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A B S T R A C T

In this work we evaluate the mechanical properties of Chamelea gallina shells, collected at various locations in
the Adriatic Sea, through compression tests. We present an analytical model for the extraction of the material
Young’s modulus and ultimate strength, based on the approximation of the valves with a simpler geometry. The
effect of porosity and the computation of the energy dissipated at fracture are also discussed. Results show a
dependence of the mechanical performance on the location at which the samples were collected, i.e. latitude,
and thus the environmental factors can affect the rigidity, strength and toughness of the shells. These findings
integrate preliminary results published in a previous work.

1. Introduction

It is well known that organisms are able to modify their develop-
ment and their gene-expression patterns in response to environmental
parameters, such as temperature, or to biotic factors, such as food
availability or density of predators (Gilbert, 2001). Specifically, the
adaptation or acclimation to changing environmental conditions is of
extreme interest in developmental biology, also considering the
alarming climatic changes of the last decades. Phenotype plasticity is
the ability of organisms to produce a range of relatively fit phenotypes,
by altering morphology, behaviour or rate of biological activity in re-
sponse to variations in environmental conditions (DeWitt and Scheiner,
2004).

Calcifying marine organisms, such as corals and molluscs, are
among the most susceptible species to changing abiotic factors, since
they usually show morphological variations in their skeleton or shell in
response to changes in external environmental conditions, e.g. tem-
perature and pH (Watson et al., 2012; Melatunan et al., 2013). These
organisms usually employ calcium carbonate (CaCO3) as structural
material, which is synthetised through a cascade of biochemical pro-
cesses referred as biomineralization. In mollusc shells, CaCO3 is found
in the form of aragonite and/or calcite, which represent the basic

microstructural constituents and are generally assembled within an
organic matrix. When co-present, these two polymorphs are differently
localized and never mixed in a solid solution (Lowenstam and Weiner,
1989).

The commercial clam Chamelea gallina is a common bivalve of the
Mediterranean Sea and has a great importance for the fishery in several
countries. For instance, the annual yield in Italy is currently about
20,000 metric tons (Romanelli et al., 2008), but it has reached 100,000
metric tons in the late 1970s. The over-exploitation of the resource,
therefore, has posed recently growing concerns for the survival of these
bivalve communities. In fact, unexpected annual fluctuations in stock
abundance, periodic recruitment failures and irregular mortality events
can threaten the biological and economic sustainability of this fishery.

The study of the effects of the changing environmental factors on C.
gallina growth and characteristics, therefore, is of increasing interest
also from an economic point of view. In a previous work, samples of C.
gallina shells were collected at different latitudes in the Adriatic Sea,
with the objective to evaluate the effects of solar radiation and sea
temperature on the physical properties (e.g. geometry) of the shells.
The authors found that the variation of the shell properties along the
latitudinal gradient “could be the outcome of phenotypic plasticity, or a
genetic adaptation of the populations subjected to different
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environmental parameters” (Gizzi et al., 2016). These parameters could
directly affect the shell morphology and growth (Ramón and
Richardson, 1992; Moschino and Marin, 2006; Matozzo and Marin,
2011), or indirectly, e.g. impacting the nutrient concentration and/or
predator density.

The present paper is focused on a systematic investigation of the
mechanical properties of C. gallina shells through compression tests.
Starting from the classical theory of shallow spherical shells loaded at
the centre, we consider an equivalent spherical geometry and extract
the Young’s modulus and the ultimate strength of the valves. The effect
of the geometry, and specifically the thickness of the shells, on the
macroscopic properties is discussed, as well as the influence of porosity.
The toughness modulus and the fracture energy of the shells are also
quantified from the experimental load-displacement curves.
Additionally, we present some Scanning Electron Microscopy (SEM)
and X-Ray Diffraction (XRD) analyses of the shells, in order to provide
an overview of their main composition and microstructural mor-
phology.

2. Experimental tests

2.1. Description of the shells and locations

The clam Chamelea gallina (Linnaeus 1758) is a common infaunal
bivalve in the family Veneridae of the Mediterranean Sea, where it
inhabits well-sorted fine sand biocoenosis at 3–7m depth (Ramón and
Richardson, 1992).

