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Abstract

In the present paper, the mechanical compressive behavior of quasi-brittle materials is analyzed by means of an ad

hoc boundary element algorithm. The analysis is carried out by taking into account the initial crack distribution, which

cannot be neglected if the experimental reality (developing over three scales of observation, micro-, meso- and macro-

scale) is to be modeled.

The algorithm permits us to follow the evolution of the crack geometry during the loading process, which is

characterized, at each step, by the propagation of the most critical meso- or macro-crack. Moreover, in order to take

into account the micro-crack e�ect causing the progressive decay of the material, a decreasing variation of the elastic

modulus is assumed, depending on the strain energy density absorbed during the loading process.

Di�erent geometries, with di�erent slenderness and size scale, are analyzed by the proposed model, with and without

friction between specimen and loading platens. The numerical simulations represent the experimental results consis-

tently. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The study of the compressive mechanical behavior of

concrete, already analyzed by several authors, does not

present till today a complete and systematic treatment,

even if many salient aspects have been already empha-

sized. The most important of these aspects is constituted

by the phenomenon of strain-softening that presents

variable characteristics by varying the test conditions.

There are in fact many parameters to be taken into ac-

count, of which two are the most important: the slen-

derness of the specimen and the friction between the

specimen and the loading platens.

The present investigation highlights these aspects

numerically and experimentally. An ad hoc algorithm

based on the pseudo-traction [13±15] and on the

boundary-element [5±7,10] methods was implemented

and utilized for the numerical simulations. The experi-

mental analysis was carried out at the ENEL-CRIS

Laboratories in Milano [12] in the framework of the

Round-Robin Test promoted by RILEM TC 148 SSC.

2. Pseudo-traction method

The application of the superposition principle per-

mits to analyze the stress ®eld in a linear elastic ®nite

plate with one crack on the basis of well-known ele-

mentary schemes (Fig. 1). In Fig. 1(b) an in®nite un-

cracked plate is depicted which is subjected to traction.
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The scheme (a) of interest is equivalent to the sum of

schemes (b) and (c) and the stress-intensity factor in A or

B is the same as that in scheme (c) (®ctitious stress ®eld).

The pseudo-traction method (PTM) is based on the

previous considerations. This method was developed by

Horii and Nemat-Nasser [13], Kachanov and Montagut

[14] and Kachanov [15] and it has been recently used by

researchers interested in similar problems. For reference,

see Ref. [9].

For scheme (c), it is possible to perform a stress ®eld

analysis. The solution was provided by Sneddon and

Lowengrub [18]; they applied WestergaardÕs method and

obtained the stress ®eld in the cracked plate. In an

analogous way, it is possible to solve the problem of a

crack subjected to shearing stresses on its faces.

Via PTM, we can a�rm that the known stress-

intensity factors for scheme (c) are the same for scheme

(a) of interest.

3. In®nite multicracked plate

The considerations presented in Section 2 can be

extended to determine the stress-intensity factors in an

in®nite plate with several cracks. The superposition

principle can be still applied considering in this case,

three di�erent schemes, as shown in Fig. 2.

In scheme (a), the plate is without crack and it is

subjected to the stresses r11, r12, r22 at the in®nity;

consequently, the stress ®eld in the plate is practically

assigned.

A more problematical situation appears in schemes

(b) and (c). While in the scheme with only one crack it is

immediate to determine the stress ®eld in the plate, in a

multicracked plate it is necessary to take into account

the mutual interaction between the cracks.

In scheme (a), r11f g and r21f g are two vectors with

the stress components rxx, rxy , ryy acting in points 1 and

2, respectively. In scheme (b), a stress ®eld ÿ r11f g in

addition to the opposite of the stress ®eld acting in 1 due

to crack 2, acts on crack 1. The stress ®eld acting in 1 is

represented by the unknown vector ÿ r12f g with com-

ponents ÿr12
xx , ÿr12

xy , ÿr12
yy . In an analogous way, if

scheme (c) is taken into account, the stress ®eld ÿ r21f g
in addition to the unknown vector ÿ r21f g due to the

mutual interaction, acts on crack 2.

