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A B S T R A C T

Nature utilizes hydrophilic-hydrophobic biomolecular entities to perform self-organized structural and func-
tional tasks, including the formation of cellular compartments and motion, separation of chemicals or self-
healing properties in a highly energy efficient manner. So far, no inorganic artificial micro/nanostructure units
are known that self-organize and mimic such functions just by adding liquid. Here we develop the first nano-
material exhibiting hydrophobic wetting and hydrophilic dewetting. Consisting of gallium nitride nanoscopically
thin membranes shaped as hollow microtetrapods, which we term aerogalnite (AGaN), the nanomaterial is ex-
tremely porous, mechanically flexible, stretchable, and exhibits hydrophilicity under tension and hydrophobicity
when compressed against water. Self-assembling the AGaN tetrapods on water enabled us to develop self-healing
waterproof rafts carrying liquid droplets 500-times as heavy as rafts, and to demonstrate self-propelled liquid
marbles exhibiting velocity of rotation as high as 750 rot/min. The specific force of the detachment of AGaN
from the water surface was experimentally determined equal to 35 mN/cm2. The new developed material
aerogalnite and its peculiar characteristics are promising for applications in sensorics, microfluidic devices and
microrobotics.

1. Introduction

The unique properties of biological cell membranes are conferred by
the molecular building blocks – phospholipids that both attract and
repel water [1,2]. The hydrophilicity of a phospholipid is generated by
its head based on polar phosphate groups, while the hydrophobicity is
caused by the nonpolar tail consisting of two fatty acid chains. When
added to water, the phospholipids self organize without any energy
input and form a bilayer, the hydrophobic tails of both layers clustering
together, away from the water, with the hydrophilic heads facing the
water. In such a way a separation layer is created that controls the
energy flux between both sides [1,2]. So far, no inorganic artificial
micro/nanostructures are known that exhibit dual hydrophobic-

hydrophilic properties and can self-organize when interacting with
water to mimic the functions of a cell membrane. In our attempts to
identify technological solutions for building such artificial structures,
we started with the following general considerations. First, an artificial
robust entity that enables self-assembling into a membrane could be
constructed in the shape of a tetrapod since micro/nanometer scale
tetrapods, especially hollow ones, allow substantial elastic deformation
[3–5]. Second, when the individual tetrapods are transferred on a flat
surface, the first monolayer automatically assumes the "three arms
down" position, thus by inducing floating tetrapods to group together
on the water surface one can mimic the formation of a phospholipid
bilayer, where the free ends of bottom and top arms would play the role
of polar phosphate groups in the phospholipid bilayer, while the four
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arms of each tetrapod – the role of clustering together nonpolar tails.
Third, taking into account the polar-nonpolar features, promising ma-
terials for building tetrapods could be chosen among inorganic semi-
conductors [6,7] exhibiting both polar and nonpolar crystallographic
planes.

Gallium nitride (GaN), a wide-bandgap semiconductor compound
(Eg = 3.4 eV at 300 K) which in the 1980s looked unpromising from the
technological point of view, has in the last two decades registered a
fascinating increase in the crystalline quality of epitaxial layers de-
termining its leading role in the development of the modern solid-state
lighting industry. The demonstration and successful commercialization
of GaN-based blue light emitting diodes resulted in the physics Nobel
Prize to I. Akasaki, H. Amano and S. Nakamura in 2014. Exhibiting an
impressive number of unique properties such as high breakdown vol-
tage, high switching frequencies, enhanced power efficiency, high
electrical conductivity, excellent thermal stability and radiation hard-
ness, GaN has been remarkably successful in the area of high-power/
high-frequency electronic applications, and is now considered the
second most important semiconductor material after silicon. In addi-
tion, GaN possesses pronounced piezoelectric properties which open
new applied avenues towards nanogenerators, piezotronics, nano-
electro-mechanical systems, micro-opto-electro-mechanical systems,
etc. [8–11]. In particular, GaN nanowire arrays for high-output nano-
generators have been demonstrated [12–15], while GaN nanocrystal-
line layers deposited on graphene aerogel enabled the fabrication of a
highly flexible ultra-lightweight pressure sensor [16]. Three dimen-
sional flexible architectures for multifunctional applications have been
recently fabricated by applying growth of GaN nano/micro-crystallites
on the huge surfaces inherent to carbon based aerographite scaffolds
[17,18].

In spite of the fact that some compounds semiconductor and other
materials can be grown as tetrapods by direct synthesis [4,6,19,20], the
geometrical shape involved is not inherent to direct growth of gallium
nitride. It is to be noted, however, that epitaxial growth of single
crystalline GaN was demonstrated previously on ZnO nanocolumns
(due to extraordinary low lattice mismatch of ~ 1.8%) with simulta-
neous or subsequent removal of zinc oxide [21,22] which paves the
possibility to grow any desired complex shaped hollow gallium nitride
structures, for example, tetrapods, multipods, by adopting template
based strategy. The sacrificial template based GaN growth sounds fea-
sible, but it still has to overcome several requirements, such as avail-
ability of desired structural morphologies, easy techniques offering
homogeneous deposition of GaN on the templates, and last but most
challenging, the successful removal of the underneath template.

