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MEMS-based tensile testing platforms are very powerful tools for the mechanical

characterization of nanoscale materials, as they allow for testing of micro/nano-sized

components in situ electron microscopes. In a typical configuration, they consist of

an actuator, to deliver force/displacement, and a load sensor, which is connected to

the sample like springs in series. Such configuration, while providing a high resolution

force measurement, can cause the onset of instability phenomena, which can later

compromise the test validity. In the present paper such phenomena are quantitatively

discussed through the development of an analytical model, which allows to find a

relationship between the rise of instability and the sensor stiffness, which is the key

parameter to be optimized.
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INTRODUCTION

Mechanical characterization of materials at the micro/nanoscale has gained increasing attention
during the last two decades, as acknowledged by the dramatic increase in number of correlated
studies (Pantano et al., 2012). Such trend can be explained by two main reasons. First, the further
scaling down of electronic devices, like micro/nanoelectromechanical systems (MEMS/NEMS),
is shrinking the size of their structural components to the micro/nanometer scale. Second,
experiments carried out on micro/nanostructures, like nanotubes and nanowires, revealed an
extraordinary behavior (Wang and Song, 2006; Lee et al., 2008), not known at themacroscale, which
can be exploited for a new generation of devices and materials (Ke et al., 2005; Pugno et al., 2005).

For the mechanical characterization of micro/nano-samples, MEMS-based tensile testing
devices were shown to be very powerful tools (Zhu and Chang, 2015). In fact, because of their
unique compatibility with scanning/transmission electron microscopes (SEM/TEM), they allow
tests to be performed under real-time imaging of the sample deformation.

In a typical configuration, the sample to be tested is positioned between an actuator (to apply
loads/displacements) and a flexible structure with load sensing function (Haque and Saif, 2002;
Espinosa et al., 2007) (i.e., load sensor).

During a test, the actuator pulls the specimen, and this, in turn, transfers part of the delivered
displacement to the load sensor, which, as a consequence, undergoes a deformation. This can be
measured either electronically (Zhang et al., 2010) or from the analysis of successive pictures taken
during the test (Brown et al., 2009), and can then be converted into force if multiplied by the sensor
spring constant, known by design.
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The choice of the sensor spring constant is not a trivial
task. In fact, smaller its value higher the sensitivity of the
load measurement. However, if the sensor stiffness is too low
compared to that of the specimen, then most of the displacement
delivered by the actuator is transferred to the sensor, causing a
small deformation of the specimen itself. More critically, a low
sensor stiffness may promote the onset of instability phenomena.
In fact, when the load sensor moves along with the sample, it
accumulates elastic energy. When the force transmitted by the
sample to the load sensor decreases after a certain strain has been
applied, the elastic energy stored up to that point is released. This
means that the load sensor moves back, pulling the end of the
specimen attached to it (Agrawal et al., 2009). In such a situation,
the displacement-control condition of the sample may no longer
be guaranteed, triggering its dynamic failure. Thus, in the case of
softening, the testing systemmay not be able to follow the sample
characteristic curve after stress relaxation, even though this could
be very interesting to explore.

The influence of the machine stiffness on the mechanical
properties and instability phenomena occurring during
macroscopic mechanical tests has been pointed out in different
studies (Chilver, 1955; Johnston, 1962; Hudson et al., 1972; Han
et al., 2009, 2010). In general, it is well-known that a machine
with high stiffness should be chosen in order to avoid instability
issues in tensile tests. However, while in macroscopic tests,
the machine stiffness can be set much bigger than that of the
specimen, at the microscale, the metrological strategies adopted
for load measurement in MEMS devices make it not possible.
The maximum sample deformation which can be achieved
before instability occurs can be quantitatively evaluated from the
analytical model shown in the following sections.

