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Abstract

An extension of the celebrated Paris law for crack propagation is given to take into account some of

the deviations from the power-law regime in a simple manner using the Wöhler SN curve of the

material, suggesting a more general ‘‘unified law’’. In particular, using recent proposals by the first

author, the stress intensity factor K(a) is replaced with a suitable mean over a material/structural

parameter length scale Da, the ‘‘fracture quantum’’. In practice, for a Griffith crack, this is seen to

correspond to increasing the effective crack length of Da, similarly to the Dugdale strip-yield models.

However, instead of including explicitly information on cyclic plastic yield, short-crack behavior, crack

closure, and all other detailed information needed to eventually explain the SN curve of the material,

we include directly the SN curve constants as material property. The idea comes as a natural extension

of the recent successful proposals by the first author to the static failure and to the infinite life

envelopes. Here, we suggest a dependence of this fracture ‘‘quantum’’ on the applied stress range level

such that the correct convergence towards the Wöhler-like regime is obtained. Hence, the final law

includes both Wöhler’s and Paris’ material constants, and can be seen as either a generalized Wöhler’s

SN curve law in the presence of a crack or a generalized Paris’ law for cracks of any size.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Fatigue life prediction is still very much an empirical art rather than a science, despite
being a relatively old subject having nearly 150 years of history (Wöhler, 1860), described
see front matter r 2006 Elsevier Ltd. All rights reserved.
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in a number of books or review papers (see for example, Schutz, 1996; Cui, 2002; Fleck et
al., 1994; Frost et al., 1974; Suresh, 1998, to name a few). In the old days, SN curves were
measured and their empirical nature generally maintained even when simplified equations
like the Basquin power law (Basquin, 1910) emerged, or when recognizing simpler rules for
the ‘‘fatigue limit’’, or various other effects on the basic fatigue SN curve, like the mean
stress, roughness, notch, dimension. This was generally driven by the need to have
engineering rules still used when designing against fatigue with the ‘‘safe-life’’ approach,
i.e., virtually for infinite life.
With the advent of fracture mechanics, a more ambitious task was undertaken, i.e., to

predict, or to at least understand, the propagation of cracks. It clearly emerged that the
propagation ‘‘speed’’ was far from being constant in time: generally, it was clear that the
crack advance was larger for increasing stress amplitudes, but also for larger cracks, until
the pioneering work of Paris et al. (1961, 1963), who suggested to use the Irwin stress
intensity factor (more precisely, its range DK) to characterize the rate of crack advance per
cycle, da/dN, since many data collapsed in a single power law in the da/dN–DK diagram.
Since then, much work has been done to understand more of Paris’ law and its deviations,
but we are still far from a complete understanding (see review by Newman, 1998).
In a sense, most of the present design processes still use the empirical approaches of the

‘‘pre-Paris’’ era, particularly for ‘‘long-lives’’ (high cycle fatigue (HCF)), for which a ‘‘damage
tolerant’’ approach is very difficult to implement, since cracks grow very slowly and are not
detected for large part of their life. It is still difficult today, even with the most advanced
models, material data information, and computational capabilities, to derive an entire SN
curve from integration of crack propagation laws, particularly because of various regimes of
deviations from the standard Paris law regime, in particular due to short cracks. In principle,
crack propagation starts from the ‘‘initiation’’ phase (sometimes called ‘‘stage I’’ and mainly
being ‘‘short crack’’ propagation) and continues with the ‘‘propagation’’ phase of stage II
(where the Paris law is supposed to hold), up to stage III (fast crack propagation) leading to
final failure. However, in simple applications, it may be beyond the actual needs to
understand the local transient effects on crack propagation unless they have a large effect on
the final resulting SN curve. It is clear that if the SN function is of interest, it is redundant to
know the details of its derivative, the crack propagation rate curve, also because there is not a
single function to be known, nor is the curve in the Paris axis single-valued. Sometimes, the
initiation phase is arbitrarily defined with a specific value of final crack size, although it is
clear that, depending on the applied stress range, propagation would certainly not start
always at the same given size: just thinking of the definition of the long-crack threshold, for
example, it is clear that at lower and lower values of stress range, propagation would only
start at larger and larger sizes of cracks.
Also, when designing, one set of data that is often available is the SN curve for the base

material, as well as the Paris law for long cracks, and thresholds for both fatigue and fatigue
crack propagation, as well as ultimate stress and toughness value. One striking difference,
often, is the different exponents in the SN curve and in the Paris law, which correspond to the
much slower propagation of damage in the uncracked material, as it is reasonable to expect.
This suggests that the long-crack propagation rate of the Paris law implies different scaling
with respect to number of cycles, and, as we shall see, also the dependence on initial crack size
is not the same as that implied by the crack propagation threshold and the toughness value.
These differences in turn imply that there must be deviations from these two limit power-law
behaviors (the Paris and Erdogan (1963) and the Basquin (1910) one), and one key
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responsible is certainly cyclic plastic deformation at the crack tip, which in the Paris law
regime satisfies ‘‘small-scale yielding’’, i.e., either sufficiently low loads or sufficiently long
cracks (Kanninen and Popelar, 1985; Klesnil and Lukas, 1972; Anderson, 1995). These
stringent requirements are not always well specified and are also confused, particularly
because the Paris law is a beautiful result; but when it does not work, it has the disadvantage
of having on the x-axis the stress intensity factor range, i.e., the product of stress range and
(square root of) crack size. Hence, if the stress intensity factor range is not the correct
parameter to collapse the curve, one is left with the possibility to have a multivalued function.
The resulting data points become very sparse and difficult to interpret. For example, ‘‘short
crack’’ in particular is nearly always related to the fatigue limit and fatigue threshold (see the
definition of intrinsic crack from El Haddad et al. (1979)), whereas the definition of ‘‘short’’ is
more correctly framed with respect to the size of the process zone, and hence should also
depend on the load level—in the limit of static failure, the equivalent size for the transition
from strength-controlled failure to toughness-controlled failure is various orders of
magnitude larger than the El Haddad size, so what is ‘‘short’’ in this range is certainly
‘‘long’’ around the fatigue limit region.