In this work, the flame made zinc oxide tetrapods were selected as
sacrificial templates for the GaN deposition [19], For GaN growth, we
show that the hydride vapor phase epitaxy (HVPE) technique offers
controlled deposition of homogeneous thin layers under adequate
technological conditions and subsequent removal of the underneath
zinc oxide template. The GaN deposition combined with the template
removal possibility enables one to fabricate GaN hollow microtetrapods
which reveal on their inner surfaces nanoscale traces of crystalline zinc
oxide with outstanding chemical stability. Like the hydrophilic claws of
the flying water lily beetles [23,24], the free ends and internal walls of
AGaN tetrapod arms are pinned to the water surface by sizeable co-
hesion which is experimentally determined. Accordingly, for the AGaN
tetrapod arm ends and internal walls we derive an intrinsic contact
angle of 82° resulting under tension to a perfectly 0° apparent contact
angle; the external walls of the AGaN tetrapods (excluding arm ends)
are hydrophobic with an intrinsic contact angle that we estimate as 93°,
resulting under compression to an apparent contact angle of about 170°.
Taking inspiration from both the ability of pond skaters to walk on
water and the powerful grip of fire ants forming waterproof rafts during
floods [25–28], we use AGaN networks to fabricate high-performance
micro-hydrofoils with remarkable cargo capabilities and self-healing
functionality. Furthermore, by encapsulating liquid droplets with AGaN

networks, we demonstrate highly energy-efficient self-propelled liquid
marbles exhibiting record velocity of rotation and highest known life-
time of translational motion, these artificial cell membranes being ex-
tremely robust in both chemistry and structure, e.g., withstanding ul-
trasound.

2. Experimental

2.1. Aerogalnite synthesis

The aerogalnite samples were produced by deposition of GaN thin
films on sacrificial templates composed from highly porous ZnO net-
works of microtetrapods [19]. Growth of GaN was realized in a HVPE
system equipped with a four-temperature-zone-heated horizontal re-
actor. Metallic gallium, ammonia (NH3) gas, hydrogen chloride (HCl)
gas and hydrogen (H2) were used as source materials and carrier gases.
In the source zone, GaCl was formed as a result of chemical reactions
between gaseous HCl and liquid Ga at 850 °C. The GaCl and NH3 gas
reacted with each other in the react zone, where at the beginning the
temperature was kept at 600 °C for 10 min to initiate nucleation of GaN
on the surface of ZnO microtetrapods, and then increased up to Tg

= 850 °C, 900 °C or 950 °C for durations up to 30 min to produce GaN
layers with different thicknesses. In the process of GaN growth, the HCl,
NH3 and H2 flow rates were equal to 15 sml/min, 600 sml/min and
3600 sml/min, respectively. Note that at the growth temperature Tg,
along with GaN deposition, simultaneous gradual decomposition and
removal of the underneath ZnO template occurs due to harsh reaction
conditions at Tg.

2.2. Structural characterization

The microstructural evolutions of aerogalnite architecture were in-
vestigated by a Scanning Electron Microscopy (SEM) instrument Zeiss
Ultra Plus. The compositional analysis of AGaN networks was carried
out using Energy Dispersive X-ray (EDX), in combination with SEM and
Transmission Electron Microscopy (TEM). TEM analysis was performed
with a Tecnai F30 STwin electron microscope (300 kV, field-emission
gun, spherical aberration constant Cs = 1.2 mm. Energy-filtered TEM
(EFTEM) with a post-column Gatan Image Filter was used to obtain
elemental maps of the sample.

2.3. Mechanical characterizations

The mechanical measurements were conducted with a self-de-
signed/built computer-controlled setup which consists of a Kern PLE
310-3 N precision balance and a Märzhäuser Wetzlar HS 6-3 micro-
manipulator. The setup allows a stepwise tensile or compressive de-
formation of the sample up to an arbitrary number of cycles while the
force is measured by the balance.

2.4. AGaN raft formation and liquid marbles

To fabricate AGaN rafts, the aerogalnite powder was sprinkled in a
10-mm diameter sapphire cylinder placed in a Petri dish partially filled
in with water. The water bath with floating aerotetrapods was subjected
simultaneously to ultrasound treatment in a Bandelin Sonorex ultra-
sound bath at 35 kHz and maximum output power of 120 W. As a result,
a raft consisting of interpenetrating AGaN tetrapods was created which
covered the whole surface of the water inside the sapphire cylinder. To
release the raft from the cylinder, we added as much water to the Petri
dish as to surpass the upper edge of the sapphire cylinder. Liquid
marbles were fabricated using distilled water. For experiments related
to self-propelled liquid marbles, we used a commercially available al-
coholic solution with ingredients enabling to maintain the surface
tension.
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3. Results and discussion