The problem is to determine the two vectors r12f g,
r21f g. The normal and shearing stresses acting on crack

1 due to stress ®eld ÿ r11f g are indicated with ÿr11 and

ÿs11, respectively. The stresses ÿr21 and ÿs21 have the

same meaning for crack 2.

In scheme (b), the ®ctitious normal and shearing

stresses as a whole acting on crack 1 (or on crack 2 in

scheme (c) commuting the 1,2 indexes) are

r1 � ÿ r11
�

� r12
xx cos2 a1 � 2r12

xy sin a1 cosa1

� r12
yy sin2 a1

�
; �1a�

s1 � ÿ s11
�

� r12
xx

�
ÿ r12

yy

�
sin a1 cosa1

ÿ r12
xy cos2 a1

ÿ ÿ sin2 a1

��
1� $ 2�; �1b�

where a1;2 � #1;2 � p=2 is the crack orientation angle

(Fig. 2).

Fig. 2. Superposition principle to study an in®nite multicracked plate.

Fig. 1. (a) In®nite plate with one crack subjected to traction;

(b) in®nite uncracked plate subjected to traction; (c) in®nite

plate with one crack subjected to traction on its faces.
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Using the solution provided by Sneddon and

Lowengrub [18] for the stress ®eld in an in®nite plate

with one crack subjected to mixed mode, taking into

account the crack orientation, it is possible to calculate

for scheme (b) the stress ®eld �r21f g acting in point 2

and for scheme (c) the stress ®eld �r12f g acting in point

1. To verify the superposition principle expressed in

Fig. 2, �r12f g should be equal to r12f g and �r21f g �
r21f g; only in this case the cracks faces are free from

stresses. Consequently, the following 12 relations can be

written:

�r21
ij � r21

ij � a21
ij r1 � b21

ij s1; ij � xx; xy; yy 1� $ 2�;
�2�

where a21
ij ; b

21
ij (1$ 2) are known geometry-dependent

coe�cients [18].

Substituting 12 relations (2) into four equations (1), a

linear system with four equations and four unknowns

[20], representing the normal and shearing stresses acting

on the crack surfaces, can be obtained:

r1 � ÿ r11
�

� cos2 a1 a12
xxr2

�
� b12

xx s2

�
� 2sin a1 cosa1 a12

xy r2

�
� b12

xy s2

�
� sin2 a1 a12

yy r2

�
� b12

yy s2

��
; �3a�

s1 � ÿ s11
�

� sin a1 cosa1 a12
xx r2

ÿh � b12
xxs2

�
ÿ a12

yy r2

�
� b12

yy s2

�i
ÿ cos2 a1

ÿ ÿ sin2 a1

�
� a12

xy r2 � b12
xy s2

��
1� $ 2�;

�
�3b�

Indicating with Pf g the vector of components ÿ�r11,

s11, r21, s21� and with Sf g the vector of components

�r1, s1, r2, s2�, the system can be written in the following

form:

R� � Sf g � Pf g; �4�

where R� � is a (4� 4) well-known matrix.

If the cracks are M , we can obtain a similar system

where R� � is a (2M � 2M) matrix. The solution gives the

®ctitious stresses acting on each crack and hence the

stress-intensity factors can be calculated.

4. Boundary element method

In the case of a ®nite plate, we must consider the

interactions among the cracks and between them and the

boundary. The solution is obtained by the boundary

element method (BEM) [5±7,10]. A plate is considered

subjected on the boundary to a distribution of normal

stresses r�n and shearing stresses r�t (Fig. 3a). In an in-

®nite plate, a line coincident with the boundary of the

®nite plate is considered; the same line is divided into N
elements and each element is subjected to normal and

shearing stresses P i
n and P i

t (Fig. 3b). It is important to

observe that they are not the same as those on the

boundary of the ®nite plate but they cause on the

boundary normal and shearing stresses coincident with

them. The stresses produced on the boundary line by the

stresses P i
n and P i

t can be written in the form

rj
n �

XN

i�1

Aij
nnP i

n �
XN

i�1

Aij
ntP

i
t ; �5a�

rj
t �

XN

i�1

Aij
tnP i

n �
XN

i�1

Aij
ttP

i
t ; �5b�

where Aij
nn;nt;tn;tt are in¯uence coe�cients (well known by

the BEM theory).