Most modifications of Paris’ law deal only with single mechanisms of departure from the
ideal conditions: threshold limits, both fatigue limit and crack propagation threshold
(Laird, 1979; Foreman et al., 1967), crack closure (Elber, 1970), short cracks (Pearson,
1975; Ritchie and Lankford 1986, 1996; El Haddad et al., 1979; Kitagawa and Takahashi,
1976; Kitagawa and Tanaka, 1990), among others. The case of short cracks is one of the
most well known since Paris’ law can significantly underestimate their rate of growth, and
the large number of ad hoc laws reflect the fact that there is not a single type of short-crack
deviation. Some authors have suggested a classification of cracks (see Suresh and Ritchie,
1984; Ritchie and Lankford, 1996; Miller, 1999) as follows:
(i)
 microscopic short crack (microstructurally small) for which continuum mechanics
breaks down and microstructural fracture mechanics is needed, see for example the
models of Hobson et al. (1986) and later Navarro and de los Rios (1988); this is
perhaps the most complex category, since crack deceleration or self-arrest is very
dependent on the grains size and orientations, and possible decelerations or ‘‘minima’’
in da/dN and multiple small-crack curves can be found (Ritchie and Lankford, 1986);
(ii)
 physically small crack (mechanically small) compared to the scale of local plasticity,
for which Elastic–Plastic Fracture Mechanics (EPFM) is needed, first introduced by
Tomkins in 1968 (see Miller, 1999) who equated da/dN to crack tip decohesion (from
knowledge of the cyclic stress–strain curve), and thence to the bulk plastic strain field
that occurs, for example, under high strain fatigue;
(iii)
 macroscopic long crack, growth phase described by Linear Elastic Fracture Mechanics
(LEFM).
Clearly, short-crack propagation also occurs below long-crack threshold (Pearson,
1975), but a number of effects tend to modify the crack threshold also, including R-ratio
effect, crack closure (in turn due to plasticity-induced or other mechanisms of closure), and
not just short crack. Hence, while the detailed understanding of these various effects is still
a matter of intense debate, it is remarkable that, as noticed originally by Kitagawa and
Takahashi (1976), a quick idea of the threshold for the short cracks can be gathered from
the older concept of fatigue limit, and indeed a fitting equation is possible by interpolating



ARTICLE IN PRESS
N. Pugno et al. / J. Mech. Phys. Solids 54 (2006) 1333–13491336
between fatigue limit and fatigue threshold (El Haddad et al., 1979). This suggests that
modeling of plasticity effects at a short-crack tip can be avoided if one has another
asymptotic regime to be matched. This paper, in a sense, tries to extend this kind of
reasoning to the crack propagation regime.
In crack propagation studies, a lot of effort has been devoted in recent years to devise

accurate models of the near-tip plastic fields (with, possibly, closure as a contact
constraint). A simple form is to use cohesive theories of fracture, reminiscent of the
Dugdale–Barenblatt strip-yield model for the crack tip plasticity (Dugdale, 1960,
Barenblatt, 1962, Budiansky and Hutchinson, 1978; Carpinteri, 1981, 1982), which in
principle can be adapted to capture the delicate interplay between bulk cyclic plasticity,
closure, and gradual decohesion at the crack tip (Nguyen et al., 2001). Newman (1981,
1992a, b, 1998) and Newman et al. (1999, 2004) further developed such a strip-yield-type
model for taking account of plasticity-induced closure, and also to increase the size of the
crack by a factor proportional to the (Dugdale–Barenblatt) cyclic yield zone, which is
common practise in EPFM to avoid the full use of the J-integral formulation (El Haddad
et al., 1980). Initially, the DKeff-rate relation is closure-free because these cracks are
assumed to be fully open on the first cycle, and small-crack-growth predictions with the
crack-closure model agree well, unless there are grain-boundary influences. Perhaps more
surprisingly, in the large-crack-growth threshold regime for some materials, the plasticity-
induced closure model may not be able to collapse the threshold (DK-rate) data onto a
unique DKeff -rate relation because of other forms of closure, but Paris et al. (1999) say that
‘‘Currently, Newman’s finite element model is the best we have and worthy of future
improvements’’, since it is argued that it is still able to approximately model most
mechanisms of closure. Appropriate ‘‘constraint factors’’ are defined to account that
plastic-zone size at a crack front increases as a crack grows from plane-strain conditions at
low stress-intensity factors to plane stress as the plastic-zone size becomes large compared
to thickness, and loss of constraint is found, associate to the transition from flat-to-slant
crack growth (see observations from Schijve, 1967; Newman, 1992a, b).
We shall not try to compete with these models here, if anything, because they involve

significant computational effort which we shall try to avoid. Also, in the case of fatigue,
strip-yield models need to make significant assumptions since information on cyclic
plasticity is needed, whereas present models simply use perfect plasticity, and even if they
attempt to include cyclic material properties, enough information is not always known on
material constants. A possible alternative approach, explored in this paper, for a unified
treatment of long cracks, short cracks (without considering the possible regime of
microstructurally small cracks), and fully yielded configurations is an ‘‘intermediate
asymptotic matching’’ of the well-known empirical fatigue laws of Wöhler and Paris,
obtained by using an increased crack size. To show how to do this, we shall first briefly
review such classical laws.