3.1. Morphology, crystallinity and elasticity

Fig. 1a illustrates the morphology of the as-grown ZnO template,
while Fig. 1b shows a comparison between an original zinc oxide
template and a GaN grown at Tg = 850 °C for 10 min with simultaneous
decomposition of the template. Notable colour change from white to
yellow after GaN deposition is clearly visible (digital photographs in
Fig. 1b) and the resultant new material is superhydrophobic with the
contact angle of a water droplet of 170° (Fig. 1c). Fig. 1(d-i) shows the
morphology of samples subjected to HVPE process taking place at
850 °C for two different periods of time. The sacrificial template is re-
moved in both cases, although some traces of the zinc oxide survive as
will be described below. Following this strategy, i.e., thin layer de-
position and simultaneous removal of the template, we have success-
fully developed a highly porous three-dimensional architecture, en-
tirely built out of hollow tetrapods referred as so called aerotetrapods.
The wall thickness of the hollow aerotetrapod arm depends upon the
deposition time in the HVPE process at Tg = 850 °C which can be tai-
lored from around 15 nm (least) to few 100 nm depending upon the
requirements as demonstrated by different AGaN variants shown in
SEM images (Figs. 1f, 1i). Further increase of Tg leads to the formation
of porous walls (Supplementary Information, Fig. S1). The morpholo-
gical investigations (Fig. 1d-i) verify the proposed strategy that the thin
GaN layers of desired thickness can be homogeneously deposited on a

ceramic template which retains the morphological intactness of the
ceramic template, even after template's removal. It is important to
emphasize that the higher the growth temperature Tg, the higher the
rate of decomposition of the underneath ZnO in the HVPE process. The
etching of ZnO starts in the area of the tetrapod central joint where the
epitaxial growth of GaN appears to occur at lower rates in comparison
with the growth on the surface of the arms. With the reaction time, the
ZnO etching proceeds in directions toward the free ends of the under-
neath arms, the extrusion of the products of etching reactions being
realized through nano-micropores inherent to tetrapod the central joint.
In some instances, the remnant ZnO can be easily detected in the areas
of free ends of the arms, as illustrated by SEM images in Fig. S2
(Supplementary Information). Additionally, the experimental results
demonstrated that it is almost impossible to coat ZnO tetrapods with
GaN without at least partial removal of underneath ZnO.

Deposition of GaN and simultaneous removal of ZnO leads to drastic
reduction in the overall density of the tetrapodal architecture, a con-
version from filled to hollow geometry. The density of the AGaN sample
shown in Fig. 1b (right) equals 12.3 mg/cm3 which falls in the density
range inherent to cellular materials [29]. The weight of the specimen
involved (7.4 mg) is close to the weight of a couple of snowflakes. The
AGaN architecture exhibits fascinating electromechanical coupling
abilities which are confirmed by its energetic motions under applied
electric fields. As shown in Section 1 of the Video (Supplementary
Information), a specimen of AGaN placed in a glass tube jumps like a
super-elastic micro-ball under the action of a spatially varying static

Fig. 1. (a) Morphology of the ZnO tetrapodal template. (b) Comparison between the original ZnO template (left) and a specimen subjected to GaN deposition at
850 °C with simultaneous decomposition of ZnO (right). (c) The AGaN tetrapodal network is superhydrophobic (in contrast to ZnO templates which are super-
hydrophilic). (d-i) SEM images corresponding to two differnet AGaN samples characterized by different durations of deposition at Tg = 850 °C.
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electric field generated by a moving amber stick preliminarily rubbed
with wool. This behaviour can be attributed to dielectrophoresis [30].
Note that the AGaN specimen continues its energetic motion several
seconds after the removal of the electrically-charged stick, these are
driven by the continuous distribution of charges.

Supplementary material related to this article can be found online at
doi:10.1016/j.nanoen.2018.11.049.

Although the main part of the ZnO skeleton is removed in the
process of GaN deposition, we found traces of ZnO on the inner surface
of the GaN microtubular structures. Fig. 2 presents the results of com-
bined chemical and structural analyses, realized using TEM, of AGaN
deposited at 850 °C for 10 min. The TEM bright-field image taken from
a GaN microtube (Fig. 2a) demonstrates that its wall represents a
continuous layer of GaN. Besides, the microtube shows a high trans-
parency to the electron beam, as another piece of the GaN film can be
seen through it. A statistic EDX analysis in TEM mode from several GaN
microtubes transferred on the grid shows an average amount of 7 at% of
Zn remaining in the microstructures. To further reveal the spatial dis-
tribution of the residual Zn, a spatially more confined EDX elemental
mapping was performed (see Fig. 2b). As can be inferred from the EDX
map, Zn and O are present together with GaN, without any preferential
aggregations on the inner wall of the microtube. Note that an atomic
scale layer of ZnO found inside of the microtubes is utilized for the here
intended applications, as ZnO is hydrophilic, while the outer GaN shell
is hydrophobic.

Structural analysis with selected area electron diffraction (SAED)
suggests the single crystallinity of the microtube walls (see Fig. 2c).
However, when the projection of the crystal lattice is along the [100]

axis, ZnO and GaN can be hardly distinguished in TEM, because the d-
value of the ZnO (010) plane is only about 0.7 Å larger than that of
GaN. Only for higher order Bragg reflections, a distinction between the
two materials can be made, cf. splitting of the Bragg intensities in the
experimental and simulated patterns of Fig. 2c and Fig. 2d. The en-
larged view of the 4th and 5th order reflections on the bottom of Fig. 2
illustrates a d-value of the (010) plane (0.280 nm; the ZnO literature
value is 0.281 nm [31]) determined from the inner circle, and another
one calculated from the outer circle with a smaller d-value of 0.277 nm
(comparable to the GaN literature value of 0.274 nm [32]). The en-
larged regions marked with green boxes confirm a reasonable match
with the experimental data. It can be speculated, on the one hand, that
the residual ZnO might be serving as a stabilizing layer for the de-
posited GaN to grow with a similar lattice parameter and further
achieve a highly crystalline epitaxial growth in a three-dimensional
manner. On the other hand, GaN stabilizes the ZnO interface layer in a
unique fashion as ZnO usually decomposes under hydrogen treatment.

