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a b s t r a c t 

This work studies the acoustic band structure of tensegrity mass-spring chains, and the possibility to tune 

the dispersion relation of such systems by suitably varying local and global prestress variables. Building 

on established results of the Bloch–Floquet theory, the paper first investigates the linearized response 

of chains composed of tensegrity units and lumped masses, which undergo small oscillations around an 

initial equilibrium state. The stiffness of the units in such a state varies with an internal self-stress in- 

duced by prestretching the cables forming the tensegrity units, and the global prestress induced by the 

application of compression forces to the terminal bases. The given results show that frequency band gaps 

of monoatomic and biatomic chains can be effectively altered by the fine tuning of local and global pre- 

stress parameters, while keeping material properties unchanged. Numerical results on the wave dynamics 

of chains under moderately large displacements confirm the presence of frequency band gaps of the ex- 

amined systems in the elastically hardening regime. Novel engineering uses of the examined systems are 

discussed. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

The research area of linear and weakly nonlinear wave dynam-

cs has devoted much attention to so-called ‘phononic band gap’

heory, which extends the previously investigated theory of pho-

onic band gaps ( Lu et al., 2009; Maldovan, 2013; Theocharis et al.,

013; Miniaci et al., 2016a,b; Phani and Hussein, 2017 ). A number

f studies have shown that composite materials that feature peri-

dic variations in density and/or wave velocity can display band

aps where the propagation of mechanical waves is forbidden (re-

er, e.g., to Phani and Hussein, 2017 and references therein). Struc-

ural lattices formed by tensegrity units and lumped masses are

articularly interesting for applications. Such systems are easily

unable: either by initial self-stress of the units (also referred to

s ‘local’ or ‘internal’ prestress), or by changing the precompres-
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ion of the whole structure (‘global’ or ‘external’ prestress, refer

o Skelton and de Oliveira, 2010; Fraternali et al., 2012; Fraternali

t al., 2014; Fraternali et al., 2015; Amendola et al., 2014; Amendola

t al., 2015; Davini et al., 2016; Rimoli and Pal, 2017 , and references

herein, for an extensive overview). 

The research conducted so far in the area of lattice materi-

ls alternating tensegrity units and lumped masses has revealed

hat elastically hardening systems support compressive solitary

aves and the unusual reflection of waves on material interfaces

 Fraternali et al., 2012; Davini et al., 2016 ). At the contrary, elasti-

ally softening systems support the propagation of rarefaction soli-

ary waves under initially compressive impact loading ( Fraternali

t al., 2014, 2015; Amendola et al., 2014 ). Solitary wave dynam-

cs has been suggested for the construction of a variety of novel

coustic devices, like impact mitigation systems and tunable acous-

ic lenses. Effective impact mitigation systems based on tenseg-

ity systems with softening-type response are able to transform

ompressive disturbances into solitary rarefaction waves with pro-

ressively vanishing oscillatory tail ( Fraternali et al., 2015; Herbold

nd Nesterenko, 2013 ). Tunable acoustic lenses based on elements
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Fig. 1. Rest configuration of a minimal regular tensegrity prism (a), prestressed configuration (b) and lumped mass (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Geometrical and mechanical properties of the rest configura- 

tion of the generic unit. 

s N l N R d E b E s 
(mm) (mm) (mm) (mm) (MPa) (MPa) 

6.00 8.70 18.66 2.00 120.00 5.48 
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2  
with a stiffening response can spatially focus compression solitary

waves in different regions of space ( Fraternali et al., 2012; Spadoni

and Daraio, 2010 ). 

