transition zone goes to zero; on
the other hand, it tends to zero reducing the size of the cutter, see Fig. 6.

The maximum normal stresses are:
rmax 1 �
ða2DT 2 � a1DT 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
E1
þ 1

E2

h1
h2

q ; rmax 2 �
ða2DT 2 � a1DT 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
E2
þ 1

E1

h2
h1

q ð51Þ
The influences of the different geometrical parameters are described in Fig. 7. Differently from the pre-
vious case, the normal stresses are independent of the size-scale R. We cannot reduce the normal stresses
simply by a reduction of the structural size. On the other hand, we could reduce them by an optimization
of the ratio h1/h2. The optimal value for the ratio h1/h2 is reported in Fig. 7 imposing rmax1 = rmax2.

A better optimization could be obtained considering the different strengths of the two layers and by
imposing the following condition:
rmax 1

ru1

¼ rmax 2

ru2

ð52Þ
b∝ 21
ih∝

2–1∝ h

23r∝
max

R∝τ

Fig. 6. Influence of geometry on maximum shearing stress.
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Fig. 7. Influence of geometry on maximum normal stresses.
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Eq. (52) can be rewritten as
ru1

E2

h1
h2

� �2

þ ru1

E1

� ru2

E2

� �
h1
h2

� �
� ru2

E1

¼ 0 ð53Þ
and gives two solutions for the optimal ratio h1/h2. One of them is unacceptable (<0), whereas the other is
h1
h2

� �
opt

¼ ru2

ru1

ð54Þ
This result allows to optimize the ratio h1/h2 between substrate and cutting layer of the tool. From a ther-
mal stress viewpoint, the best solution should imply considering also layers with functional graded mate-
rials, to reduce the mismatch of the thermal expansion coefficients. Assuming rmax2 > rmax1 (cutting
layer with higher stresses), the gain k related to this optimization is
k ¼ rmax 2

rmax 2ðoptÞ
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

E1

h2
h1

	 

opt

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2

E1

h2
h1

q ð55Þ
For example, assuming for a metal cutter E2 � 2E1 and h1 � 4h2, so that k � 1.25, which means that the
optimization could provide an increment in the cutter�s strength by 25%.

In addition, the maximum orthogonal shearing stress is
s?max �
ffiffiffiffi
G

p
ða2DT 2 � a1DT 1Þ

ffiffiffi
b
h

r
ð56Þ
The influences of the different geometrical parameters on the shearing stress of Eq. (56) are described in
Fig. 8. R is the size of self-similar cutters. For quasi-self-similar cutters (constant interface thickness), smal-
ler is stronger, whereas for completely self-similar cutters the influence of the size disappears.
21b∝

2–1∝ h

⊥maxτ

0R∝

21r∝

Fig. 8. Influence of geometry on maximum orthogonal shearing stress.
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Fig. 9. Influence of geometry on energy release rate.
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Finally, for the energy release rate we have:
G �
ffiffiffiffi
G

p
ða2DT 2 � a1DT 1Þ2

8 1
E1h1

þ 1
E2h2

	 
 ð57Þ
The brittle crack propagation will arise when G = GF. The influences of the different geometrical parameters
are described in Fig. 9. G decreases by considering smaller cutters, so that smaller is stronger also from a
brittle crack propagation viewpoint.
6. Conclusions

The stress field and the fracture propagation conditions due to thermal loading in multi-layered and/or
functionally graded materials have been analysed. The shearing stress field at the interface, as well as the
normal stresses in the layers, have been computed. The delamination phenomenon between the layers
has been predicted by a fracture mechanics analysis. The findings allow to estimate the critical temperature
corresponding to limit strength or brittle fracture, of great importance in the design of innovative compo-
nents in high temperature environment. The influences of the geometrical parameters, describing the so
called shape- and size-effects, have been also discussed. An application to the interesting case of metal cut-
ters concludes the paper. Even if numerical simulations in both static (Pugno and Surace, 2000) and dy-
namic (Pugno and Ruotolo, 2002) regimes as well as experimental observations (Pugno and Carpinteri,
2002) have already confirmed—for homogeneous structures—the general approach here presented, numer-
ical investigations for functionally graded material structures will be presented in a future paper.
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