The amount of residual ZnO on the inner surface of hollow tetrapods
can be reduced down to 3–4 at% (from EDX results) by increasing Tg up
to 950 °C (Fig. 3a-c). Note that, although the walls of the hollow GaN
microtetrapods grown at 950 °C are porous, they exhibit a single crys-
talline structure (see SAED in Fig. 3d). The pronounced porosity of the
walls at the growth temperature T2 = 950 °C may be attributed to in-
tense decomposition and removal of the ZnO template. To further re-
duce the amount of residual Zn from the AGaN architecture, a series of
samples was subjected to a post-growth treatment in hydrogen atmo-
sphere. Fig. 3e-f illustrate typical morphologies inherent to samples
grown at 850 °C with subsequent treatment in hydrogen atmosphere at

Fig. 2. Combined TEM chemical and structural
analyses of the GaN (Tg = 850 °C) hollow mi-
crotubes with an amount of residual Zn around
7 at%. (a) TEM bright-field image of a GaN
microtube; (b) EDX elemental maps from the
red boxed region in (a). Blue: Gallium map;
Red: Nitrogen map; Yellow: Zinc map; Orange:
Oxygen map. (c) SAED pattern from the
marked region in (a), showing a projection
along the [100] zone axis of GaN or ZnO (space
group: P63mc). (d) Computer simulated SAED
pattern assuming an exact overlapping of the
same [100] zone axis of both GaN and ZnO
phases. In the bottom a comparison of two
enlarged sections from the marked 4th and 5th
order reflections in (c) and (d) is displayed.
Scale bar is 500 nm.
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900 °C suggesting that the hydrogen treatment removed most of the
remaining Zn (EDX: 0.7 at%) and partially etched the GaN, too. SAED
investigation (Fig. 3h) shows no more splitting of the Bragg intensities
in comparison with the results illustrated in Fig. 2c. Nevertheless, the
high-resolution TEM (HRTEM) micrograph conducted on a smaller re-
gion in the highly crystalline particle (Fig. 3e) revealed some stacking
faults (intrinsic type I1 basal-plane stacking faults inherent to the
wurtzite structure [33,34]) arranged perpendicular to the crystal-
lographic c-axis (see Fig. 3g). The simulation (green box in Fig. 3g)
confirms the wurtzite structure of GaN. Thus, the architecture of AGaN
consists of hollow microtetrapods with arm diameters of several mi-
crometers and follows the spatial architecture of the ceramic template.
Nanoscopic ZnO was observed to be remaining at the inner surface of
GaN walls after the HVPE process, which is mainly due to a ‘partner-
induced chemical stability’ phenomenon, as an ultrathin ZnO film is
shielded during the HVPE process because of strong chemical binding at
the interfaces.

Despite of very low density, the fabricated 3D architecture of mu-
tually interpenetrated GaN aerotetrapods is mechanically flexible as

confirmed by cyclic loading and unloading stress (compressive) – strain
response presented in Fig. 3i. The behaviour under the first loading-
unloading cycle discloses sizeable plastic deformation (Fig. 3i, curve 1)
which is related to the hierarchical architecture of the AGaN consisting
of partially interpenetrated gallium nitride aerotetrapods. After sub-
jecting the AGaN network to about 20 loading-unloading cycles, the
plastic component of the mechanical deformation has been removed
and under further subsequent cycles, the aerogalnite architecture de-
monstrates high mechanical flexibility with rubber like elastic beha-
viour.

These excellent properties of AGaN are most likely due to its unique
spatial architecture based on a mixture of micrometer-scale (length and
diameter of aerotetrapod arms) and nanoscopic (thickness of the walls)
features as well as due to elasticity, piezoelectricity and flexoelectricity.
Flexoelectricity is negligible for bulk materials, while at the nanoscale it
can be equal or even exceed the equivalent piezoelectricity [35]. Taking
into account the nanoscale thickness of the walls of GaN hollow aero-
tetrapods and the mechanical bending inherent to tetrapod shape under
compression [5], it is most likely that the flexoelectricity and