This work investigates translational waves in 1D periodic ar-

rays of tensegrity prisms alternating with lumped masses, which

are shown to be able to control linear elastic waves with arbi-

trary tunable performance starting from (theoretically) zero fre-

quency. The tuning mechanism relies on variability of an effec-

tive stiffness of the tensegrity units by means of applied local and

global prestress ( Fraternali et al., 2012, 2014, 2015; Amendola et al.,

2014 ). We show that such systems support phononic band gaps,

which can be tuned to selected frequency ranges by varying the

applied prestress, while keeping material properties of the unit

cells unchanged. As compared to granular systems (refer, e.g., to

Nesterenko, 2001; Theocharis et al., 2013 and references therein),

the internal prestress adds a significant extra feature of tensegrity

metamaterials, which can be finely tuned in order to essentially

vary the system band gaps. 

The structure of the paper is as follows: In Section 2 we model

the analyzed tensegrity chain as a sequence of masses connected

by non-linear springs. We first focus on the linearized mechani-

cal response of a 1D monoatomic lattice ( Section 2.1 ) and then

we pass to the analysis of a spring-mass lattice which features

springs with two different stiffness constants, as a consequence

of different states of local and global prestress ( Section 2.2 ). We

show that the dispersion relations of such systems are strongly in-

fluenced by the applied levels of prestress. Numerical results ob-

tained in the geometrically nonlinear regime, which accounts for

the actual force-displacement response of the tensegrity units un-

der large or moderately large displacements, confirm the presence

of frequency band gaps in the dispersion relation of the analyzed

systems ( Section 3 ). The key mechanical features of such struc-

tures are summarized in Section 4 , where we also suggest future

research lines for the design and testing of novel band gap systems

with tensegrity architecture. 

2. Dispersion relation of 1D tensegrity chains 

The present section studies the dispersion relation of chains ob-

tained by alternating tensegrity units, acting as elastic springs, and

massive discs, acting as lumped masses. The generic tensegrity unit

is composed of the minimal regular tensegrity prism illustrated in

Fig. 1 , which shows two triangular bases composed of members

carrying tensile forces (cables or strings), three cross members car-

rying compressive loads (bars), and three cross-strings. 
The chain is uniformly axially loaded by an axial force F (total

xial force applied to the terminal bases). We assume that the lat-

ice unit cells are frictionless unilateral contact with the adjacent

iscs ( Fraternali et al., 2014 ). As such, the bases of the units, being

angentially disconnected from the discs, are free to slide over the

urface of these discs. This assumption implies that twisting mo-

ents are not transferred from the units to the lumped masses,

eaning that the systems examined in the present study do not

orm continuous 3D tensegrity columns, as opposed to those ex-

mined in Krushynska et al., 2018 . Accordingly, we describe these

ystems as 1D chains composed of lumped masses that can move

nly in the longitudinal direction ( Fraternali et al., 2012, 2014 ),

nd elastic springs that are characterized by the axial force vs.

xial strain response of a uniformly compressed tensegrity prism

 Fraternali et al., 2015 ). We examine chains equipped with tenseg-

ity prisms featuring identical geometrical properties in the rest

onfiguration and identical mechanical properties, with possibly

ifferent mechanical response up to the value of the applied pre-

tress. 

Hereafter, we use the symbols s, l , and b to denote the current

engths of the cross-strings, the base strings and the bars, respec-

ively, and let h denote the height of the unit. In addition, we let R

nd d indicate the radius and the thickness of the discs interposed

etween the units, and make use of the symbols E b and E s to de-

ote the Young moduli of the bars and the strings, respectively. The

est lengths of the cross-strings and the base-strings are respec-

ively denoted by s N and l N . The units examined in the previous

ork coincide with those analyzed in Fraternali et al. (2014) for

 study on the solitary wave dynamics of tensegrity chains under

mpact loading. Each unit is composed of 2.28 mm diameter Spec-

ra strings and 0.8 mm diameter cylindrical bars made of the tita-

ium alloy Ti6Al4V. Its rest configuration under zero external and

nternal forces is described by the properties listed in Table 1 . The

otal mass M of a unit cell is evaluated as the sum of the disk’s

ass ( m ) and the prism’s mass ( m 0 ). We set m 0 = 0 . 083 g and m =
4 . 89 g, so that the chain can be described as a system of point
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Fig. 2. F − ε curves of Units 1,2 (a), and 3,4 (b). 