ANALYTICAL MODELING OF
MEMS-BASED TENSILE TESTING
DEVICES

In most of MEMS tensile testing devices, the load sensor and
the sample to be tested are connected like springs in series, as
in the lumped parameters model reported in Figure 1A. This is
a 2-degrees-of-freedom system, where the sample is represented
as a spring with a generic characteristic (its mass is negligible
with respect to that of the load sensor), while the load sensor
is modeled through a mass (MLS) connected to the substrate
through a damper (with damping constant D) and a spring (with
spring constant kLS). The sample undergoes a displacement xS, as
a consequence of the actuator movement, whereas xLS is the load
sensor’s displacement.

For simplicity, let us first neglect both the damping and
inertial contribution, and let us evaluate the global quasi-
static force-displacement relationship characterizing the system
comprising the load sensor and sample springs (Figure 1B).

Global System Behavior
The overall deformation undergone by the system is xS =xLS+
(xS-xLS), where (xS-xLS) is the sample elongation. If infinitely
small displacements are considered, the overall system

elongation becomes:

dxS = dxLS + d(xS −xLS) (1)

Since kLS is the load sensor spring constant, then dxLS =dF/kLS. If
a general characteristic is assumed for the sample, it follows that
d(xS−xLS) = ∂(xS−xLS)/∂FdF, where dF is the force acting on
the system, which is the same on both the sample and load sensor
(since they are connected in series). Thus, Equation (1) can be
rewritten as:

dxS =
dF

kLS
+

∂(xS −xLS)

∂F
dF, (2)

or,

dxS

dF
=

1

kLS
+

∂(xS −xLS)

∂F
. (3)

At the beginning, the sample characteristic has a linear increasing
trend [e.g., ∂(xS-xLS)/∂F or ∂F/∂(xS-xLS) are constant, and the
sample can be modeled like a linear spring], and the slope of the
system characteristic (∂F/∂xS) is equal to the equivalent stiffness
of the sample and load sensor spring constants. Then, the system
characteristic may either increase or decrease with increasing xS,
depending on the sample’s behavior. In particular, either of the
following cases may occur (Figure 1B):

(a) Overall system hardening as a consequence of sample
hardening, i.e., if ∂(xS-xLS)/∂F>0;

(b) Overall softening with negative slope, if the sample exhibits
softening (i.e., ∂F/∂(xS-xLS)<0) and its slope in modulus is
smaller than the load sensor spring constant. In fact, from
Equation (3):

dxS

dF
< 0 ⇔

1

kLS
+

∂(xS −xLS)

∂F
< 0, (4)

which is equivalent to

kLS >

∣

∣

∣

∣

∂F

∂ (xS −xLS)

∣

∣

∣

∣

. (5)

(c) Overall softening with positive slope, if the sample exhibits
softening (e.g., ∂F/∂(xS-xLS)<0) and its slope in modulus is
bigger than the load sensor spring constant. In fact, from
Equation (3):

dxS

dF
> 0 ⇔

1

kLS
+

∂(xS −xLS)

∂F
> 0, (6)

which is equivalent to

kLS <

∣

∣

∣

∣

∂F

∂ (xS −xLS)

∣

∣

∣

∣

. (7)

Thus, in this latter case, the system would tend to come
back to smaller values of xS, displaying a snap-back
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FIGURE 1 | (A) Lumped parameters model of a typical tensile testing device, where the sample can be modeled like a spring whose characteristic shows a softening

branch; (B) Global behavior of the system consisting of both the load sensor and the sample, showing the relationship between the force (F ) corresponding to the

applied displacement (xS). When the sample enters the softening regime, F may increase (line a) or decrease (either line b or c) with xS, depending on the magnitude

of the slope of the sample characteristic, ∂F/∂ (xS-xLS), compared to the load sensor stiffness, kLS. In particular, line (b) corresponds to ∂F/∂ (xS-xLS)<0 and

kLS>|∂F/∂ (xS-xLS)|, whereas c) to ∂F/∂ (xS-xLS)<0 and kLS<|∂F/∂ (xS-xLS)|. In order to evaluate the stability of the equilibrium position of the load sensor, its dynamic

behavior can be linearized and modeled around such position through a Jacobian matrix. (C) The sign of the trace, τ , and the determinant, 1, of the Jacobian matrix

determine the stability of the equilibrium point.

instability with positive slope. However, since in a typical
tensile test, xS is progressively increased, the sample is
broken without the possibility to follow the snap-back
instability and, thus, the corresponding region of the
sample characteristic. As a consequence, the optimal design
value for the load sensor stiffness depends on the steepest
point of interest to be expected during softening regime
in the sample characteristic curve. Thus, as a compromise
between high resolution during the elastic regime and
stability requirement, we can define an optimal load sensor
stiffness as

kLS, opt = η

∣

∣

∣

∣

∂F

∂ (xS −xLS)

∣

∣

∣

∣

MAX

where η is a safety factor for stability, which could be set for
example equal to 10%.