A valve of the C. gallina shell appears as a hemi-ellipsoid object, as
shown in Fig. 1. Its external surface shows a roughness generated by the
growth rings, while the internal surface is smooth. In general, the shell
thickness, intended as the average distance between the internal and
the external surface of the valve, is not constant and increases from the
umbo to the periphery. In addition, the shell has usually a homo-
geneous chemical composition and is made of CaCO3 in the form of
aragonite.

C. gallina samples have been collected at various locations with
different latitudes in the Adriatic Sea (see Supplementary Fig. 1). In
Table 1 we list the two main environmental parameters of the selected
locations, i.e. the mean annual solar radiation level and the sea surface
temperature, which have been demonstrated to have an impact on the
shell biometry and growth, together with the main geometrical para-
meters used later. The number of samples denotes the number of in-
vestigated clams, thus every data reported later is related to the average
between the left and the right valve of each clam. The biometric
parameters of dry valves have been measured with a pair of calipers
(± 0.05mm), while the volume and average porosity of each valve
have been extracted by means of the buoyant weight technique,
through a density determination kit Ohaus Explorer Pro balance
(± 0.1mg; Ohaus Corporation, Pine Brook - NJ, United States of
America). For all the other details concerning abiotic environmental

factors and the measurement of biometric parameters, the reader is
referred to the previous work on C. gallina shells (Gizzi et al., 2016).

2.2. Scanning Electron Microscopy (SEM)

SEM observations were carried on the transversal valve sections
obtained using a steel saw. Each section was etched with an acetic acid
solution (1% v/v) for 1min to remove debris and artefacts from cutting.
Samples were coated with a gold layer (5 nm) and analysed with a SEM
Hitachi S4000 (Hitachi High-Technologies Europe GmbH, Germany).

As highlighted in Fig. 2, the SEM observations showed that the
microstructure of C. gallina shell contains two main layers, according to
what observed in most Venerids (Popov, 1986). The boundary region
between the two layers (Fig. 2a) shows fractures given by the com-
pression tests. These fractures originate from the inner layer, while the
outer layer remains nearly unaltered. The pristine sample, instead,
shows a continuity of bond between the two layers. In the external layer
(Fig. 2b) compound prisms are observed. They are formed by an open
aggregation of grains having irregular shapes and highly interconnected
(Fig. 2c). The inner layer is homogeneous and is formed of compact
granules which give a spherulitic appearance (Fig. 2d,e). Among these
grains, having a size around 1 µm, layers of organic material are dis-
persed. The boundary region between the two layers, when observed at
high magnifications (Fig. 2g,h) shows a low regularity in the weaving of
the particles that show larger dimensions than those observed in the
external and internal state.

The lamellar multiscale structure present in C. gallina shells is
commonly found in nacre (see, e.g., Sun and Bhushan, 2012) and in
other seashells (Li et al., 2004, 2013). Also the shells of Pectinidae
present a complex fracture surface, in which it is possible to identify
different layers (Li and Nardi, 2004), namely an inner and an outer part
as in our case. Interestingly, the observed spherulitic microstructure
(Fig. 2d,e), in addition, is found very similar in nacre and conch shells
treated at high temperature, where the platelets essentially assume a
quasi-spherical shape (Huang and Li, 2009; Li et al., 2015). The mac-
roscopic mechanical performance of the valves are believed to be
strongly dependent on the size of the largest microstructural units
(Taylor and Layman, 1972), while the organic matrix content essen-
tially influences the Young’s modulus and the fracture properties.
Specifically, the organic matrix is basically made of biopolymers that
have the capabilities to strengthen themselves during deformation, as
demonstrated experimentally (Xu and Li, 2011). Thus the macroscopic
mechanical behaviour derives from a complex interplay of several
factors, including platelets/lamellae dimensions and shapes, biopo-
lymer content and thus the shear strength of the interfaces. The ex-
tensibility of the interfaces, i.e. their ability to sustain deformation, is
fundamental for the extreme toughness observed in nacre-like materials
(Barthelat et al., 2016).

The presence of two different layers confers to the shell anisotropic
mechanical properties, as determined experimentally in previous works

Fig. 1. External and internal view (left) and cross section (right) of a valve of C. gallina.
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Table 1
Location characteristics with average value and standard deviation of the annual solar radiation and sea surface temperature, average value and standard deviation of
the main geometrical parameters and number of the investigated samples, ordered by decreasing latitudes.
Source: Adapted from Gizzi et al. (2016).