If we equalize for each element the stresses rn, rt to

r�n, r�t , we can obtain a linear system with 2N equations

and 2N unknowns. The solution gives the stresses P i
n and

P i
t and then the stress ®eld in the ®nite plate.

Fig. 3. (a) Finite plate and (b) in®nite plate.
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5. Pseudo-traction and boundary element methods

The formulations described in the last two sections

can be combined together to determine the stress-

intensity factors in a ®nite multicracked plate.

If a ®nite plate with two cracks is considered, the

superposition principle can be applied to three di�erent

schemes (Fig. 4). Scheme (a) derives from the applica-

tion of BEM. The stresses P i
n, P i

t create the two stress

®elds r1boundf g and r2boundf g acting in points 1 and 2,

respectively. Schemes (b) and (c) present an in®nite plate

with crack 1 or 2, respectively. The procedure shown in

Section 2 can be followed. Eqs. (1) and (3) substituting

the subscript 1 with bound are obtained, where

r1boundf g, r2boundf g, di�erently from r11f g, r21f g, are

unknown.

Due to the normal and shearing stresses P i
n, P i

t and to

the stresses acting on the cracks, the following stresses

act on the element j of the line-boundary, (scheme (a)):

rj
n �

XN

i�1

Aij
nnP i

n �
XN

i�1

Aij
ntP

i
t � Bj1

nnr1 � Bj1
nts1 � Bj2

nnr2

� Bj2
nts2 � r�n; �6a�

rj
t �

XN

i�1

Aij
tnP i

n �
XN

i�1

Aij
ttP

i
t � Bj1

tnr1 � Bj1
tt s1 � Bj2

tnr2

� Bj2
tt s2 � r�t ; �6b�

where Aij
nn;nt;tn;tt are coe�cients coming from the BEM

theory and Bj1
nn;nt;tn;tt (1$ 2) are known from the Sned-

don solution (Eq. (2)). As shown by the last equality,

these must be equal to the stresses acting on the

boundary of the ®nite plate and P i
n, P i

t become functions

of the unknown ®ctitious stresses r1;2, s1;2 acting on the

crack faces.

From the BEM theory, it can be written as

r1bound �
XN

i�1

C1i
nnP i

n �
XN

i�1

C1i
ntP

i
t ; �7a�

s1bound �
XN

i�1

C1i
tnP i

n �
XN

i�1

C1i
tt P i

t 1� $ 2�; �7b�

where C1i
nn;nt;tn;tt �1$ 2� are known coe�cients.

Substituting Eq. (7) into Eq. (3), where the subscript

bound replaces the subscript1, and taking into account

Eq. (6), a linear system of �2N � 4� equations and

(2N � 4) unknowns can be obtained, the solution of

which provided the 2N unknowns P i
n, P i

t and the four

unknowns of ®ctitious stresses r1;2, s1;2. From them we

can obtain the stress-intensity factors at the tips of the

cracks [18].

If the cracks are M , a similar system 2�M � N��
2�M � N� can be obtained. The solution gives the ®cti-

tious stresses acting on each crack and hence the stress-

intensity factors can be calculated.

6. Determination of the structural compliance

In order to obtain the structural response, it is nec-

essary to de®ne a fundamental parameter represented by

the global compliance. This is provided by two contri-

butions: the former, C0, is spread and depends on the

Fig. 4. Superposition principle to study a ®nite multicracked plate.

Fig. 5. Constitutive softening law of the material.
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specimen dimensions and on the elastic modulus; the

latter is due to the cracks and is called incremental

compliance, C00. Both the compliances, C0 and C00, vary

during the loading simulation.

If a crack is considered propagating, by virtue of

ClapeyronÕs theorem and of the principle of conserva-

tion of energy, the following balance can be written:

GI � 1

2
F 2 oC

oA
� K2

I

E
� K2

II

E
; �8�

where GI is the fracture energy (per unit area), KI;II the

stress-intensity factor for Modes I and II, F the applied

load, C the compliance of the cracked plate and A the

crack surface. It is important to observe that oC=oA is

evidently equal to oC00=oA. From Eq. (8), the variation

of C00 during the crack propagating can be calculated.