Table 2 

Variables characterizing the geometry of the self-stressed configuration 

of the unit under zero external forces, for different values of p̄ . 

p̄ 0.00 0.01 0.02 0.05 0.09 0.10 

s̄ (mm) 6.0 0 0 6.060 6.120 6.300 6.540 6.600 

�̄ (mm) 8.700 8.773 8.845 9.061 9.346 9.417 

b̄ (mm) 11.108 11.207 11.305 11.597 11.985 12.081 

h̄ (mm) 5.407 5.463 5.519 5.688 5.913 5.969 

m  
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asses connected by massless springs ( m � m 0 Fraternali et al.,

014 ). 

Given the action of ‘local’ and ‘global’ states of prestress, let us

ssume that the generic unit is not in the rest configuration before

he application of dynamic loading. A state of local prestress (or

elf-stress) acts in the configuration of the chain under zero ex-

ernal forces, which shows the two terminal bases of the generic

nit rotated against each other at a twisting angle of 5/6 π . This

tate of prestress follows from the action of a self-equilibrated set

f internal forces in the prism members, and can be usefully char-

cterized though the prestrain of the cross-string p̄ , as shown in

raternali et al. (2015) (cf. Table 2 ). 

In addition to local prestress, we assume that the chain is ini-

ially loaded with a static precompression force F 0 , which induces

 state of global prestress in the structure in the equilibrium con-

guration preceding the application of dynamic loading. We de-

ote all the quantities referred to the self-stressed configuration by

 superimposed dash, and the quantities referred to the globally-

restressed configuration by the subscript “0” (cf. Fig. 1 ). We let

= h̄ − h denote the axial displacement from the self-stressed con-

guration, and let ε = δ/ ̄h denote the corresponding axial strain

positive when the prism is compressed). 

The mechanical theory of axially loaded prisms presented in

raternali et al. (2015) shows that the geometry of an arbitrary

onfiguration of such a structure can be described in terms of three

ndependent geometric variables, say, e.g., the length of the base

trings � , the prism height h , and the twisting angle ϕ between

he terminal bases. By using the three equilibrium equation of the

eneric node, and assuming the linear elastic response of bars and

trings, the theory presented in Fraternali et al. (2015) allows us to

ink � and ϕ to h (free kinematic variable), and to determine the

ffective constitutive response F vs. h (or F vs. ε) of the unit, for

ny couple of values of the variables p̄ and ε 0 = δ0 / ̄h that char-

cterize the local prestress and the global prestress of the unit

 δ = h̄ − h ), respectively. Table 3 and Fig. 2 illustrate the geom-
0 0 
try and constitutive responses of four units that differ from one

nother in terms of the values of the prestress variables ( ̄p , ε 0 ) .
n the plots of Fig. 2 , the force F has been normalized by introduc-

ng the dimensionless quantity F̄ = 

F 
(h ∗

0 
+ d) K ∗ , where h ∗

0 
is the height

nd K 

∗ is the tangent stiffness of Unit 1 (taken as reference) in the

lobally prestressed configuration. The results shown in Fig. 2 re-

eal that the F vs. ε laws of all the examined units are markedly

onlinear, due to geometric (large displacements) effects. In partic-

lar, the F̄ vs. ε response of Unit 1 exhibits zero slope at the origin,

ue to the fact that the unit is under zero local prestress ( ̄p = 0 )

 Fraternali et al., 2015 ). It is worth noting that Units 1 and 2 exhibit

tiffening tangent response and relatively low tangent stiffness in

roximity to the globally precompressed configuration, while Units

 and 4 exhibit softening response and relatively high tangent stiff-

ess (see Table 3 and Fig. 2 ). 