Location characteristics Main biometric parameters Number of
samples

Acronym Latitude (°) Solar radiation
(W/m2)

Sea surface
temperature (°C)

Max Feret
diameter (mm)

Min Feret
diameter (mm)

Height at shell
centre (mm)

Average shell
thickness (mm)

“MO” 45.7 172.4 ± 2.5 17.90 ± 0.19 26.7 ± 1.3 22.3 ± 0.9 7.4 ± 0.4 1.6 ± 0.2 27
“CH” 45.2 160.8 ± 2.5 16.47 ± 0.19 26.2 ± 1.3 21.5 ± 1.1 6.4 ± 0.3 1.3 ± 0.2 27
“GR” 44.8 163.8 ± 2.6 16.54 ± 0.19 26.2 ± 1.6 21.5 ± 1.4 6.8 ± 0.4 1.3 ± 0.2 27
“CE” 44.2 165.2 ± 2.5 17.05 ± 0.20 26.2 ± 1.5 21.2 ± 1.2 6.4 ± 0.5 1.1 ± 0.1 31
“SB” 43.1 180.4 ± 2.6 18.60 ± 0.17 26.2 ± 1.2 21.6 ± 0.7 6.4 ± 0.4 1.2 ± 0.1 27
“CA” 41.9 180.4 ± 2.6 18.60 ± 0.17 26.0 ± 1.6 21.0 ± 1.2 6.0 ± 0.4 1.1 ± 0.1 27

Fig. 2. SEM images of the cross section of a valve of C. gallina. (a) A low-magnification image of a region close to the umbo from a valve that was compressed without
fracture. The outer (Ext.) and inner (Int.) layers are observable. The arrows indicate the region were fractures were observed. Inset: cross section of a pristine sample.
(b,c) Images of the outer layer at low and high magnification, respectively. (d,e) Images of the inner layer at low and high magnification, respectively. (f,g) Images of
the outer-inner junction region at low and high magnification, respectively.
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(Bignardi et al., 2010) and as we are going to quantify later in terms of
toughness modulus and fracture energy.

2.3. X-Ray Diffraction (XRD)

XRD analysis was performed after preparing a compact layer of
powdered sample in a silica background signal free holder. Diffraction
patterns for each sample were collected using an X′Celerator detector
fitted on a PANalytical X′Pert Pro diffractometer (Malvern Panalytical
Ltd, United Kingdom), using Cu-Kα radiation generated at 40 kV and
40mA. Data were collected within the 2θ range from 15° to 60° with a
step size of 0.02° and a counting time of 1200 s. Fixed anti-scatter and
divergence slits of 1/16° were used with a 10mm beam mask and all
scans were carried out in “continuous” mode.

The diffraction pattern is shown in Fig. 3, where all the diffraction
peaks are indexed according to the structure of aragonite (Pilati et al.,
1998).

2.4. Compression tests

The compression tests for the evaluation of the mechanical prop-
erties of the C. gallina shells were carried out in displacement control
using an Instron universal testing machine (Illinois Tool Works Inc.,
Norwood - MA, United States of America) equipped with a 1 kN load
cell, as shown in Fig. 4. The load using a 3 cm diameter compression
platen moved at a constant downward speed of 0.5mmmin−1. Each
valve was treated with a 5% sodium hypochlorite solution for three
days, in order to completely remove any trace of external organic tissue,
and with a 1M sodium hydroxide solution for one day, for the hydro-
lyzation of the residual proteic materials from the shell surface. Samples
were then rinsed with distilled water and dried at room temperature for
one day. We tested dry samples because the mechanical response of the
shells could be influenced also by their water content, which is believed
to be responsible for the viscoelastic behaviour (Mohanty et al., 2006),
but this investigation is beyond the scope of the present work.

A typical experimental load-displacement curve is plotted in Fig. 5,
where it is possible to distinguish two main parts: the first quasi-linear
elastic segment, until the maximum load Pmax is reached, and the
subsequent fracture, characterised by irregular rises and drops of the
load as the crack grows.