As regards the compliance contribution due to the

material elasticity, the constancy assumption for the

material elastic modulus does not re¯ect the physical

evolution of the phenomenon. In fact, during the load-

ing process, the microcracks, approximately distributed

in a uniform manner, grow in the material, so that their

macroscopic e�ect is the progressive decay of bulk

elasticity. This particular aspect plays a fundamental

role in the real behavior of the material.

In this work, as has already been stated in previous

studies [4,8], the assumption we have put forward that

the decay of the elastic modulus E� (E is the initial elastic

modulus) depends on the strain energy density W ab-

sorbed by the material during the loading process is

(Fig. 5): the larger the energy absorbed, the lower the

elastic modulus. This behavior can be described by the

following function:

E� � E
a

W a

�
� b
�
; �9�

Fig. 6. Flow chart of the algorithm.

Fig. 7. Friction shearing stresses at the interfaces platens

specimen.
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where E is the initial elastic modulus, a � 0:5 (value

approximately corresponding to a linear softening

branch) and a, b are two constants respecting the two

boundary conditions: the initial value (at the peak) of E�

is the real elastic modulus E and its limit ®nal value (the

extrapolated value where the stress vanishes) is zero. The

initial value of W , its limit ®nal value and the elastic

modulus E are obtained as average values from the ex-

perimental curves.

7. Friction between the crack faces

When a compressive stress acts on the crack faces

with friction, a shearing stress appears and tends to

contrast the relative slip [3]:

sfric � kr; �10�

where k is the friction (Coulomb) coe�cient and r, the

normal stress. In this case, KI is equal to zero being the

crack closed.

If not only a normal but also a shearing stress s acts

on the crack its e�ect will be damped by the friction. If

sj j > krj j, the e�ective shearing stress will be

seff � s 1

�
ÿ krj j

sj j
�
; �11�

and KII will be proportional to seff .

If sj j < krj j, seff will be considered equal to zero,

friction will prevent slippage, also KII will be equal to

zero.

Fig. 8. Structural response and progressive cracked schemes (friction; specimen 150� 75 mm2).
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8. Numerical modeling

In order to study the experiments in a realistic way, it

is impossible to leave out of consideration the random

distribution of cracks initially present in the material. In

connection with what has been written above, a struc-

tural scheme constituted by a ®nite plate with a random

distribution of initial meso- and macro-cracks is adopted

in the numerical simulations. Considering this geometry

and using the above mentioned formulation, the stress

®eld and the stress-intensity factors acting on each crack

are calculated (external load r � 1).

Referring to the well-known maximum hoop stress

criterion [11], for each crack tip a propagation angle h
and an equivalent stress-intensity factor Keq can be cal-

culated:

Fig. 9. Structural response and progressive cracked schemes (friction; specimen 150� 150 mm2).
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Fig. 10. Structural response and progressive cracked schemes (friction; specimen 150� 300 mm2).
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KI sin h� KII 3cosh� ÿ 1� � 0; �12a�

Keq � cos
h
2

KI cos2 h
2

�
ÿ 3

2
KII sin h

�
; �12b�

where KI;II are the stress-intensity factors calculated, as

described, from the ®ctitious stresses acting on the

cracks. Comparing the critical value KIC with the highest

Keq, the external load of crack propagation can be cal-

culated:

r � KIC=Keq r� � 1�: �13�
The next step is to cause the crack to propagate by a

®nite amount only at the tip where it is more solicited.

At this stage, we are faced with a new geometry, on

which it is necessary to carry out a fresh analysis. The

procedure is then iterated until the specimen completely

collapses (separation into at least two pieces). A ¯ow

chart of the algorithm is shown in Fig. 6.

9. Experimental results and numerical simulations

In this section, a comparison between the experi-

mental results [12,17] and the numerical simulations will

be presented. The experimental results regard prismatic

specimens (E � 336845 kg/cm2, v � 0:15, GI � 0:095

kg/cm) with three di�erent square bases (50� 50,

100� 100, 150� 150 mm2) and three di�erent slender-

nesses (0.5, 1.0, 2.0), with and without friction between

the specimen and the loading platens, for a total of 18

cases.