2. Classical laws in fatigue

Initiation and propagation of cracks depend on material, geometry, and load levels (see
Suresh, 1998; Fleck et al., 1994). For nominally plain specimen, at low load levels, where
we expect fatigue failure at high cycle numbers (HCF), practically the whole life is
expended in nucleating the crack (in the sense of stage I short-crack propagation), rather
than propagating in stages II and III. At high load levels (those giving low number of
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Fig. 1. Schematic Wöhler law (1) for 1045 steel (see example paragraph for the data). Here, R ¼ �1.
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cycles (LCF)), cyclic plastic deformation takes place rapidly, leading to failure. These
various processes result in the well-known empirical Wöhler curve.1 There is no known
fundamental reason to write the curve as a power law, and indeed alternative equations
have been suggested, but the power law between two given points is probably the simplest
or most used form for the plain specimen (see Fig. 1):

N0Dsk
R ¼ N1Dsk

0 ¼ Nf Dsk ¼ C̄; N0oNf oN1, (1)

where DsR is the range of stress at static failure, Ds0 the fatigue limit, and Ds the stress
range having a life Nf; N0 and N1 are the number of cycles corresponding respectively to
DsR and Ds0. Clearly, Eq. (1) also implies

k log F R ¼ log
N1

N0
, (2)

where FR ¼ (DsR/Ds0); typically, N1 ¼ 107 and N0 ¼ 103, and for steels considering
FR ¼ 2, we would have k ¼ 13.3, while for FR ¼ 3, k ¼ 8.4, in the typical range k ¼ 6–14
for Al or ferrous alloys.2 Notice that this fatigue curve strongly depends on R-ratios, since
the static failure can obviously be written as the general yield or ultimate stress condition
(i.e. the maximum allowable stress sR is equal to sy or sUTS) and since by definition
Rsmax ¼ smin, DsR ¼ smaxð12RÞ ¼ sRð12RÞ. Also, the fatigue limit depends on R-ratio,
generally with simple empirical equations as well known from the Goodman or Haigh
diagrams (see Suresh, 1998). Hence, both the constants in Eq. (1) are functions of the
R-ratio.
1Or, in the case of strain-controlled fatigue, in the Basquin–Coffin–Manson’s law—but we shall neglect this case

for simplicity.
2If we have the constants in terms of the Basquin–Coffin–Manson equation, a good approximation is to use the

elastic part only at least for the intermediate range of cycles Ds=2 ¼ s0f ð2N 0Þb; where s0f is called fatigue strength

coefficient, b is the fatigue strength exponent, and N0 the number of reversals.
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Fig. 2. Schematic Paris law (3) for 1045 steel (see example paragraph). Here, R ¼ �1.
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Turning to the case of cracked specimen, LEFM applies, and fatigue life (often
denominated ‘‘residual’’) is mostly given by stage II propagation, generally by the
celebrated Paris’ law (Paris and Erdogan, 1963). The Paris law gives the advancement da of
fatigue crack per unit cycle dN, va, as a function of the amplitude of stress intensity factor
DK (see Fig. 2):

va ¼
da

dN
¼ CDKm; DK thoDKoKIc, (3)

where DKth is the ‘‘fatigue threshold’’ and KIc the ‘‘fracture toughness’’ of the material
(assuming R ¼ 0); C and m are the so-called Paris’ constants. There is therefore no
dependence on absolute dimension of the crack. The law is mostly valid in the range
10�8–10�6mm/cycle, intersecting DKth and KIc at vth

a ¼ 10�9 mm=cycle, and
vc

a ¼ 10�5 mm=cycle, respectively, where vtha is a conventional velocity at the threshold,
and vca at the critical conditions (see Fig. 2). This means that the constant C is not really
arbitrary, since by writing the condition at the intersections, C ¼ vtha =DKm

th ¼ vca=Km
Ic. In

practice, these limits are not precise and only standards can help defining reference values.
From the linearity in the range 10�9–10�5mm/cycle in the log/log plot, Fleck et al.

(1994) suggest to find the Paris exponent m as

LogF K ¼
4

m
, (4)

where F K ¼ ðKIc=DK thÞ, and their paper (see specifically Fig. 16) seems to confirm this
assumption for the exponent m. More generally, the following relation holds:

mLogFK ¼ Log
vca
vtha

. (5)

An obvious link between the two curves (Wöhler and Paris) is obtained when considering
the life of a distinctly cracked specimen having an initial crack size ai. Under the
assumptions of constant remote stress and no geometrical effects, for m42, the following
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is obtained (where the dependence on the final size of the crack af has been removed as
relatively not influential in most cases):

a
ð2�m=2Þ
i ¼

m� 2

2

� �
Cpm=2DsmNf . (6)

This is to be considered as a Wöhler curve of the cracked component, and the Wöhler
equivalent exponent in these conditions, k0, to distinguish it from the ‘‘material constant’’
base value k, turns out to be exactly equal to the Paris exponent, k0 ¼ m. It is interesting,
however, to remark that the SN fatigue curve depends on the initial crack size, ai. Hence,
the threshold condition from Eq. (6) would tend not to coincide with that directly obtained
from the threshold value, which also depends on ai but with a different power:

Dslim;th ¼
DK thffiffiffiffiffiffiffi
pai
p . (7)

The two powers in Eqs. (6) and (7) coincide only if (m– 2)/(2m) ¼ 1/2, which is only true
asymptotically for very high m, showing in fact that the Paris law should near the threshold
have some near-threshold deviation, as suggested already by Donahue et al. (1972) as (see
Fig. 3)

da=dN ¼ AðDK � DK thÞ
m. (8)

Notice that the threshold strongly depends on the R-ratio and this is a matter of further
empirical equations that are omitted here for simplicity. For stage II, Paris’ law in Eq. (3)
works correctly, up to deviations in region III, which in turn depend strongly on the R-
ratio since the fracture mode becomes essentially static and governed by the maximum
value of the stress intensity factor: the toughness condition for Kmax ¼ KIc need to be
involved, requiring RKmax ¼ Kmin, and hence DK ¼ Kmaxð12RÞ ¼ KIcð12RÞ. The curve
exhibits a rapidly increasing growth towards ductile tearing and/or brittle fracture, and a
possible transition curve was proposed first by Foreman et al. (1967):

da=dN ¼ BDKm=½ð1� RÞKIc � DK�. (9)
Log (da / dN)

Short cracks

Long cracks (LEFM)

Log (a) or Log (�K) 

Ko

Stage 1 Stage 2 Stage 3

�

Fig. 3. A schematic of the typical fatigue growth behavior of cracks.
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Combinations of high and low DK values also exist (Kanninen and Popelar, 1985;
Carpinteri et al., 1994), a good example being the one proposed by McEvily and Groeger
(1977):

da=dN ¼ DðDK � DK thÞ
2
½1þ DK=ðKIc � KmaxÞ�. (10)

Notice the power law here is 2 and not general m as in Eq. (5), but this could be easily
generalized. Notice also that these laws show the R-ratio effect only near the KIc limit, but
since the threshold depends on R also, this is implicitly defined. It is clear that the beauty of
Paris’ law also concerns the very mild dependence on R-ratio in stage II.