This mechanical behaviour has already been observed and widely
studied in the literature (see, e.g., Barthelat et al., 2009; Mayer, 2017)
and is typical of natural and artificial laminate composite materials. As
anticipated above, the complex fracture behaviour of C. gallina shells,
emerging from Fig. 5, can be attributed to their multiscale architecture,
which allows different energy-dissipating mechanisms. As observed
also in other seashells (Espinosa et al., 2011; Ji et al., 2017) and nacre-
like materials (Kakisawa and Sumitomo, 2011; Huang and Li, 2013;

Yuan et al., 2016), on one side, one of the core mechanisms is the de-
formation of the aragonite micro-platelets and their sliding, closely
related to the shear strength of the interfaces; while on the other side,
the crack propagation between the lamellae (and inside the lamellae at
higher loads), which drive the crack path towards the regions with
larger stress intensities.

3. Analytical model

3.1. Description of the shell geometry

The valves present a very complex shape that can be described by
four main quantities, as shown in Supplementary Fig. 2:

• the maximum Feret diameter fmax, i.e. the greatest lateral dimen-
sion;
• the minimum Feret diameter fmin, i.e. the smallest lateral dimension;
• the thickness h;
• the height of the centre of the shell z0 from a horizontal plane.

For the purpose of the analytical model introduced later, it is

Fig. 3. XRD pattern of a sample of ground shell. The diffraction peaks were indexed according to the reference JCPDS card 41-1475 (Keller et al., 1989).

Fig. 4. Picture of the testing machine and setup used for the compression tests.
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convenient to reduce the geometry described by the quantities above to
an equivalent spherical cap. As schematised in Supplementary Fig. 3,
the equivalent spherical cap can be considered as having the same
height and thickness of the shell (i.e., z0 and h, respectively) and a base
radius R, which can be assumed to be:

+
R

f f
2

max min
(1)

The radius a of the equivalent sphere can be obtained from simple
geometric considerations, i.e.:

= +a z R
z2 2

0
2

0 (2)

3.2. Extraction of the Young’s modulus

Considering the experimental setup shown in Fig. 4 and the de-
scription of the geometry discussed above, we can approximate the
system as a shallow spherical shell loaded over a small circular area of
radius c, with centre at the apex and with no edge restraint (Reissner,
1946b; Timoshenko and Woinowsky-Krieger, 1959). The shallowness
approximation consists in assuming that R a/ 1 (Reissner, 1946a).
Strictly speaking, in our case this approximation is not perfectly ful-
filled, because we have simply <R a (and not R a as required) for
almost all the samples, but we believe to obtain anyway a good de-
scription of the mechanical properties of the shells.

Let us consider the displacement at the centre of the loaded area,
which is given by Timoshenko and Woinowsky-Krieger (1959):

=w Pa
Eh µ µ

µ
12(1 ) 1

2
( )0

2

2 2 4
(3)

where ν is the Poisson’s ratio, E the Young’s modulus, 4 a tabulated
function and μ the dimensionless coordinate:

=µ c
ah

12(1 )2
(4)

The radius c of the area of application of the load can be derived
from the Hertz theory of contact. Considering the experimental setup
and the shell geometry, we are in the case of a solid of revolution (i.e.,
the shell approximated by a spherical cap) in contact with a half-space

(i.e., the steel platen through which the compressive load is applied).
Thus, according to Johnson (1985):

=c
Pa
E

3
4

eq

eq

1
3

(5)

where =a aeq and we can take =P Pmax and =E Eeq , given that the
steel platen can be assumed to be rigid with respect to the shell. Strictly
speaking, the Young’s modulus to employ in the Hertz contact theory is
that of a solid sphere, but the theory is still valid during the approach of
the two solids, because the indentation depth is negligible with respect
to the shell thickness. An analogous reasoning has already been applied
in the literature (see, e.g., MansoorBaghaei and Sadegh, 2011 where the
authors separate the elastic deformation of a spherical shell from the
bending deflection).

By taking two reference points w P( , )0,1 1 and w P( , )0,2 2 on the linear
segment of the experimental load-displacement curve, as shown in
Fig. 5, the Young’s modulus of the shell can be derived iteratively from
Eq. (3) as:

=E a
h µ µ

µ P P
w w

12(1 ) 1
2

( )
2

2 2 4
2 1

0,2 0,1 (6)

where we can assume 0.16 for aragonite (Barthelat et al., 2006) and
=E 30 GPaeq as the initial value for the computation of c through Eq.

(5) (see Supplementary Note 1 for details).
Table 2 reports the values of the Young’s modulus, which falls in the

order of 6 GPa, with the greatest E measured for the “CE” location. The

Fig. 5. Typical experimental load-displacement curve, with P the total load and w0 the displacement of the centre of the shell from its natural position. (The two
reference points on the linear segment will be used in Section 3 for the extraction of the Young’s modulus.).