Load Sensor Stability
It is now interesting to study what happens to the
load sensor when its stiffness is smaller than the
sample characteristic slope during softening. To
this aim, it is convenient to refer to the model
depicted in Figure 1A and write the load sensor’s
equilibrium equation:

MLS
d2xLS

dt′2
=
∑

i

Fi, (8)

where Fi is the i-th force acting on the load sensor. In this case,
three forces have to be considered:

FS = F (xS − xLS) , (9)

FLS = −kLSxLS , (10)

FD = −D
dxLS

dt′
, (11)

where FS is the force transmitted to the load sensor by the sample
and depends on the actual sample elongation (xS-xLS), FLS is
the elastic force exerted by the load sensor spring, and FD the
damping force. Thus, considering the (9)–(11), Equation (8) can
be rewritten as:

MLS
d2xLS

dt′2
= −D

dxLS

dt
′ − kLSxLS + F (xS − xLS) . (12)

In steady-state condition, the equilibrium points of Equation (12)
are given by the roots of f (xLS) = −kLSxLS + F (xS − xLS).
In order to infer about the stability of a load sensor equilibrium
point, x∗LS (solution of Equation 12), it is convenient to linearize
f(xLS) through Taylor expansion as f (xLS) ≈ f ′

(

x∗LS
) (

xLS − x∗LS
)

,

where f ′
(

x∗LS
)

=
(

−kLS − dF
d(xS−xLS)

)
∣

∣

∣

x∗LS
(Pelesko and

Bernstein, 2003). From this, it follows that the sign of the slope
of function f (xLS) depends on the magnitude of the slope of
F (xS − xLS) compared to kLS, providing two possible cases:

1) f ′
(

x∗LS
)

> 0 ⇔ Ḟ
(

xS − x∗LS
)

< − kLS,

2) f ′
(

x∗LS
)

< 0 ⇔ Ḟ
(

xS − x∗LS
)

> − kLS.
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It is now convenient to rewrite Equation (12) through the
following system

{

dxLS
dt′ = v,

dv
dt′ = − D

MLS
v+ f (xLS)

MLS
,

that we can linearize near the equilibrium point, x∗LS, as
du
dt′ =

J u, with

J =
(

0 1
f ′

MLS
− D

MLS

)∣

∣

∣

∣

∣

x∗LS

, u=
(

xLS − x∗LS
v

)

.

The stability of the solution, x∗LS, depends on the trace and
determinant of the Jacobian matrix (Strogatz, 2000; Pelesko and
Bernstein, 2003), τ = tr (J) ,1 = det(J), respectively, that on
turn depend on f ′. In particular, in our system τ = −D/MLS <0,
whereas 1 = −f ′/MLS. Therefore, when f ′ >0 (previous case 1)
1 < 0, meaning that the equilibrium point is unstable (saddle
point from Figure 1C). On the contrary, when f ′ <0 (previous
case 2), 1 >0, always corresponding to stable equilibrium points
(Figure 1C). As a conclusion, when the sample characteristic
slope is negative (e.g., softening in the sample) and its modulus is
smaller than kLS, stable equilibrium points are allowed to the load
sensor (case 2); while instead the sample characteristic slope is
negative and its modulus is bigger than kLS, no stable equilibrium
points are possible (case 1). Indeed, in such case, as shown in
the previous section, the system of the sample and load sensor
springs show a snap-back instability with a positive slope, which
cannot be followed during the tensile test.