3. Length scales in fatigue

So far, we have only dealt with the case of either completely uncracked or the distinctly
cracked specimen, for which the Wöhler and Paris laws apply. But where does the
transition occur? A qualitative idea is immediately found from a simple dimensional
analysis in the case of infinite life or static failure. In fact, LEFM has introduced two new
material constants (fracture toughness in static failure, fatigue threshold in fatigue) for the
case of cracked specimen, which differ from the more classical corresponding material
properties (ultimate strength and fatigue limit) from a square root of a length scale: hence
at fatigue limit, the transitional size is the constant a0 defined for a given threshold stress
intensity range DKth and fatigue limit Ds0 as

a0 ¼
1

p
DK th

Ds0

� �2

. (11)

For the interaction between fatigue limit and fatigue threshold, usually a ‘‘matching
asymptotics’’ empirical equation is used (El Haddad et al., 1979) for the generic stress
range fatigue limit, Dsf :

Dsf ¼ DK th=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaþ a0Þ

p
, (12)

which suggests the perhaps misleading definition of a0 as the ‘‘intrinsic crack’’. Naturally,
the corresponding static failure case introduces the dimensions aS

0 analogous to that
defined in Eq. (11), and depending here on KIc, the toughness of the material and sR its
tensile strength (either ultimate stress UTS or yield stress) as

aS
0 ¼

1

p
KIc

sR

� �2

. (13)

In general,

F K ¼
KIc

DK th

� �
;FR ¼

DsR

Ds0

� �
,

and for metals, typical values are 5–20 and 2, respectively, so that aS
0 is about 100 times

greater than a0.
In order to apply Paris’ law, the assumptions of LEFM need to be fulfilled. This

certainly means ‘‘long crack’’ behavior, as discussed in the introduction, and this requires
a4a0, as defined in Eq. (11), or may be higher for higher stress ranges, i.e., shorter lives, up
to the limit case of static failure, for which the appropriate condition is rather a4aS

0 , as
defined in Eq. (13). Short cracks see significantly larger crack propagation rates, as also
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discussed earlier. The dotted lines in the schematic diagram of Fig. 3 illustrate some of the
possible short-crack behavior.

Here, an approach is derived for the intermediate unified law in fatigue: considering that
the ‘‘intrinsic crack’’ size, as in the El Haddad equation, should increase from the fatigue
limit size, a0, towards the aS

0 , we shall assume that this size can be used in a recent
generalization of the stress intensity factor (Pugno, 2004; Pugno and Ruoff, 2004; Taylor et
al., 2005), and its dependence with stress range shall be assumed such that the correct trend
towards Wöhler’s law is obtained.

4. Generalized Paris’ law

Quantized Fracture Mechanics (QFM) (Pugno and Ruoff, 2004) can generalize
Paris’ equation, by substituting K(a) with an appropriate mean value, K�ða;DaÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2ðaÞ
� �aþDa

a

q
, where Da is ‘‘fracture quantum’’, a material/structural material constant,

which for infinite life is clearly related to the a0 in Eq. (11) and for static failure to aS
0 of Eq.

(13). In order to consider the effect of this ‘‘apparent’’ additional crack size, it is natural in
the study of fatigue crack growth to propose the following generalized Paris’ law (Pugno,
2004):

da

dN
¼ CðDK�ða;Da;DsÞÞm, (14)

where in turn Da is a function of Ds, since in proximity to the fatigue limit, it would be a0
as in Eq. (11), and in proximity of static failure, it would be aS

0 of Eq. (13). By integrating

Eq. (14), the total number of cycles NP�
C can be found for the fatigue collapse, arising when

the crack length has reached its critical final value aC :

NP�
C ¼

1

C

Z aC

a

da

ðDK�ða;Da;DsÞÞm:
(15)

Accordingly, in the criterion of Eq. (14), we can fix Da to recover, in the limit case of a-0,
Wöhler’s prediction, Eq. (1), which we write here as

NW
C ¼

C̄

Dsk
. (16)

Hence,

Da : NP�
C ða! 0Þ ¼ NW

C . (17)

Thus, Eqs. (14) or (15), with the position of Eq. (17), can be considered a generalized Paris’
law. Note that such a law is of very simple application, and would allow one to study not

only the final condition but also the evolution of the fatigue crack growth NP�ðaðNÞÞ,
where apaðNÞpaC .

5. The example of the Griffith crack

As a simple example of application, let us consider the Griffith case (infinite elastic plate
with a symmetric crack of length 2a). For this case, the stress intensity factor (mode I) is

K ¼ s
ffiffiffiffiffiffi
pa
p

, (18)
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Accordingly, by integration,

K� ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðaþ ðDa=2ÞÞ

p
. (19)

By applying Eq. (14) and integrating between an initial and a final value of crack size (we
suppose af ¼ ac and ai ¼ a), it follows:

NP�
C ¼

1

CDsmpm=2

ðaC þ ðDa=2ÞÞ1�m=2
� ðaþ ðDa=2ÞÞ1�m=2

1�m=2
. (20)

From Eq. (17), Da can be obtained by solving

1

CDsmpm=2

ðaC þ ðDa=2ÞÞ1�m=2
� ðDa=2Þ1�m=2

1�m=2
¼

C̄

Dsk
. (21)

Assuming aCbDa, we obtain

Da � 2 a
1�m=2
C �

CC̄pm=2ð1�m=2Þ

Dsk�m

� �1=ð1�m=2Þ

. (22)

For m42 (usual case), �2o1=ð1�m=2Þo0, the first term can be neglected (aC being a
large crack–see below). Hence it is convenient to rewrite Eqs. (21) and (22) as