Table 2
Average value and standard deviation of the Young’s modulus, from Eq. (6),
and the ultimate strength, from Eq. (10), of the investigated samples ordered by
decreasing latitudes.

Location acronym E (GPa) σu (MPa)

“MO” 2.44 ± 1.58 20.61 ± 3.74
“CH” 6.93 ± 1.57 33.41 ± 6.65
“GR” 6.18 ± 1.77 28.19 ± 5.77
“CE” 7.19 ± 2.19 34.38 ± 6.43
“SB” 6.94 ± 2.30 32.25 ± 8.65
“CA” 6.01 ± 3.88 28.68 ± 8.32

R. Guarino, et al. Journal of the Mechanical Behavior of Biomedical Materials 94 (2019) 155–163

159



only exception is the “MO” location, whose shells present the biggest
size and their load-displacement curves have a smaller stiffness and
thus a smaller Young’s modulus.

In Fig. 6 we plot the values of the Young’s modulus for all the
samples as function of the shell thickness: the general trend is that E
diminishes for an increasing h. In addition, it is possible to identify a
limiting curve that divides the plane in two parts. All the values are
located below the curve, i.e., there are no shells with high thickness and
simultaneously high Young’s modulus. The limiting curve can be de-
scribed by a best-fit of the type:

= +E h A B h( ) 1 1 (7)

By taking the largest value of E for each thickness (see
Supplementary Note 2 for details), we find =A 18.2 GPa1 and

=B 7.8 GPamm1
1, with R2-value 0.9185.

3.3. Extraction of the ultimate strength

Within the approximation of shallow spherical shells, the maximum
bending stress can be computed as (Timoshenko and Woinowsky-
Krieger, 1959):

= ± + P
h

µ
µ

3(1 )
2

( )
b,max

max
2

3

(8)

where ψ’3 is another tabulated function, depending on the dimension-
less coordinate introduced through Eq. (4), and is negative in the
considered range of μ. Thus, in Eq. (8) we take the negative sign in
order to have a positive maximum bending stress. The maximum
membrane stress arising in the compressed shell, instead, is given by
Timoshenko and Woinowsky-Krieger (1959):

= P
h µ µ

µ
12(1 )

2
1

2
( )m,max

2
max

2 2 4
(9)

and we take it as positive in the case of compression.
Finally, the ultimate strength of the shell σu is given by the sum of

Eqs. (8) and (9), i.e.:

= + = + +P
h

µ
µ

P
h µ µ

µ3(1 )
2

( ) 12(1 )
2

1
2

( )b mu ,max ,max
max

2
3

2
max

2 2 4

(10)

which, according to signs assumed above, is positive. Note that we get
m b,max ,max for all the samples, thus we can assume u b,max.

In the same Table 2, we list the ultimate strengths of all the tested
shells computed through Eq. (10), obtaining values in the order of
30MPa. As observed for the Young’s modulus, also the ultimate
strength depends slightly on the location, with the shells with a smaller
E presenting also a smaller value of σu (i.e., “MO”). The relation among
the Young’s moduli of the shells from the different considered locations,
is almost verified also for the ultimate strength, despite a larger scat-
tering of the experimental data does not allow a precise discrimination.

As done before for the Young’s modulus, in Fig. 7 we plot the
computed ultimate strengths as function of the shell thickness, showing
a similar decreasing trend of σu for increasing h. Again, we can divide
the plane through a curve of equation:

= +h A B h( )u 2 2 (11)

being A2 and B2 fitting parameters. By taking the largest value of σu for
each thickness (see Supplementary Note 2 for details), we find

=A 78.3 MPa2 and =B 31.2 MPamm2
1, with R2-value 0.9090. The

impossibility to have a simultaneous large thickness and large strength
is typical of brittle materials, e.g. ceramics, as in the case of aragonite.
For larger h, there is a larger probability to have defects (for instance,
larger pores), which degrade the mechanical strength of the shells.

The values of the Young’s modulus and the ultimate strength,
computed through Eqs. (6) and (10) respectively, can be plotted on the
two axes of a single graph, as we attempt to do in Fig. 8. In the obtained
Ashby plot (Ashby, 1992) it is evident the large scattering of the ex-
perimental data, with the shells collected at the “MO” location occu-
pying the bottom left corner, because of their small values of E and σu.