The study presented in the following Sections 2.1 and 2.2 lin-

arizes the constitutive response of the units near the globally pre-

tressed configuration ( ε0 , F 0 ), by describing such structures as ef-

ective linear springs with stiffness constant K equal to the local

lope of the F − h curve (tangent axial stiffness). The results pre-

ented hereafter are therefore valid for (infinitesimally) small oscil-

ations of the system with respect to the initial configuration. We

efer the reader to Section 3 for a study of the dispersion relation

f tensegrity chains in the geometrically nonlinear regime. 

.1. Monoatomic chain 

Our first goal is to study the band structure of a tenseg-

ity chain by using available results for monoatomic structures

 Ashcroft and Mermin, 1976 ). We analyze a monoatomic tenseg-

ity chain in the form of a sequence of masses connected with

inear springs of the same stiffness constant K ( Fig. 3 ). We define

he distance between the masses as H 0 = h 0 + d, where h 0 is the

eight of the prism in the initial configuration. The quantity H 0 

orresponds to the unit cell size ‘ a ’. 

We examine four different monoatomic chains (Mono 1,2,3,4)

hat respectively employ the Units 1,2,3,4 described in Table 3 . In

riting the equation of motion of the n th mass forming the chain

s follows 

 ̈δn = K(δn +1 − δn ) − K(δn − δn −1 ) (1) 

e seek solutions in the form of a propagating harmonic wave 

n = Ae iκna e iωt (2) 
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Fig. 3. Monoatomic chain: physical model (top) and mass-spring model (bottom). 

Table 3 

Geometrical and mechanical properties of four different units, which differ each other for the values of 

the ‘local’ prestress variable p̄ , and the ‘global’ prestress variable ε0 . 

p̄ ε0 F 0 F̄ 0 s 0 � 0 h 0 a φ0 K 

(%) (%) (N) – (mm) (mm) (mm) (mm) (rad) (kN/m) 

Unit 1 0.0 1.0 0.0074 0.0035 6.001 8.701 5.353 7.353 2.641 0.395 

Unit 2 0.1 1.5 0.125 0.059 6.007 8.709 5.332 7.382 2.652 1.999 

Unit 3 5.0 20 36.144 17.097 6.159 9.310 4.551 6.551 2.887 21.652 

Unit 4 3.0 5 7.974 3.772 6.148 8.954 5.297 7.297 2.708 26.154 

Fig. 4. Dispersion relation in the first Brillouin zone for monoatomic chains 

equipped with the Units described in Table 3 . 
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where κ is the wave number and ω is the angular frequency

(Bloch–Floquet theory, refer, e.g., to Ashcroft and Mermin, 1976 ).

The substitution of Eq. (2) into Eq. (1) leads us to obtain the fol-

lowing single dispersion curve (the so-called “acoustic branch’) be-

tween the angular frequency ω and the wave number κ (we refer

the reader to Ashcroft and Mermin, 1976 for further details) 

ω(κ) = 

√ 

2 K(1 − cos κa ) 

M 

(3)

Fig. 4 plots the dispersion curves obtained for the four

monoatomic chains (Mono 1,2,3,4) following the introduction of

the normalized frequency f̄ = f 

√ 

M 

K ∗ ( f = 

ω 
2 π ), and the normal-

ized wavenumber κ = κπ/a . Let us focus our attention on the

end points of the first Brillouin zone ( ̄κ = ±1 ), at which the dis-

persion curve reaches the limiting angular frequency ω = 

√ 

4 K 
M 

,

which marks the upper bound of the transmission region of me-

chanical waves, or, equivalently, the lower bound of the band gap

region (band edge) ( Ashcroft and Mermin, 1976 ). The results in

Fig. 4 plots point out that mechanical waves with normalized fre-

quencies such that f̄ > 0 . 32 , 0 . 72 , 2 . 35 , 2 . 59 (i.e., f > (40, 90, 296,
25) Hz) are not allowed to propagate through the Mono1, Mono