Fig. 3. TEM and EFTEM investigation of hollow AGaN tubes. (a-b) EFTEM elemental maps from the yellow and the blue marked regions (see TEM bright-field image
in (c)) of the porous GaN tetrapod (Tg = 950 °C). The elements of interest in the EFTEM maps are represented with different colors (Ga: Green, Zn: Red, N: Blue).
Additionally, the O and Zn maps are given. Scale bar is 1 µm. (d) SAED pattern recorded from the red circled area (see TEM bright-field image in (c)) on the tetrapod
arm. (e-f) TEM micrographs from two particles of the AGaN sample after H2 treatment showing very porous morphology. (h) SAED pattern acquired from the blue
circle region in (e) which is indexed to be along the [100] zone axis of GaN. (g) HRTEM micrograph recorded on the edge of a hole in the particle shown in (e). The
red arrow indicates the c-axis of the crystal lattice. Some stacking faults are marked out with blue arrows. A multislice computer simulation image is inserted for
comparison with the experimental data (defocus Δf = 70 nm, sample thickness t = 4.74 nm). (i) Compressive stress – strain response of the AGaN network under 40
loading and unloading cycles.
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piezoelectricity are cumulatively responsible with respect to the ob-
served electromechanical response of aerogalnite. The previous in-
vestigations suggest that the yellow colour predominates in the light
emission spectra of continuous and nanoperforated GaN membranes
[36,37]. Besides, a strong yellow luminescence was also revealed in the
near-surface layer of GaN nanowires as compared to weak yellow lu-
minescence inherent to bulk [38]. Based on these findings, one may
conclude that yellow colour centers are inherent to ultrathin mem-
branes of gallium nitride, including AGaN which represents nanosco-
pically thin membranes shaped as hollow microtetrapods. It is neces-
sary to mention that the ZnO traces exhibit negligible contribution to
the luminescence of aerogalnite nanomaterial in the yellow region of
the spectrum as confirmed by preliminary experiments.

3.2. Hydrophilic-hydrophobic behaviors

An individual AGaN aerotetrapod looks like an artificial pond skater
[25] when placed on the surface of water (Fig. 4a). Interacting with the
water in a similar way to the legs of a pond skater, the three down-
positioned arms keep the microtetrapod floating on the water surface.
By placing a big number of individual aerotetrapods on the water sur-
face and inducing them to group together, one can weave a waterproof
raft, see Fig. 4b. For weaving a flexible and mechanically durable AGaN
raft, a 10-mm diameter sapphire cylinder was placed in a Petri dish

partially filled in with water and aerotetrapods were gradually added
on the water surface inside the sapphire cylinder, while the water bath
with floating microtetrapods were simultaneously kept under ultra-
sound treatment. This resulted in the successful fabrication of a raft
(digital image shown in Fig. 4c) out of interpenetrating AGaN aero-
tetrapod building blocks which covered the whole surface of the water
inside the sapphire cylinder. The weaved raft was released (from the
cylinder) by adding the sufficient amount of water to the Petri dish so to
surpass the upper edge of the cylinder. Under these conditions the
water surface inside the cylinder becomes convex, and the raft adopts
the imposed geometrical shape, thus increasing its surface area by
~ 30% (Fig. S3, Supplementary Information). The AGaN raft is released
when the threshold water level in the Petri dish is exceeded. Section 2
of the Video in the Supplementary Information illustrates the process of
raft releasing and working principle of the raft via its force-displace-
ment constitutive law (see details under the caption to Fig. S3 in the
Supplementary Information), while a floating raft is shown in Fig. 4c. It
is very important to highlight here that the imposed stretch in the
process of releasing does not generate any ruptures in the AGaN raft
which demonstrates its flexibility and pronounced stretching cap-
abilities like in the nanoscale organic counterpart, the phospholipid
bilayer of a cell membrane. In our opinion, the generated spatial ar-
chitecture is durable because of the electrostatic interactions among the
nanoscale-thick walls of neighboring aerotetrapods in the network. In

Fig. 4. AGaN tetrapod structures: (a) A single AGaN tetrapod floating on water. (b) A network of interpenetrating AGaN tetrapods floating on water. (c) An AGaN raft
floating on water. (d) AGaN raft loaded with a drop of colored water. (e) Schematic illustration of encircling a water droplet by floating AGaN tetrapods. (f) A water
droplet rolling onto an AGaN aerotetrapod bed. (g) Liquid droplet encapsulated by AGaN network. (h, i) Time dependences of the speed of translational and
rotational motions of self-propelled AGaN liquid marbles, respectively.
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the weaved raft, the arms of the hollow aerotetrapods get deformed
which induces electrical polarization of the walls owing to piezoelectric
and flexoelectric phenomena.

The interaction between microtetrapods resembles the fascinating
powerful grip of fire ants forming a raft during floods [26–28]. We
found that an aerogalnite raft can carry liquid droplets hundreds of
times heavier than the raft, i.e. it represents a micro-hydrofoil with
impressive cargo capabilities. Fig. 4d illustrates a 0.37-mg weight raft
carrying a liquid drop about 500 times heavier. It is important to note
that, in the loading process, some AGaN rafts exhibited the capability of
self-healing which is inherent to rafts formed by the fire ants [26,27].
Fig. S4a (Supplementary Information) illustrates the raft loading pro-
cess, while Fig. S4b shows the maximum amount of liquid which can be
carried by this AGaN micro-hydrofoil. When overloaded (i.e. when the
admissible or the “threshold” amount of liquid is exceeded), the aero-
galnite raft texture generates a hole which allows the leakage of a part
of the colored liquid load (Fig. S4c). Raft self-healing seems to take
place as soon as the overloading is removed, and the “self-repaired”
micro-hydrofoil then continues to float, see Fig. S4(d-f). In most of our
experiments with micro-hydrofoil loading we found, however, that as
the liquid droplet increased in size it approached the raft border and
rolled down into the water before reaching the “threshold” weight.
Sections 3–5 of the Video (Supplementary Information) illustrate three
consecutive processes of loading the same raft, each of them ending by
droplet rolling down into the water. Directed flotation of both unloaded
and loaded AGaN rafts can be easily actuated by applied static electric
fields, see Sections 6,7 of the Video (Supplementary Information).