3.4. Effect of the shell porosity

As already observed in biological structural materials (Seto et al.,
2012; Fantazzini et al., 2015), also C. gallina shells present a certain
amount of porosity, which can affect the mechanical response and the
fracture properties. In order to take into account the shell porosity, here
denoted by the volume fraction φ, it is possible to rescale the computed
values of E and σu according to the rules of mixtures employed for
composite materials (Jones, 1999), respectively:

Fig. 6. Young’s modulus, computed through Eq. (6), as function of the shell thickness of the investigated samples divided by location. The solid line represents the
curve described by Eq. (7).
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= +E E E(1 )mat por (12a)

= +(1 )u u u,mat ,por (12b)

where Emat and σu,mat are the properties of the matrix, Epor and σu,por the
properties of the pores, and E and σu the macroscopic properties of the
shell computed before. By assuming =E 0 GPapor and = 0 MPau,por
(i.e., there is no material in the pores), we can extract the actual
properties of the matrix, i.e. the microscopic properties of the shells, as:

=E E
(1 )mat (13a)

=
(1 )u

u
,mat (13b)

The values of Emat and σu,mat for all the samples are reported in
Table 3, together with the average shell porosity. In general, we observe
a slightly increasing porosity for a decreasing latitude and thus a larger
effect on the mechanical properties of the shells. As the latitude de-
creases, the porosity generally increases and thus the difference be-
tween E and Emat, and between σu and σu,mat, increases. Anyway, being
φ always in the range 2÷5%, the difference between the mechanical
properties computed through Eqs. (6,10), and reported in Table 2, and
those obtained by considering the porosity through Eqs. (13a,13b), is
always below 5%.

Fig. 7. Ultimate strength, computed through Eq. (10), as function of the shell thickness of the investigated samples divided by location. The solid line represents the
curve described by Eq. (11).

Fig. 8. Ashby plot of the Young’s modulus and the ultimate strength of the investigated samples divided by location. Each ellipse has centre in E( , )u m m, and
horizontal and vertical semi-axes u std, and Estd, respectively. The subscripts “m” and “std” denote the average value and the standard deviation, respectively, of the
considered quantity as reported in Table 2.
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3.5. Extraction of the toughness modulus and fracture energy

Here we attempt to extract the energy dissipated from the fracture
of the C. gallina valves, assuming that each shell breaks into two parts
and the fracture involves the entire cross section in Fig. 1. The fracture
pattern could be also very complex involving the rupture in multiple
pieces. However, the main objective here is to discriminate between the
properties of the inner and the outer layer, defining nominal/effective
rather than real/complex mechanical properties.

Considering Fig. 5, we define the total dissipated energyUTOT as the
area below the force-displacement curve, i.e.:

= =
=

U P w w P w w( )d ( )dTOT

w

i

N w

i
0

0 0
1 0

0 0

i0,max 0,

(14)

being w0,max the fracture displacement and we have introduced the
summation because the overall curve can be approximated by a pie-
cewise function of N continuous functions. Thus, we can define the total
toughness modulus as:

= = =
=

T U
V V

P w w
V

P w w1 ( )d 1 ( )dTOT
TOT

w

i

N w

i
0

0 0
1 0

0 0

i0,max 0,

(15)

where V is the volume of the shell, taken as the average between the
right and left valve of each sample.

The fracture energy, instead, is defined with reference to the frac-
ture area A, which here we can assume equal to the cross section of the
shell (see Fig. 1 and Supplementary Fig. 3), i.e.:

= = =
=

G U
A A

P w w
A

P w w1 ( )d 1 ( )dc TOT
TOT

w

i

N w

i,
0

0 0
1 0

0 0

i0,max 0,

(16)

As anticipated above, we can assume that the internal layer of the
shell is the first one that undergoes fracture, followed by the external
layer. Therefore, if from Fig. 5 we assume that the peak of the force is
reached when the internal layer fails, we can easily compute the
toughness modulus of the internal layer (Tint) and that of the external
layer (Text) of the shell. The integral in Eq. (15), consequently, must be
divided into two parts:

=T
V

P w w1 ( )dint
int

w

0
0 0

P0 max

(17a)

=T
V

P w w1 ( )dext
ext w

w

0 0
P0 max

0,max

(17b)

being w P0 max the displacement at which the maximum load occurs and
Vint and Vext the volumes of the internal and the external layers, re-
spectively.