In some simple cases, the previous generic (Equation 12) can
be solved analytically. As an example, let us consider a piecewise
linear expression of F(xS-xLS), which is characterized by an initial
region, where the force increases with the deformation, followed
by a second region with a decreasing trend (softening region),
that can be defined as (Figure 1A):

F (xS − xLS) =
{

k0 (xS − xLS) , if xS − xLS < x∗,
k0x

∗ − k1 (xS − xLS − x∗) , if xS − xLS > x∗.

(13)

Its first region defines the sample elastic regime, while the second
one corresponds to the softening region. In order to study what
happens to the sensor as soon as the sample enters the softening
regime, we substitute the second of Equations (13) in Equation
(12), which then becomes:

MLS
d2xLS

dt′2
= −D

dxLS

dt′
− kLSxLS + k0x

∗ − k1
(

xS − xLS − x∗
)

.

(14)

It is convenient to rewrite Equation (14) in dimensionless form.

To this aim, we introduce the dimensionless time, t=t’

√

|k1−kLS|
MLS

,

and length, y=xLS/l, being l the sample gage length and k1 6= kLS.
With these positions, Equation (14) can be rewritten as:

d2y

dt2
= −α

dy

dt
+ sgn

(

k1 − kLS
)

y+
x∗
(

k0 + k1
)

− k
1
xS

l
∣

∣k1 − kLS
∣

∣

, (15)

where α = D√
MLS|k1−kLS|

is a corrected quality factor, which takes

into account the presence of the sample through the term k1.
Considering a typical MEMS testing platform, like that one

reported in Pantano et al. (2015), the damping contribution
can be neglected with respect to the inertial effects (see the
Appendix for further details), meaning that α <<1. Thus, in the
inertia-dominated regime, Equation (15) simplifies as:

d2y

dt2
= sgn

(

k1 − kLS
)

y+
x∗
(

k0 + k1
)

− k
1
xS

l
∣

∣k1 − kLS
∣

∣

. (16)

In general, xS = xS(t), but in the hypothesis of a negligible
variation of xS with time, Equation (16) can be solved analytically
depending on the positive (a) or negative (b) sign of (k1-kLS).

(a) If k1 >kLS, the general solution of Equation (16) is:

y = Aet + Be−t −
x
∗ (
k0 + k1

)

− k
1
xS

l
(

k1 − kLS
) , (17)

(b) If k1 <kLS, the general solution of Equation (16) is instead:

y = A cos t + B sin t −
x∗
(

k0 + k1
)

− k
1
xS

l
(

k1 − kLS
) , (18)

A, B are constants depending on the initial conditions.
In order to infer about the stability of the load sensor

equilibrium positions defined by Equations (17) and (18), it is
useful to write the second-order differential equation (16) as a
non-homogeneous linear system:







dy1
dt

= y2,
dy2
dt

= sgn
(

k1 − kLS
)

y1 +
x∗(k0+k1)−k1xS

l|k1−kLS| .

This latter can be turned in a homogeneous system, by

introducing the translations χ1 = y1 − x∗(k0+k1)−k1xS
l(k1−kLS)

, χ2 =
y2, i.e.,

{

dχ1
dt

= χ2,
dχ2
dt

= sgn
(

k1 − kLS
)

χ1.

The above homogeneous linear system has a fixed point, χ∗, at
χ1 = 0, χ2 = 0, i.e., the origin corresponds to the equilibrium
position of the system. Repeating the same logic as before,
the trace, τ , and the determinant, 1, of the Jacobian matrix
associated to the linear system provides the stability of the fixed
point. In this case, τ = 0, while 1=-sgn(k1-kLs). Thus, with
reference to Figure 1C,

(a) If k1 >kLS, 1 <0, thus the equilibrium point, χ∗, is a saddle
point, i.e., unstable.

(b) If k1 <kLS, 1 >0, the equilibrium point, χ∗, is a center, i.e.,
neutrally stable.

Since dF
d(xS−xLS)

= k1 and k1 represents the slope of the decreasing

branch of the sample characteristic, the results found now match
the conclusions derived previously in case of a sample with a
generic characteristic.