The investigation was extended to the consideration of a curved
water surface, e.g., of a spherical surface. Consider a water droplet that
keeps its spherical shape when encircled by floating pond skaters. We
realized this concept by configuring AGaN microtetrapods as illustrated
schematically in Fig. 4e: By rolling a water droplet onto a bed of AGaN
microtetrapods (Fig. 4f), we reached full coverage of the droplet or, in
other words, fabricated novel liquid marbles, see Fig. 4g. The liquid
marbles represent aggregates composed of a drop of liquid encased in
and stabilised by a shell of hydrophobic particles [39]. In our case the
aerogalnite mimics the phospholipids bilayer that separates the inside
and outside of biological cells as superhydrophobic separator, but with
the advantage that the inorganic GaN material withstands extreme

conditions such as high temperatures, harsh chemical environments
and ultrasonic treatment.

The AGaN-based liquid marbles exhibit pronounced elasticity, as
demonstrated in Section 8 of the Video (Supplementary Information)
where a marble is subjected to a series of uniaxial compression-de-
compression cycles. Allowing a part of the liquid to evaporate through
the porous shell, the mutual interpenetration of GaN microtetrapods is
amplified and thus the AGaN shell is consolidated. Liquid marbles with
consolidated AGaN shell are rather robust and survive, for example, on
the surface of water subjected to intense ultrasonic treatment (Section 9
of the Video in Supplementary Information). The robustness of con-
solidated AGaN shells provides conditions for substantial modification
of the shape of liquid marbles. Fig. S5 (Supplementary Information)
shows an AGaN-based liquid marble exhibiting a visible deformation
introduced by using a wood stick. Deviations from the spherical shape
are of paramount importance for the development of self-propelled
floating liquid marbles.

Recently, self-propelled liquid marbles have been fabricated using
droplets of aqueous ethanol solutions encapsulated by fumed fluor-
osilica powder with 20–30 nm diameter particles [40] or by loose
polytetrafluoroethylene particles with 1 µm diameter [41]. The occur-
rence of self-propulsion is related to Marangoni solutocapillary flow
emerging when a gradient of surface tension of the fluid support is
generated in the surrounding vicinity of the liquid marble. Such a
gradient can be induced by breaking the spherical symmetry of the
marbles. Under these conditions, the evaporation of alcohol, its con-
densation on the surrounding fluid surface and the resulting decrease in
the surface tension prove to be spherically asymmetric, thus generating
the solutocapillary effect. Taking this into account, we fabricated
AGaN-based liquid marbles with various deviations from the spherical
symmetry, the liquid droplets being composed of alcoholic solution.
Section 10 of the Video (Supplementary Information) demonstrates a
self-propelled AGaN-based floating liquid marble exhibiting mainly
translational motion, while Fig. 4h illustrates the decrease of the marble
speed with time. Although the maximum speed attained (15 cm/s)
correlates with the speed reported by other groups for self-propelled
liquid marbles, the lifetime of translational motion in our case proves to
be more than 50 times longer than those reported previously (up to
2–3 min [40–42]). Taking into account that the reduction in motion of

Fig. 5. A water pillar formed when a floating AGaN sample (equivalent to that shown in Fig. 1c) is lifted up by a charged amber stick.
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liquid marbles is mainly due to water drag, it is evident that the effect of
braking caused by the friction between AGaN shell and supporting fluid
is relatively weak. The superhydrophobic-superhydrophilic combina-
tion of the AGaN provides marginal contact area and thus allows highly
energy efficient motion.

The slight water drag is also revealed by the record rotational speed
attained by the so-called water tops representing AGaN-based liquid
marbles with specific deviations from the spherical symmetry. A self-
propelled water top is illustrated by Section 11 of the Video
(Supplementary Information). According to the results presented in
Fig. 4i, the speed of rotation reaches values as high as 12.5 rot/sec
which represents an impressive performance achieved by the self-pro-
pelled rotating liquid marbles. Note that, although the lifetime of ro-
tational motion exceeds 15 min (Fig. 4i), it is much shorter than the
lifetime of translational motion. This phenomenon is likely to be related
to enhanced evaporation of volatile compounds from the liquid marble
under conditions of circular hydrodynamic flow and outward cen-
trifugal force emerging in the process of fast rotation [43].