Similarly, we can compute the fracture energy of the internal and
the external layer, by dividing the corresponding integral in Eq. (16) as
done above for the toughness modulus, i.e.:

=G
A

P w w1 ( )dc int
int

w

,
0

0 0

P0 max

(18a)

=G
A

P w w1 ( )dc ext
ext w

w

, 0 0
P0 max

0,max

(18b)

Given the availability of the actual volume V of the shells, measured
experimentally as described before, for the values of Vint and Vext we do
not make use of the spherical shape approximation introduced earlier
for the computation of the mechanical properties. Instead, we notice
that Vint ≈ Vext ≈ V/2, thus we use the experimental value V/2 for the
extraction of the toughness moduli in Eq. (17). Note also that we have
introduced the fracture areas of the internal and the external layers, Aint
and Aext respectively, assuming that each layer covers half of the cross
section (see Fig. 2a), i.e. the thickness of the internal layer is assumed
equal to the thickness of the external layer, and using the spherical
shape approximation. See Supplementary Note 3 for the detailed
computation of Aint, Aext, Vint and Vext.

In Table 4 we list the computed values of toughness modulus and
fracture energy for the internal and external layers of all the samples. It
is difficult to observe a clear dependence of these quantities on the
location (i.e. latitude) of collection of the samples, but interestingly the
sums Tint + Text and Gc,int + Gc,ext are almost the same for every loca-
tion. On the other hand, a strong difference between the two layers can
be observed: the internal layer presents always much larger toughness
moduli and fracture energies.

4. Conclusions

We have presented an experimental investigations of Chamelea
gallina shells, collected at different locations in the Adriatic Sea.
Microscopy investigations on the cross section of the shells have high-
lighted the presence of two main layers with different microstructures,
which interact with the propagation of cracks during mechanical
loading.

Compression tests have been performed to extract the main me-
chanical properties of the shells, namely Young’s modulus and ultimate
strength, which have been derived through an analytical model based
on the shallow spherical shell approximation. Results have shown a
certain dependency of the mechanical performance on the latitude of
collection of the samples, and these findings are essentially preserved
when the shell porosity is considered. These results confirm that the
preliminary outcomes of a previous work (Gizzi et al., 2016), for a
variety of physical properties, are consistent also for the mechanical
properties of the shells. The latitudinal gradient has been demonstrated
to not affect significantly the internal microstructure of the shells, but
only their macroscale morphology. Thus, we can conclude that the
values of the Young’s modulus and the ultimate strength depend on the
latitude due to the change in shell morphology (e.g. thickness). Finally,
we have investigated the fracture properties of the considered shells,
which present a complex fracture growth as usually observed in natural
and artificial composites. We have computed the toughness modulus
and the fracture energy for the two layers (i.e. internal and external)
that fail progressively under compression: the extracted properties are

Table 3
Average value and standard deviation of the Young’s modulus, from Eq. (13a),
and the ultimate strength, from Eq. (13b), of the investigated samples ordered
by decreasing latitudes, considering the shell porosity.

Location acronym φ (%) Emat (GPa) σu,mat (MPa)

“MO” 2.97 ± 0.48 2.51 ± 1.63 21.24 ± 3.86
“CH” 2.97 ± 0.69 7.15 ± 1.62 34.42 ± 6.76
“GR” 3.85 ± 0.79 6.43 ± 1.83 29.32 ± 6.00
“CE” 3.97 ± 1.01 7.48 ± 2.27 34.75 ± 6.35
“SB” 3.71 ± 0.88 7.20 ± 2.38 33.51 ± 9.04
“CA” 4.03 ± 0.90 6.26 ± 4.04 29.88 ± 8.61

Table 4
Average value and standard deviation of the toughness modulus and the frac-
ture energy of the internal and the external layers of the investigated samples
ordered by decreasing latitudes.