Frontiers in Materials | www.frontiersin.org 4 July 2019 | Volume 6 | Article 161

https://www.frontiersin.org/journals/materials
https://www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


Pantano et al. Load Sensor Instability in MEMS

ANALYSIS OF RESULTS AND DISCUSSION

From the analytical models presented above, two main
conclusions can be derived. First, the range of possible
deformation which can be applied to the specimen is limited by
the value of the load sensor spring constant. In particular, higher
the sensor spring constant, higher the displacement which can
be delivered by the actuator (xS), without compromising the load
sensor stability. Second, when the sample characteristic becomes
negative and its slope overcomes the load sensor spring constant
(in absolute value), the system comprising both the sample and
load sensor springs shows a snap-back instability with a positive
slope, which cannot be followed during a conventional tensile
test, where the end of the sample connected to the actuator is
not allowed to come back to decreasing values. From the load
sensor’s point of view, this translates into unavailability of stable
equilibrium positions.

Our result about the occurrence of instability in the case of
sample softening with a slope bigger than the sensor stiffness
agrees well with similar conclusions drawn in the past, through
an energetic approach, from macroscopic compression tests on
rocks (Salamon, 1970), as well as with previous hypotheses
adduced to explain divergences of the experimental behavior
of ZnO nanowires from numerical simulations (Agrawal et al.,
2009). As a matter of fact, it is rare to find in the literature
experimental stress-strain curves of nanoscale materials showing
a steep softening branch. One example can be found in Pantano
et al. (2018), where the stress-strain curve of a poly(methyl
methacrylate) (PMMA) film with about 100 nm thickness shows
a final softening region with negative slope of ∼-736 N/m.
This value approaches (yet is still below) the limit of the

load sensor stability region, whose upper bound corresponds
to the load sensor stiffness (831 N/m in this case). Hence,
as a design rule, in order to mitigate the instability issues
of typical MEMS-based tensile testing configurations, the load
sensor stiffness should be chosen according to the optimal
value definition reported above. Then, in order to be able to
follow the complete stress-strain curve of micro/nano-samples
with any kind of softening, alternative designs should be
considered. The first solution is to choose a sensor with infinite
spring constant. This, in practice, would correspond to fix
one end of the specimen, thus preventing any displacement
of the sensor itself. In such case, the sensor would lose
its sensing function and other metrological strategies than
those based on its deformation should be considered for the
force measurement. In this regard, a feedback-control strategy
could be implemented, as in Pantano et al. (2015). Here,
the load sensor is kept fixed at its initial position through
the implementation of a position feedback-control, which
also provides an electrical load measurement, based on the
electrostatic force that has to be applied to keep the sensor at
rest (Figure 2).

In this case, it is possible to provide the load sensor with
a significantly small stiffness (55 N/m by design), which could
guarantee high resolution in the displacement measurement.
However, in case of softening, if no feedback control is
implemented, according to the model presented in the previous
section, the maximum slope which can be detected before
instability is:

∣

∣

∣

∣

∂F

∂ (xS −xLS)

∣

∣

∣

∣

max

= kLS = 55 N/m.

FIGURE 2 | (a) SEM picture of the tensile testing device proposed in Pantano et al. (2015) provided with load sensor feedback control. It consists of a thermal

actuator, a capacitive load sensor, and an electrostatic actuator. The thermal actuator and the load sensor are separated by a 2µm gap for accommodation of the

sample to be tested (zoomed view on top); (b) Implementation of the feedback voltage control scheme for keeping the load sensor at rest during test on a sample.

Scale bar: 500µm.
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FIGURE 3 | Stress-strain curves derived from tensile tests on silver nanowires

of 118 nm diameter. The red curve is referred to a test where the load sensor is

allowed to move, while the black curve was derived during a test where a

displacement feedback control of the load sensor was implemented. Reprinted

with permission from Pantano et al. (2015). Copyright 2015, Springer.