The relatively slight water drag is likely to be a consequence of the
spatial architecture of the AGaN shell. As one can see from Fig. 4a, due
to the geometry of aerotetrapods only the free ends of their arms pierce
through the water surface. Thus, between the AGaN shell and the water
surface there is a layer of air crossed by super-hydrophobic tetrapod
arms. The arms resemble clumps of hairs (four per clump) characteristic
to the plant of Salvinia molesta which shows fascinating ability to keep
submerged leaves coated with a thin layer of air and thus enabling the
plant to carry out photosynthesis and gas exchange under-water [24].
In accordance with the results of recent investigations, the hairs of
Salvinia molesta are topped by hydrophilic tips which pin the air-water
interface and prevent rupture of contact [24,44]. Interestingly, similar
phenomenon proves to be inherent to AGaN networks of tetrapods, i.e.
the free ends of their arms are hydrophilic: they attract water. The
hydrophilicity of the free ends of aerotetrapod arms can be explained
considering that the arm closing plane coincides with polar crystal-
lographic c-plane (note the similarity with phospholipid head based on
polar phosphate groups). As a consequence of this, the surface tension
pins the air-water interface to the free ends of the tetrapod arms.

The manifestation of water attachment to AGaN material observed
in present experiments, aiming at the sample removal from the water
surface, is again an important aspect to be briefly discussed. The time-
lapse images presented in Fig. 5 (see also Supplementary Information,
Section 12 of the Video) show how a water pillar is created when a
floating AGaN sample is taken up by a charged amber stick. This de-
monstrates the phenomenon of water attachment or, in other words,
how the free ends of the tetrapod arms touching the water surface pin
the air-water interface. A schematic representation of the interface
between water and hydrophilic free ends of AGaN tetrapod arms is il-
lustrated in Fig. 6a where one can distinguish also a layer of air crossed
by superhydrophobic tetrapod arms in the nearest proximity to the
water surface. It is to be noted that even open microtubular arms appear

to attract water due to the hydrophilicity of ZnO present on the inner
surfaces of aerotetrapods, see Fig. 6b. Fig. 6b-e illustrate schematically
the hydrophilicity of AGaN under tension and hydrophobicity when it is
compressed against water for both open and closed microtubular arms.
Due to dual hydrophilic-hydrophobic behaviour, the AGaN specimen
skims over the water surface (see Section 12 of the Video in
Supplementary Information) like a flying water lily beetle which is
known to be tethered to the water by four hydrophilic claws, the rest of
its body being hydrophobic and thus repelled by the water surface
[23,24].

The detachment force of AGaN from the water surface was esti-
mated by using the following strategy. A cylinder-shaped sample of
AGaN (equivalent to that shown in Fig. 1c) was placed on one arm of
two communicating vessels made from glass, while the other arm was
used to pour water until it reached the surface of the highly porous
AGaN specimen. Subsequently, the water was slowly removed from the
free arm using a syringe. Fig. S6 and Section 13 of the Video
(Supplementary Information) demonstrate how the AGaN specimen
holds a 3-cm long water column attached to the bottom surface. In the
experiment illustrated in Section 14 of the Video (Supplementary
Information) the liquid was gradually removed from the right arm until
it was detached from the bottom surface of the AGaN specimen in the
left arm. Taking into account the difference in the water levels at the
point of detachment and the inner diameter of communicating glass
tubes (36 and 4 mm, respectively), the force of detachment was esti-
mated to be as high as 4.4 mN (meaning a specific force or tensile
strength t of 35 mN/cm2). It is interesting to note that a force of 4.4
mN can balance the gravitational attraction of ~60 aerogalnite samples
equivalent to that shown in Fig. 1b (right).

In this experiment the force between aerogalnite sample and water
is tensile. In this configuration, regardless to the nature of the tetrapod
arm ends (open or close), the maximal tensile force per tip can be es-
timated as =F r2 cost t1, (see Fig. 6b,c) where t is the intrinsic
contact angle of the tip (closed end) or of the internal wall (open end), r
is the tetrapod radius (strictly speaking external or internal, respec-
tively, see Fig. 6b,c) and γ is the liquid(-vapor) surface tension. Ac-
cordingly, the tensile strength of the tip is = cost r t1,

2 . This value can
be estimated by the previous experiment as =t1,

t
a
, where a is the

area fraction of the tetrapods in contact with water. The volume frac-
tion of tetrapods in the aerogalnite is given by its density divided by the
bulk density of GaN, i.e., = AGaN

GaN
, resulting in a value of 0.002

( = 6150GaN
mg
cm3 ). Introducing the linear fractions x y z, , we can write

=a x y and = =x y z a z. For “cylindrical” porosity = 1z and
=a , whereas for “isotropic” porosity = =z y x and thus =a

2/3,
resulting in our case in = 0.016a . Considering = 0.07575 N

m (distilled
water) we can finally derive the intrinsic contact angle of the closed tips
and internal walls as ° r82 ( 1µt m; note that assuming “cylind-
rical” rather than “isotropic” porosity –a much less realistic hypothesis–
would not basically affect the prediction, yielding °81t ). The

Fig. 6. (a) Illustration of an AGaN raft floating on water. (b-e) Schematic illustration of the combination of hydrophilic and hydrophobic properties inherent to closed
or open ends of AGaN aerotetrapods in traction or compression.
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apparent contact angle can be calculated by = cost R t
a2 ( ), where R is

the sample radius in contact with water i.e., the internal radius of the
glass vessel (R 0.4 cm), fictitiously resulting in cos t

a( ) 9.24 and
thus physically = °0t

a( ) , i.e. aerogalnite in traction is perfectly super-
hydropilic and its tensile strength is further increased since ideally all
the tetrapods in contact with water contribute to the overall adhesion
force.