NP�
C �

1

CDsmpm=2

aþ ðDa=2Þ
� �1�m=2

m=2� 1
, (23)

Da � 2
Dsk�m

CC̄pm=2 m=2� 1
� �

 !1=ðm=2�1Þ

, (24)

i.e., a power law of stress range with exponent (k–m)/(m/2–1). For example, typical values
for a metal m ¼ 4, k ¼ 12, then (12–4)/(2–1) ¼ 8. Hence, Da increases remarkably fast with
the stress range, similarly to what was found from simpler independent reasoning
(Ciavarella, 2002).
By assembling Eqs. (23) and (24), one obtains

NP�
C �

1

CDsmpm=2

aþ Dsk�m=ðCC̄pm=2ðm=2� 1ÞÞ
� �1=ðm=2�1Þ� 	1�m=2

m=2� 1
, (25)

which is the proposed integrated Paris law. Notice that obviously it is not a power law
type, but a more complicated law depending on initial size of the crack and stress range.
An obvious limit case is for very large crack, for which one obtains from Eq. (25)

NP�
C �

1

CDsmpm=2

ðaÞ1�m=2

m=2� 1
, (26)

which is also the integrated form of the original Paris law, Eq. (6), which can be recast in
the form. Notice that ‘‘large crack’’ can be made quantitative, indicating that

ab
Dsk�m

CC̄pm=2 m=2� 1
� �

 !1=ðm=2�1Þ

. (27)
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Conversely, ‘‘short crack’’ for ‘‘5’’and returning to the typical cases of metals 2omok,
short crack is obtained if either the numerator (stress range) is large and/or the
denominator is small. Vice versa, the usual definition of short crack is (as discussed earlier)
limited to the absolute size, probably because the stress range at which this is measured is
not too far from the fatigue limit (or just above it).

Eq. (25) is a ‘‘non-power-law’’, which we can consider as an ‘‘asymptotic matching’’
between the two power-law regimes (Wöhler and Paris) at the extremes. In fact, Eq. (25) in
the other limit of small a becomes:

NP�
C �

1

CDsmpm=2

Dsk�m=ðCC̄pm=2ðm=2� 1ÞÞ
� ��1

m=2� 1
¼ NW

C , (28)

which is the original Wöhler law, Eq. (16). Notice that since we impose to obtain the
Wöhler law for negligible crack, we are not sure what the reduction of the fatigue limit is
for the a0 crack size (this will be discussed further in the example case paragraph).

This result can also be interpreted in terms of the generalized Paris law, which reads for
a Griffith crack:

da

dN
¼ C Ds

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p aþ
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1
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m

. (29)

For short cracks (a-0), one gets

da

dN
¼ Cpm=2 CC̄pm=2ðm=2� 1Þ

� 	ð�m=2Þ=ðm=2�1Þ
Dsðk�mÞððm=2Þ=ðm=2�1ÞÞþm, (30)

i.e., a Paris power law in terms of Ds rather than DK .
6. An example

To make an illustrative example of a metallic material with a given Paris equation and
Basquin law, the SAE1045 steel is considered (see Table 1).

The fatigue limit (at 107 cycles) is from the Basquin law Ds0 ¼ 418 MPa; also, k ¼ 11.11,
C̄ ¼ 1:32E36 MPa12. The crack size a0 is 92 mm, whereas static size aS

0 is 5.3mm. In Figs. 4
and 5, the predictions of Eqs. (25) and (29) for a/a0 ¼ 1, 10, 100, 1000 are compared,
respectively, with the classical Wöhler and Paris laws.
Table 1

Mechanical properties of SAE1045 steela

Material Stress

units

UTS Yield

strength

Fatigue

strength

coeff.

Fatigue

strength

exponent

Crack

growth

coeff.

CGC

units/

cycle

Crack

growth

exponent

Thresh

SIF

R ¼ 0

Fracture

toughness

1045 MPa 621 382 948 –0.09 8.20E–13 m 3.5 7.1 80

aData fromMultiaxial Fatigue, Analysis & Experiments, Eds. G.E. Leese, D. Socie, SAE Pub. AE-14, 1989, for

SAE1045 steel.
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Fig. 4. SN curves according to Eq. (29).

Fig. 5. Crack propagation laws from Eq. (25) with fixed Ds (in MPa in the legend). Notice that with fixed Ds we

obtain substantially larger propagation rates. DK is in MPa m1/2 and da/dN is in m/cycle.
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Notice we can rewrite Eq. (29) explicitly in terms of stress intensity factor range as in this
form, it is clear that we can either fix Ds (and Fig. 5 is obtained) which returns to Paris for
low stress ranges, or fix a (not shown) which gives Paris for large a. At very small crack
sizes, in other words, our application of Paris’ law is rather an application of Wöhler’s law
as found already in Eq. (30) and in this example case reads

da

dN
¼ 0:93� 10�69Ds21:3. (31)
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For a ¼ 0, the standard Wöhler law is obtained, and for progressively larger a, a significant
transition towards a Paris regime deviation occurs (particularly at high number of cycles,
i.e., low stress range levels Ds, in MPa). Notice that we have not included here the effect of
the crack propagation threshold, which should truncate the Paris curves.

Turning to Fig. 5, we remark that only for high Ds we obtain deviations from the
standard Paris law, and in this form, the law seems to follow a horizontal asymptote. Here
in fact, to obtain a given level of DK, for a constant Ds, we need to increase the size of the
crack, and hence eventually we get closer to the Paris law. Clearly, for higher and higher
Ds, we need larger and larger crack sizes to reobtain the validity or LEFM and of the
standard Paris law in particular.

7. Some comparisons with existing approaches

The most obvious comparison of our approach would be that with the strip-yield models
(Newman 1981, 1992a, b, Newman et al., 2004, Nguyen et al., 2001), and others. Naturally,
we do not use these models for predicting crack closure, but only for a ‘‘virtual’’ increase of
the size of the crack, due to process zone effects, interpreted in terms of their resulting
effects in the SN curve of the uncracked material. These models are very much under
development, and it would be almost impossible to make a detailed comparison, without
referring to specific cases, and detailed computational effort. Naturally, our law cannot
pretend to be extremely accurate in terms of crack propagation rate, although it is also
equally possible that in some particular case, when the detailed yield-strip models are not
correctly ‘‘calibrated’’, they can extrapolate results incorrectly, whereas our models should
maintain the advantage of being an ‘‘interpolation’’ model.