Fig. 11. Structural response and progressive cracked schemes (frictionless; specimen 150� 75 mm2).
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The friction condition is represented by the direct

contact between specimen and platens, since the shear-

ing stresses at the interface arise in opposition to the

lateral expansion of the specimen. In the numerical

simulations, this phenomenon is modeled by dividing

the loaded boundaries in two parts and by imposing on

each part a shearing stress s directed inwards (Fig. 7).

Each side of the specimen has been divided into 24

boundary elements.

On the other hand, the introduction of te¯on layers

between the specimen and the loading platens allows for

the lateral expansion of the material; as a consequence,

Fig. 12. Structural response and progressive cracked schemes (frictionless; specimen 150� 150 mm2).
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Fig. 13. Structural response and progressive cracked schemes (frictionless; specimen 150� 300 mm2).
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the shearing stresses at the interface become negligible

(the friction coe�cient is close to 0.01). In the related

numerical simulations at the boundary there is only the

compressive normal stress.

For each experimental test, three numerical simula-

tions with di�erent initial crack patterns were carried

out. Some numerical stress±strain curves and corre-

spondent crack patterns are presented in Figs. 8±13.

Snap-back instabilities are emphasized by the numerical

simulations (crack-propagation controlled) not captur-

able by the experimental tests (displacement controlled).

The numerical simulations emphasize the centrality of

the cracking phenomenon in the structural response.

Although the structural collapse is mainly governed by

meso- and macro-cracks, at the same time it is very

important to take into account the widespread elastic

decay due to the presence of micro-cracks. It allows to

capture the softening branch, which is typical of quasi-

brittle materials and otherwise not reproducible [16].

If the stress±strain response is considered, some in-

teresting aspects arise, which were also shown in other

contributions [19]. First of all, it is important to high-

light the friction in¯uence: in the friction cases, there is a

considerable variation in strength by varying the slen-

derness; the same trend is mitigated or even absent in

frictionless cases. As a matter of fact, the frictional

shearing stresses acting at the interface produce triax-

ially con®ned regions near the bases. For small slen-

dernesses, the con®ned regions include most of the

specimen (Fig. 14). As a consequence, the maximum

loading capacity is higher for stubby specimens (it is well

known that the triaxial compressive strength is usually

larger than the uniaxial compressive strength). Hence, it

is possible to explain the variation in strength by varying

the slenderness in the friction tests, and the absence of

this phenomenon when the te¯on layers are used.

An additional important trend is represented by the

ductility increase versus the specimen slenderness de-

crease. This trend, emerging more or less clearly in all

the test results, is connected with and has a justi®cation

in the structural collapse schemes. When the slenderness

decreases, a transition from splitting to crushing collapse

occurs. The numerical simulations con®rm the same

trend. The crushing collapse, which is characterized by a

multitude of micro-cracks, is associated with a larger

energy dissipation during rupture and therefore with a

more ductile behavior. On the other hand, the splitting

collapse, which is characterized by a more localized

rupture, requires a smaller energy dissipation and then

produces a more brittle behavior. These aspects are also

re¯ected in the numerical simulations [1,2]. In fact, the

elastic modulus E� (depending on the micro-cracks dis-

tribution) decays more rapidly when the specimen slen-

derness is lower (Fig. 15).

10. Conclusions

The analysis of the results presented in the paper,

based on the PTM and on the BEM, shows a satisfac-

tory correspondence between the numerical simulationsFig. 14. Restrained regions in friction specimens.

Fig. 15. Nondimensional diagram of elastic modulus versus

strain, by varying the specimen slenderness (E is the initial

elastic modulus and eu is the ®nal strain).
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and the experimental tests. The cases in which the un-

avoidable di�erences are more evident are those related

to small and stubby specimens with friction. These dif-

ferences are due to the fact that, in these conditions, the

real specimen behavior moves away from the idealized

plate behavior. The numerical model, however, gives

good results in the other cases, and permits to predict

the mechanical behavior of quasi-brittle materials.
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