Location
acronym

Internal layer External layer

Tint (kJ/m3) Gc,int (kJ/m2) Text (kJ/m3) Gc,ext (kJ/m2)

“MO” 12.32 ± 2.92 0.20 ± 0.05 8.34 ± 4.26 0.13 ± 0.07
“CH” 16.30 ± 6.14 0.27 ± 0.10 6.98 ± 3.78 0.11 ± 0.06
“GR” 11.06 ± 4.54 0.18 ± 0.07 8.86 ± 3.92 0.14 ± 0.06
“CE” 14.96 ± 4.28 0.26 ± 0.08 7.32 ± 4.44 0.12 ± 0.08
“SB” 13.44 ± 6.38 0.23 ± 0.12 10.52 ± 6.10 0.17 ± 0.10
“CA” 11.64 ± 4.54 0.19 ± 0.07 9.80 ± 7.38 0.16 ± 0.12
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nearly independent from the latitude, but highlight a different me-
chanical behaviour of the two layers, with the internal one being able of
absorbing more energy at fracture.

Our findings can be of interest for the estimation of the future yield
of the clam fisheries in the Adriatic Sea, by correlating the mechanical
properties of the shells to e.g. the mortality events. From the mechan-
ical point of view, instead, the measured properties can be of relevance
for the design and optimization of new bio-inspired composite materials
(Libonati et al., 2016; Gu et al., 2017; Pugno and Valentini, 2019), e.g.
multilayer composites for shell structures.
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Supplementary Figure 1 

 

 
Figure S1 Map of Italy and selected locations for the collection of the samples. The map has been 

generated from http://maps.google.com (Google Inc., United States of America). 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 2 

 

 
Figure S2 Main geometrical quantities for the description of a clam shell, adapted from Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Figure 3 

 

 
Figure S3 Equivalent spherical cap geometry and main quantities, with 0 ≤ 𝑟 ≤ 𝑅 the radial coordinate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 1 

Choice of the initial value of the Young’s modulus 

The use of Equations (5), (4) and (6), in the order, for the estimation of the Young’s modulus of 

the shells, should follow an iterative procedure. However, given the uncertainties introduced 

through the numerical function 𝜓′' and the computation of the slope of the experimental load-

displacement curves, we believe to obtain a good approximation of E by assuming only one initial 

value. 

We carry out a convergence study considering different initial values of E and the results are 

reported in Table S1, for the example case of the “CA” location. As specified in the text, we 

observe that 𝐸 = 30	GPa represents a good initial guess since for larger values the final result does 

not change significantly. 

 
Table S1 Initial guess for the Young’s modulus and corresponding computed value through Equations 

(5), (4) and (6), in the order. Example computation for all the samples collected at the “CA” location. 

initial E 

(GPa) 

computed E 

 (GPa) 

10 4.80 ± 3.01 

15 5.13 ± 3.22 

20 5.44 ± 3.51 

25 5.60 ± 3.46 

30 6.01 ± 3.88 

35 5.89 ± 3.77 

40 5.95 ± 3.71 

45 5.68 ± 3.83 

50 6.01 ± 4.23 

 

 

 

 

 

 



Supplementary Note 2 

Details on the best-fits through Equations (7) and (11) 

Equation (7) is applied as best-fit on the largest values of E for each value of thickness. 

Specifically, the considered thicknesses are from 0.85 to 1.90 mm, with 0.05 mm steps. The values 

of E corresponding to h = 1.60, 1.75 and 1.80 mm are not taken into account, for the lack of 

valuable data. 

Equation (11) is applied as best-fit on the largest values of σu for each value of thickness. 

Specifically, the considered thicknesses are from 0.85 to 1.90 mm, with 0.05 mm steps. The values 

of σu corresponding to h = 0.95, 1.60, 1.75 and 1.80 mm are not taken into account, for the lack of 

valuable data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Note 3 

Details on the computation of the fracture areas in Equations (18) 

For the computation of the fracture areas Aint and Aext, since no experimental data are available, we 

consider the approximated spherical shape shown in Figure S3. Assuming that each layer covers 

half of the thickness, the corresponding cross sections are given by: 

𝐴012 =
𝜋	𝛼
180

7𝑎 + ℎ2<
=
− 𝑎=

2  

𝐴?@2 =
𝜋	𝛼
180

𝑎= − 7𝑎 − ℎ2<
=

2  

for the external and the internal layer, respectively. The quantities a and h are shown in Figure S3, 

while the angle α is given by: 

𝛼 = 2	 sinDE F
𝑅
𝑎G 

Similarly, the volume of the internal and the external layers, considering the spherical shape 

approximation in Figure S3, are given by, respectively: 
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