The laws obtained, particularly for short cracks, would seem to suggest that the crack
propagation rate of a short crack should be proportional to some power law of the stress
range. A similar conclusion was obtained in relatively not well-known papers by Nisitani
(1981) (see also Nisitani and Goto, 1987, and finally Nisitani et al., 1992) and Murakami et
al. (1983). In particular, Murakami et al. (1983) and Murakami and Miller (2005) more
recently conduct cyclic-stress-amplitude-controlled fatigue tests with a material (S45C
medium carbon steel) showing a stable cyclic stress–strain curve, so that these can also be
considered approximately as cyclic-strain-amplitude-controlled fatigue tests. They
conclude with a short-crack propagation law of the type

da=dN ¼ HDha, (32)

where H is a constant and hE8. This law is remarkably close to our result (Eq. (30)), with
the exception of the further dependence on the crack size. Notice that the integration
between initial and final size of crack ai, af, for the cycles from Ni5Nf, leads to the
logarithmic dependence on the crack size as

logðaf=aiÞ ¼ HDshNf , (33)

which, with respect to standard Basquin-type laws, clearly evidences a very mild
dependence on initial crack size. This is compatible if we assume that dependence on
the initial crack size could easily have escaped the attention of previous researchers, who,
however, have noticed almost invariably a large amount of scatter in standard SN curves.
This scatter is in turn possibly interpreted with Eq. (33) in the light of the fact that the
initial crack will have a random size. Nisitani et al. (1992) also give a number of other
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details and suggested mechanisms and equations. In particular, a unified explanation for
two growth laws (Paris and short crack) is made based on an assumption that the crack

growth rate is proportional to the reversible plastic-zone size, both on the surface and in the
interior, regardless of the scale of yielding. Moreover, reduced forms of small-crack-
growth law are given in which the effect of mechanical properties is partly considered from
the ultimate strength of the material only. A partial account is taken of R-ratio, suggesting
only the coefficients in the laws would change.
Finally, the papers by Polák (2005a, b) deserve some special attention, which contain

similar proposals, despite the connection made here between the Manson law on plastic
strain amplitude dependence and how this can be interpreted in terms of short-crack
growth.

8. Discussion

As we have seen, various attempts are emerging to unify the classical fatigue laws
(Basquin and the Coffin–Manson equations) with the crack propagation laws (Paris and its
deviations). In general, if the fatigue crack grows from an initial defect size ai to a final size
af according to the general expression

da=dN ¼ BDsnam, (34)

where B, m, and n are material constants, then upon integration of Eq. (34) between the
limits ai and af, both the Basquin and the Coffin–Manson equations can be derived. This is
a qualitative connection between the two theories, where, however, the exponents change
in the two limits. The main difficulty with the stress and strain range approaches is that no
account is taken of the behavior of cracks; hence, the extent of fatigue damage between the
start and the end of the fatigue process cannot be determined, and they tend to work only
when crack propagation is a very minor part of life. Also, it has been shown that if the
differential equation describing the crack growth process has separate variables, then the
Palmgren–Miner damage accumulation rule is true (Svensson and Mare, 1999; Todinov,
2001). Obviously, Eq. (34) satisfies this condition, and hence it does not take account of the
load sequence effect, which could be significant in some situations. Hence, there is a
connection between deviations from the Paris law regime (or Basquin–Coffin–Manson
regime) and deviations from the Palmgren–Miner rule. There is still a lot to be understood
before a crack growth approach becomes accurate enough for fatigue life prediction.
Today, it is not commonly used for fatigue design in industry, mainly because of two main
difficulties: (i) the initial crack size ai is often unknown and (ii) the data of da/dN vs. DK

are more expensive to obtain. Our approach tries to avoid the requirement for an initial
crack length ai, by interpolation of the two approaches. A secondary implication of our
result is that a large scatter of fatigue lives is probably intrinsic in the uncracked specimen
case. This indicates that the accuracy required for practical complex structures under more
complex loading is higher than that for plain specimens.
Another difficulty is that these fatigue laws remain essentially empirical, and hence their

constants often vary more than expected. For example, various attempts to find more
fundamental reasons for the Paris law to be applied (other than the self-similarity of the
propagation process, which would seem to suggest a fixed coefficient m of either 2 or 4
depending on the chosen mechanism) have failed to be generally convincing (see Fleck et al.,
1994), and indeed, as discussed by Barenblatt and Botvina (1980), the effect of other
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parameters on m is expected, including the thickness of the plate, via an additional parameter,
related to the ratio of specimen thickness to cyclic plastic region size. Also, as remarked in the
recent paper by Spagnoli (2005), fractality of the crack surface may explain power-law
dependences on the absolute crack size (size-effects) of Paris’ coefficient C for certain quasi-
brittle materials. It is not possible here to review all the various proposals for the extension of
Paris’ law, which would take account of the many experimentally observed deviations.

Finally, a remark is made on the influence of the R ¼ smin/smax ratio on fatigue crack
growth rate da/dN (e.g., see Fig. 2). As described in paragraph 2, there are various
extensions of the classical Paris law for including such a ratio near the threshold region and
the stage III region. However, these effects are correctly modeled in these equations only
for long cracks. For short cracks (and hence we refer particularly to the near the threshold
region), the effects of R tend to be different, and, as described in the introduction, require
detailed account of crack closure and its various mechanisms, still very much debated by
the scientific community. However, our approach is very direct and perhaps explains these
deviations in a more straightforward way, since the mean stress effects are better known in
the context of Wöhler’s law constants than in the Paris’ law constants for short cracks. The
fact that mean stress effects in the Wöhler law have been dealt for many years with
empirical laws studying, for example, the effect of mean stress on fatigue limit by means of
diagrams such as Goodman or Haigh (see Suresh, 1998), and the resulting linear or
parabolic decays with mean stress (Goodman line and Gerber parabola, respectively),
opens the way for further results in the area of short cracks (at least in terms of ‘‘baseline’’
results), with extensions of the present approach. This, however, is outside the scope of the
present paper, and will be left for further investigations.