, Mono 3 and Mono 4 chains, respectively. We highlight a ≈ 640%

ncrease of the lower bound of the band gap region, when passing

rom Mono 1 ( ̄p = 0 , ε 0 = 1% ) to Mono 3 ( ̄p = 5% , ε 0 = 20% ), and a

713% increase of the same quantity when passing from Mono

 to Mono 4 ( ̄p = 3% , ε 0 = 5% ). Therefore, it is clear that one can

arkedly change the dynamics of mechanical waves in such sys-

ems by finely adjusting the local and global prestress of the chain,

hile keeping unchanged the rest configuration. 

.2. Biatomic chain 

We now examine the band structure of a biatomic tensegrity

hain ( Fig. 5 , top), which is modeled by a sequence of identical

umped masses connected by linear springs with alternating con-

tants K 1 and K 2 , where K 1 < K 2 ( Fig. 5 , bottom). The spring with

he constant K 1 refers to the 1D model of a tensegrity prism of

eight ‘ h 01 ’ at the initial configuration (‘soft’ unit), while the spring

ith the constant K 2 refers to a prism of height ‘ h 02 ’ (‘hard’ unit). 

We define the distance between the two masses connected to

he softer prism as H 01 = h 01 + d. Using the same notation, H 02 is

qual to h 02 + d. Consequently, the unit cell size of the mass-spring

odel can be defined as a = H 01 + H 02 ( Fig. 5 ). As in the case of

he monoatomic chain, all the prisms forming the biatomic chain

re characterized by identical geometric properties in the rest con-

guration, as well as identical material properties, and differ only

y the value of the local and global prestress (refer to Table 4 for

eometric and material properties). By fixing the values of the

ard spring constant K 2 and the applied external precompression

orce F 0 , we study the variation of the mechanical properties of the

tructure with the soft spring constant K 1 , by examining the units

llustrated in Table 4 and Fig. 6 . 

By extending the Bloch–Floquet theory outlined in the previous

ection to the case of a biatomic chain, we get a dispersion relation

 vs. κ characterized by the two branches, which are given by the

quation (refer, e.g., to Ashcroft and Mermin, 1976; Herbold et al.,

009 for details) 

 

2 = 

K 1 + K 2 

M 

± 1 

M 

√ 

K 

2 
1 

+ K 

2 
2 

+ 2 K 1 K 2 cos κa (4)

The lower branch, which is usually referred to as the acous-

ic branch, covers the frequency range (or pass band) comprised
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Fig. 5. Biatomic chain: physical model (top) and mass-spring model (bottom). 

Fig. 6. F − ε curves of the units of biatomic chians shown in Table 4 . 

Table 4 

Geometrical and mechanical properties of soft and 

hard units of biatomic chains, for constant F̄ 0 = 1 . 99 . 

Soft Hard 

p̄ 0.0 0 0 0.030 0.050 0.100 

ε0 0.010 0.025 0.016 0.108 

K (kN/m) 15.463 28.257 43.107 68.333 

s 0 (mm) 6.027 6.161 6.280 6.578 

� 0 (mm) 8.776 8.933 9.075 9.430 

b 0 (mm) 11.107 11.402 11.597 12.081 

h 0 (mm) 4.823 5.436 5.595 5.910 

b  

b  

ω

 

s  
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s  

p  

g  

2  

Fig. 7. Dispersion relation in the first Brillouin zone for a biatomic chain under 

F̄ 0 = 1 . 99 and different values of p̄ . 

Table 5 

Geometrical and mechanical proper- 

ties of the equilibrium points of units 

equipped with rigid bases under F̄ 0 = 

1 . 17 × 10 3 . 