For completeness we can calculate the intrinsic contact angle c of
the core parts of the tetrapods; the observation of an apparent contact
angle c

a( ) of about 170° suggests a Cassie-Baxter state and thus
= +cos cos 1c

a
a c a

( ) , from where we derive =cos 0.05c and thus
= °93c , i.e., aerogalnite in compression is superhydrophobic thanks to

the cumulative action of the individual tetrapods compressed against
water (Fig. 6d,e) and of the air entrapped between them.

In the light of these results, one can qualitatively explain the record
speed of rotation registered for the AGaN-based liquid marbles (Section
11 of the Video from the Supplementary Information). According to
Fig. 4g, a liquid marble floats in a dimple formed on the water surface.
From geometrical consideration, one can deduce that a limited number
of the tetrapod arms touch the water surface in the dimple, see the
schematic representation in Fig. S7, Supplementary information. Upon
rotation of the liquid marble, the arm ends touching the liquid skim
over its surface, thus resulting in a negligible water drag.

4. Conclusions

We developed an artificial nanomaterial made of hollow gallium
nitride microtetrapods disclosing on their inner surfaces nanoscale
traces of crystalline zinc oxide with outstanding chemical stability. The
hydrophilicity of the nanoscale free ends and internal walls of the tet-
rapod arms as well as the hydrophobicity of the external GaN walls
were demonstrated. Self-assembling tetrapods on the water surface
enabled us to develop a proof-of-concept device, namely of stretchable
and self-healing waterproof raft that uniquely exploits the dual hy-
drophilic-hydrophobic behaviors of the tetrapod networks and, as a
result, manifest imposing cargo capabilities. Besides, we demonstrated
highly energy efficient self-propelled liquid marbles exhibiting fast
velocity of rotation and exceptional mechanical robustness (with-
standing ultrasound). Strong interaction between hollow micro-
tetrapods in the AGaN spatial networks, pronounced electromechanical
coupling in three-dimensional architectures, unique combination of
hydrophobic and hydrophilic characteristics along with biocompat-
ibility [45–47] of gallium nitride nanostructures considerably broaden
the scientific interest to this remarkable binary compound beyond
traditional fields related to solid-state lighting technologies and high-
frequency/high-power micro/nanoelectronics, and may open new
avenues for its biomimetic applications in energy-efficient self-pro-
pelled micro-electro-mechanical structures, sensorics, microfluidics,
microrobotics, medicine, etc. For instance, energy-efficient self-pro-
pelled liquid marbles based on AGaN can be used for controlling che-
mical reactions in confined space under conditions of rectilinear
movement or rotation. Besides, liquid droplets coated by AGaN re-
present promising bioreactors for culturing cells, especially considering
the high chemical stability and biocompatibility inherent to gallium
nitride.
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Figure S1 

 

 
 

Figure S1. SEM images taken from AGaN samples grown at Tg: (a-c) 900°C; (d-f) 950°C. 
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Figure S2 

 
 

Figure S2. SEM images taken from AGaN samples which show partial removal of ZnO in the 

process of GaN deposition using HVPE. 
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Figure S3 

 

Figure S3. (a) and (b) The imposed stretch in the process of raft release, see details in Section 

2 from the Video, see Supplementary Information; (c) spherical cap emerging in the process 

of AGaN raft release and (d) parameters used in the calculation of the lateral surface of the 

spherical cap. 

 
 

Surface of spherical cap 

Initial surface of the circular area: 

Ai=*𝑎2=3.14*5.52=94.98 mm2 

 

The lateral surface of the spherical cap was calculated according to the following formula: 

Al = 
𝜋

4
[(2𝑎)2 + 4ℎ2] = 

3.14

4
∗ [(2 ∗ 5.5)2 + 4 ∗ 32] = 123.2 mm2 

 

where, 

a – is the radius of the circle; 

h – the height of the spherical cap emerging in the process of AGaN raft release. 

 

Working principle of the raft: force-displacement constitutive law 

The downward external force F applied on the raft plus its weight is counterbalanced by 

capillary and buoyancy, i.e. the constitutive law that we have observed in the floating 

experiment can be rationalized with: 

𝐹(𝑑) = −𝑔𝑡𝐴 − 𝑃𝛾𝑐𝑜𝑠𝜃𝑐
(𝑎)

+lgAd  

where ,t,A,P are respectively density, thickness, surface area and perimeter (in contact with 

water) of the raft, l is the liquid (water) density and d=V/A is the “nominal” depth of the dimple 

defined via its total (including raft) volume V.  
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Figure S4 

 

 
Figure S4. Illustration of the raft loading process (a), maximum admissible load (b), leakage 

of some colored liquid (c) and further floating of the AGaN raft after self-healing (d,e,f). 
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Figure S5 

 

 

 
Figure S5. A liquid marble with a shape deviating from the spherical. 
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Figure S6 

 

 
 

Figure S6. Digital image of the AGaN specimen holding a 3-cm long water column attached 

to the bottom surface in the left arm of communicating vessels.  
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Figure S7 

 

 

 
 

Figure S7. Schematic representation of an AGaN-based liquid marble floating on water. 

 

  
 