9. Conclusions

We have proposed a new equation generalizing Paris’ law for fatigue crack propagation by
using the ideas of adding a fracture ‘‘quantum’’ to the standard LEFM, which has recently
been applied successfully to the case of static failure and to the case of infinite life (Taylor et
al., 2005). This paper attempts the further generalization as a more general interpolation
procedure, not only between static failure and infinite life (i.e., finite life) but also between the
two regimes of strength-controlled failure and stress-intensity-factor-controlled failure.
Because the interpolation procedure essentially works on the integrated form of the crack
propagation law, i.e., in terms of SN curve, it cannot be expected to lead to other than
qualitative (or averaged) results for the instantaneous crack propagation rate. By imposing
consistency with Wöhler’s law for the uncracked material, in the limit when the new
generalized law is used for short initial cracks, we get the appropriate ‘‘quantum crack’’ size.
The fracture ‘‘quantum’’ with applied stress range, in the limit of very large cracks and static
failure, is expected to be very close to a plastic radius, whereas for conditions close to the
fatigue limit and threshold should be close to the El Haddad intrinsic crack size a0.

In these respects, the proposed model has the advantage of being an ‘‘interpolation
procedure’’ between the celebrated Paris and Wöhler regimes (or perhaps, more elegantly,
an ‘‘intermediate asymptotics’’ solution in Barenblatt’s sense), and hence avoids the risk
associated with the inevitable ‘‘extrapolation’’ nature of the many other phenomenological
but essentially empirical models. These two limits correctly modeled suggest a qualitative
experimental verification, but the model, in the present form, remains essentially
speculative.



ARTICLE IN PRESS
N. Pugno et al. / J. Mech. Phys. Solids 54 (2006) 1333–13491348
References

Anderson, T., 1995. Fracture Mechanics: Fundamentals and Applications. Boca CRC Press, Boca Raton.

Barenblatt, G.I., 1962. The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7,

55–129.

Barenblatt, G.I., Botvina, L.R., 1980. Incomplete self-similarity of fatigue in the linear range of crack growth.

Fatigue Fract. Eng. Mater. Struct. 3, 193–202.

Basquin, O.H., 1910. The exponential law of endurance tests. Proc. ASTM 10, 625–630.

Budiansky, B., Hutchinson, J., 1978. Analysis of closure in fatigue crack growth. J. Appl. Mech. 45, 267–276.

Carpinteri, A., 1981. Static and energetic fracture parameters for rocks and concretes. Mater. Struct. (RILEM) 14,

151–162.

Carpinteri, A., 1982. Notch sensitivity in fracture testing of aggregative materials. Eng. Fract. Mech. 16, 467–481.

Carpinteri, An., et al., 1994. Handbook of Fatigue Crack Propagation in Metallic Structures, vol. 1–2. Elsevier,

Amsterdam.

Ciavarella, M., 2002. Effetti di scala e leggi di potenza in fatica. In: Proceedings of the XXXI AIAS Congress,

18–21 September, 2002, Parma, Italy.

Cui, W., 2002. A state-of-the-art review on fatigue life prediction methods for metal structures. J. Mar. Sci.

Technol. 7, 43–56.

Donahue, R.J., et al., 1972. Crack opening displacement and the rate of fatigue crack growth. Int. J. Fract. Mech.

8, 209–219.

Dugdale, D.S., 1960. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–108.

Elber, W., 1970. Fatigue crack closure under cyclic tension. Eng. Fract. Mech. 2, 37–45.

El Haddad, M., Topper, T., Smith, K., 1979. Prediction of non-propagating cracks. Eng. Fract. Mech. 11,

573–584.

El Haddad, M., Dowling, N., Topper, T., Smith, K., 1980. J-integral applications for short fatigue cracks at

notches. Int. J. Fract. 16, 15–30.

Fleck, N.A., Kang, K.J., Ashby, M.F., 1994. Overview 112: the cyclic properties of engineering materials. Acta

Metall. Mater. 42, 365–381.

Foreman, R.G., Kearney, V.E., Engle, R.M., 1967. Numerical analysis of crack propagation in cyclic-loaded

structures. J. Basic Eng. 89, 459–464.

Frost, N.E., Marsh, K.J., Pook, L.P., 1974. Metal Fatigue. Clarendon Press, Oxford.

Hobson, P.D., Brown, M.W., de los Rios, E.R., 1986. In: Miller, K.J., de los Rios, E.R. (Eds.), EGF (ESIS)

Publication No. 1, The Behaviour of Short Fatigue Cracks. Mechanical Engineering Publications, London,

pp. 441–459.

Kanninen, M.F., Popelar, C.H., 1985. Advanced Fracture Mechanics. Oxford University Press, New York.

Kitagawa, H., Takahashi, S., 1976. Applicability of fracture mechanics to very small cracks or cracks in the early

stage. In: Proceedings of the Second International Conference on Mechanical Behaviour of Materials. ASM,

pp. 627–631.

Kitagawa, H., Tanaka, T. (Eds.), 1990. Fatigue 90. Materials and Components Engineering Publications,

Birmingham.

Klesnil, M., Lukas, P., 1972. Influence of strength and stress history on growth and stabilisation of fatigue cracks.

Eng. Fract. Mech. 4, 77–92.

Laird, C., 1979. Mechanisms and theories of fatigue. In: Fatigue and Microstructure. American Society for

Metals, pp. 149–203.

McEvily, A.J., Groeger, J., 1977. On the threshold for fatigue-crack growth. Fourth International Conference on

Fracture, vol. 2. University of Waterloo Press, Waterloo, Canada, pp. 1293–1298.