Rigel 1 Rigel 2 

p̄ 0.200 0.0 0 0 

ε0 0.076 0.125 

K (MN/m) 139.866 540.754 

s 0 (mm) 7.782 6.810 

� 0 (mm) 8.700 8.700 

b 0 (mm) 11.800 11.108 

h 0 (mm) 6.201 4.744 

t  

T  

i  

t  

s

 

q  

d  

p  

a  

i  

b  

s  

e  

t  
etween ω = 0 and ω = 

√ 

2 K 1 
M 

. Likewise, the upper (or optical)

ranch covers the pass band comprised between ω = 

√ 

2 K 2 
M 

and

 = 

√ 

2(K 1 + K 2 ) 
M 

. 

Fig. 7 shows the acoustic and optical branches of the disper-

ion relations obtained for the biatomic chains equipped with the

nits illustrated in Table 4 . The results presented in Fig. 7 high-

ight that the size of the band gap comprised between the acous-

ic and optical branches changes markedly when passing from one

hain to another, due to the different values assumed by the lo-

al and global prestress variables p̄ and ε0 in such systems. By

eeping p̄ = 0 . 100 and ε 0 = 0 . 010 in the hard units and varying

uch prestress parameters in the soft unit, one can get a fixed up-

er bound at f̄ = 2 . 96 ( f = 372 . 28 Hz) and tune the lower band

ap bound to f̄ = 1 . 41 (177.09 Hz), f̄ = 1 . 90 (239.40 Hz), and f̄ =
 . 35 (295.68 Hz) when the couple { ̄p , ε } is respectively equal
0 
o {0.0 0 0, 0.108}, {0.030, 0.025}, and {0.050, 0.016} in the soft units.

he above results ( Fig. 7 ) confirm that the band gap frequencies

n biatomic tensegrity chains can be effectively tuned by the varia-

ion of the local and global prestress, similarly to the monoatomic

ystems. 

The biatomic chains examined in Fig. 7 show band gap fre-

uencies between the acoustic and optical branches within the au-

ible range (20 Hz–20 kHz). This result is a consequence of the

articular choice of the prisms and masses forming such systems,

nd can be generalized to hypersonic band gap system by us-

ng, e.g., tensegrity units consisting of prisms equipped with rigid

ases and bars (rigid-elastic units Fraternali et al., 2015 ). Table 5

hows the geometrical and mechanical properties of two rigid-

lastic tensegrity units (named ‘Rigel1’ and ‘Rigel2’) that exhibit

he same stress-free configuration and identical cross-string ma-
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Fig. 8. F − ε curves of the rigid-elastic units under F̄ 0 = 1 . 17 × 10 3 . 

Fig. 9. Dispersion relation in the first Brillouin zone for a biatomic chain equipped 

with Rigel 1 and Rigel 2 units under F̄ 0 = 1 . 17 × 10 3 . 
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terial of the fully elastic prisms previously examined. The axial

force vs. axial strain responses of such units illustrated in Fig. 8

highlights a locking-type response in correspondence to the lim-

iting configuration with φ = π, when the bars touch each other

( Fraternali et al., 2015 ). The dispersion relation of a biatomic chain

equipped with the rigid-elastic units is shown in Fig. 9 . It is seen

that no waves can propagate along the chain within the first band

gap region f̄ ∈ [133 . 95 , 263 . 39] , which extends above the audible

frequency range ( f ∈ [16 . 84 − 33 . 12] kHz). 

3. Frequency band gaps under moderately large incremental 

strains 

We have already observed that the actual F vs. ε curves of the

tensegrity units analyzed in the present work are markedly nonlin-

ear, due to geometric effects ( Fraternali et al., 2014, 2015; Amen-

dola et al., 2014 ) (cf. Fig. 2 ). We now want to numerically study

the phenomenon of wave attenuation in the Mono 1 and Mono

2 chains analyzed in Section 2 , by accounting for the nonlinear

response of the units under moderately large incremental strains,

while varying the values of the local and global prestress variables

from p̄ = 0 , ε 0 = 1 . 0% (Mono 1) to p̄ = 0 . 1% , ε 0 = 1 . 5% (Mono 2).