With reference to a typical nanowire with gage length of
4µm and diameter of about 120 nm, this corresponds to
a maximum detectable negative slope in the stress-strain
curve of about 20 GPa, which is one fourth of the Young
modulus of bulk silver (Wu et al., 2006; Gao et al., 2012)
[that represents a lower bound value for the Young modulus
of silver nanowires as this increases with size reduction
(Sun and Li, 2005)]. This relatively low value would not
allow to record the steep load drop at yield of a silver
nanowire (118 nm diameter), which can instead be measured if
feedback control is implemented in the load sensor operation
mode (Figure 3).

The second possibility for limiting instability issues is a tuning
of the load sensor stiffness during the test. In particular, the
load sensor stiffness should be relatively low at small sample
displacement (in order to guarantee sufficient force resolution)
and increase at high sample displacement, when softening is
expected. This tunable stiffness ability would be a sort of bio-
inspired solution, as examples of stiffness modulation can be
found in nature, and, in particular in the behavior of humans,
when they have to move in unstable dynamic environments. In
fact, in these cases, the central neural system is able to control
the muscles stiffness in order to overcome the instability of their
movements (Burdet et al., 2001). In the case of MEMS devices,
such ability can be readily available if the sensor geometry
can change significantly during the tensile test. For example,
sensors with a v-shaped geometry, like the amplifier reported
in Pantano and Pugno (2014), have a stiffness depending on
the length and inclination angle of their chevron beams. In
particular, as the test proceeds and this kind of sensor is
deformed, both the length and inclination angle of chevron
beams change with a consequent stiffness increase. Currently,

stiffness tuning finds application in many systems, like atomic
force microscopy (AFM) (Mueller-Falcke et al., 2004) and, above
all, microresonators (Kozinsky et al., 2006) and the strategies
adopted in those cases can be borrowed and transferred to the
context of tensile testing devices, too. In particular, among the
broad range of available options, solutions based on either an
electrostatic or a mechanical working principle are the most
interesting, since they allow for the highest stiffness increase
(de Laat et al., 2016). In the first case, a voltage is applied
between moving and fixed electrodes in order to produce an
electrostatic force that causes an increase or reduction of the
overall system stiffness, depending on the system design (de Laat
et al., 2016). In the second case, the overall system stiffness can be
increased by causing the moving shuttle to engage more flexural
elements. Such engagement can be induced by applying a critical
voltage causing the pull-in of the moving shuttle to the additional
springs (de Laat et al., 2016).

CONCLUSIONS

The sensor stiffness was shown to play a major role on the efficacy
of MEMS tensile testing devices. In fact, if on one hand, it defines
the resolution of the force measurement, on the other hand, it
can affect the stability of the whole testing system, especially
when the sample characteristic starts decreasing after a certain
strain has been applied, as a consequence of plasticity or necking,
for example.

The development of an analytical model allowed to find
a relationship between the sensor stiffness and the rise of
instability. In particular, it was shown that instability occurs
when the slope of the sample characteristic is negative
and its modulus exceeds the sensor stiffness. Thus, in
order to prevent load sensor from instability, two possible
solutions can be followed with the implementation of
either a feedback control to keep the load sensor constantly
at rest or a bio-inspired design, where the load sensor’s
stiffness can be modulated (i.e., increased when instability
issues may arise).
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APPENDIX

With reference to the MEMS device reported in Pantano et al.
(2015), the load sensor mass is about 10–10 kg, kLS=55 N/m, the
damping coefficient, D, can be evaluated as due to the squeezing
of air trapped between its comb-drive pairs. Considering the
classical formula (Bao and Yang, 2007) that describes the
squeeze-film air damping between two rectangular plates:

D = Nµ
Lw3

h3
,

where N is the number of comb-drive finger pairs, µ is the air
viscosity, h is the thickness of the air gap, L and w are the larger
and the smaller side of the plate, D results to be about 10–4 Ns/m
at atmospheric pressure. In this condition, for almost all values
of k1, α = D√

MLS|k1−kLS|
< 1. Furthermore, since these kinds of

MEMS devices work in vacuum,D is expected to bemuch smaller
when air is rarefied, causing α to be much smaller than 1 as well,
as assumed in section Load Sensor Stability.
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