Miller, K.J., 1999. A historical perspective of the important parameters of metal fatigue and problems for the next

century. In: Wu, X.R., Wang, Z.G. (Eds.), Proceedings of the Seventh International Fatigue Congress

(Fatigue ’99). Higher Education Press, Beijing, pp. 15–39.

Murakami, Y., Miller, K.J., 2005. What is fatigue damage? A view point from the observation of low cycle fatigue

process. Int. J. Fatigue 27, 991–1005.

Murakami, Y., Harada, S., Endo, T., Tani-ishi, H., Fukushima, Y., 1983. Correlations among growth law of

small cracks, low-cycle fatigue law and applicability of Miner’s rule. Eng. Fract. Mech. 18, 909–924.

Navarro, A., de los Rios, E.R., 1988. A microstructurally short fatigue crack growth equation. Fatigue Fract.

Eng. Mater. Struct. 11, 383–396.



ARTICLE IN PRESS
N. Pugno et al. / J. Mech. Phys. Solids 54 (2006) 1333–1349 1349
Newman Jr., J.C., 1981. A crack-closure model for predicting fatigue crack growth under aircraft spectrum

loading, In: Methods and Models for Predicting Fatigue Crack Growth under Random Loading, vol. 748.

ASTM STP, pp. 53–84.

Newman, Jr., J.C., 1992a. Effects of constraint on crack growth under aircraft spectrum loading. In: Beukers, et

al. (Eds.), Fatigue of Aircraft Materials. Delft University Press, pp. 83–109.

Newman Jr., J.C., 1992b. FASTRAN II—a fatigue crack growth structural analysis program. NASA TM 104159.

Newman Jr., J.C., 1998. The merging of fatigue and fracture mechanics concepts: a historical perspective. Prog.

Aerosp. Sci. 34, 347–390.

Newman Jr, J.C., Phillips, E.P., Swain, M.H., 1999. Fatigue-life prediction methodology using small-crack theory.

Int. J. Fatigue 21, 109–119.

Newman Jr, J.C., Brot, A., Matias, C., 2004. Crack-growth calculations in 7075-T7351 aluminum alloy under

various load spectra using an improved crack-closure model. Eng. Fract. Mech. 71, 2347–2363.

Nguyen, O., Repetto, E.A., Ortiz, M., Radovitzky, R.A., 2001. A cohesive model of fatigue crack growth. Int. J.

Fract. 110, 351–369.

Nisitani, H., 1981. Unified treatment of fatigue crack growth laws in small, large and nonpropagating cracks. In:

Mura, T. (Ed.), Mechanics of Fatigue AMD. ASME, pp. 151–166.

Nisitani, H., Goto, M., 1987. A small crack growth law and its application to the evaluation of fatigue life. In:

Miller, K.J., de los Rios, E.R. (Eds.), The Behaviour of Short Fatigue Cracks. Mech. Eng. Publishers, pp.

461–478.

Nisitani, H., Goto, M., Kawagoishi, N., 1992. A small-crack growth law and its related phenomena. Eng. Fract.

Mech. 41, 499–513.

Paris, P., Erdogan, F., 1963. A critical analysis of crack propagation laws. J. Basic Eng. Trans. ASME, 528–534.

Paris, P., Gomez, M., Anderson, W., 1961. A rational analytic theory of fatigue. Trends Eng. 13, 9–14.

Paris, P.C., Tada, H., Donald, J.K., 1999. Service load fatigue damage—a historical perspective. Int. J. Fatigue

21, S35–S46.

Pearson, S., 1975. Initiation of fatigue cracks in commercial aluminum alloys and the subsequent propagation of

very short cracks. Eng. Fract. Mech. 7, 235–247.

Polák, J., 2005a. Plastic strain-controlled short crack growth and fatigue life. Int. J. Fatigue 27 (10–12),

1192–1201.

Polák, J., Zezulka, P., 2005b. Short crack growth and fatigue life in austenitic-ferritic duplex stainless steel.

Fatigue Fract. Eng. Mater. Struct. 28 (10), 923–935.

Pugno, N., 2004. Quantized failure criteria and indirect observation for predicting the nanoscale strength of

materials: the example of the ultra nano crystalline diamond. Arxiv: Cond-Mat/0411556, 22 November 2004.

Also submitted in an extended version to Int. J. Fract. as ‘‘New quantized failure criteria: application to

nanotubes and nanowires’’.

Pugno, N., Ruoff, R., 2004. Quantized Fracture Mechanics. Philos. Mag. 84, 2829–2845.

Ritchie, R.O., Lankford, J. (Eds.), 1986. Small Fatigue Cracks. The Metallurgical Society of the American

Institute of Mining, Metallurgical and Petroleum Engineers, Warrendale.

Ritchie, R.O., Lankford, J., 1996. Small fatigue cracks: a statement of the problem and potential solutions. Mater.

Sci. Eng. 84, 11–16.

Schijve, J., 1967. Signicance of fatigue cracks in micro-range and macro-range. In: Fatigue Crack Propagation,

vol. 415. ASTM STP, pp. 415–459.

Schutz, W., 1996. A history of fatigue. Eng. Fract. Mech. 54, 263–300.

Spagnoli, A., 2005. Self-similarity and fractals in the Paris range of fatigue crack growth. Mech. Mater. 37 (5),

519–529.

Suresh, S., 1998. Fatigue of Materials. Cambridge University Press, Cambridge.

Suresh, S., Ritchie, R.O., 1984. Propagation of short fatigue cracks. Int. Met. Rev. 29, 445–476.

Svensson, T., de Mare, J., 1999. Conditions for the validity of damage accumulation models, In: Wu, X.R., Wang,

Z.G. (Eds.), Proceedings of the Seventh International Fatigue Congress (Fatigue ’99). Higher Education Press,

Beijing, pp. 1101–1106.

Taylor, D., Cornetti, P., Pugno, N., 2005. The fracture mechanics of finite crack extensions. Eng. Fract. Mech. 72,

1021–1028.

Todinov, M.T., 2001. Necessary and sufficient condition for additivity in the sense of the Palmgren–Miner rule.

Comput. Mater. Sci. 21, 101–110.
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