Such a study is conducted by perturbing the equilibrium configu-

ration by a sinusoidal time-displacement input applied to the unit

#1 of a chain composed of 100 units. The amplitude of the applied

displacement input is set equal to 0.03 mm, which gives raise to

an incremental strain | 
ε| ≈ 0.6% from the initial equilibrium point
cf. Table 1 ), and nearly reduces to zero the static precompression

orce, when applied in tension (cf. Fig. 2 (a)). In the present sec-

ion, we employ an in-house developed particle dynamics code,

hich describes the tensegrity units of the Mono 1 and Mono 2

hains as nonlinear elastic springs governed by the force-strain

aws depicted in Fig. 2 (a). This numerical model makes use of a

ourth-order Runge–Kutta integration scheme to solve the Newton

quations of motion of the masses forming the chain (see Refs.

raternali et al., 2012; Ngo et al., 2012; Leonard et al., 2013 for ad-

itional details). It differs from that analyzed in Section 2 , which

tudied the Mono 1 and Mono 2 systems as linear mass-spring

hains, by linearizing the response of the tensegrity units in prox-

mity to the prestressed configuration. 

We begin by analyzing the response of the nonlinear Mono 1

hain. The chain is subjected to sinusoidal displacement loading

ith excitation frequency f in ∈ [20, 80] Hz ( ̄f in ∈ [0 . 16 , 0 . 64] ), thus

llowing for the bandgap edge of the linear Mono 1 chain to be

ncluded in our analysis ( f = 40 Hz, implying f̄ = 0 . 32 , cf. Fig. 4 ).

he given numerical results assume a time integration step equal

o 10 −3 / f in , which is significantly lower than the oscillation period

f the linearized unit ( T 0 ≈ 0.003 s, cf. Ref. Fraternali et al., 2014 ).

igs. 10 and 11 illustrate the force vs. time outputs for the units

, 2, 5 and 10 and the fast Fourier transforms (FFTs) of the out-

uts for units 1, 5, 20 and 50 at excitation frequencies f = 30 Hz

 ̄f = 0 . 24 ) and f = 80 Hz ( ̄f = 0 . 64 ), respectively. The FFT results

re obtained through the Matlab ® function ‘fft’ (Version R2017b).

he nonlinear response of the analyzed system is clearly visible,

ince one observes that the output force-time histories 
F = F − F 0 
eature positive peaks larger than the negative peaks, as a conse-

uence of the stiffening-type response of the unit (cf. Fig. 2 (a)).

he applied excitation induces transient oscillatory pulses 
F fol-

owed by a steady state signal propagating throughout the chain.

he latter is characterized by a leading harmonic with frequency

 in , and higher-order harmonics of f in , and with reduced amplitude

cf. the (e) panels in Figs. 10 and 11 ) ( Scussel and da Silva, 2016 ).

ig. 10 shows that the input excitation of frequency f = 30 Hz

 ̄f = 0 . 24 ) propagates unperturbed through the system (cf. panels

e)–(h)). Differently, Fig. 11 shows that the input disturbance of fre-

uency of f = 80 Hz ( ̄f = 0 . 64 ) generates a dramatically attenuated

utput. The 
F output for f in = 80 Hz is indeed very fast reduced

n amplitude as it travels along the chain, and progressively van-

shes with time already at unit # 2 (cf. panels (a)–(d) of Fig. 11 ).

e observe that the FFT of the 
F output at unit # 5 exhibits al-

ost zero amplitude for both f in and higher-order harmonics. The

FT plots for f in = 80 Hz at the units 5, 20 and 50 feature nearly

at response, with small amplitude, in correspondence to the fre-

uency range below the lower band gap edge of the linear Mono 1

hain (40 Hz). A similar, small amplitude plateau is present also in

he FFT of the 
F output at unit # 1 (not visible in Fig. 11 (e) be-

ause of its reduced amplitude), and is generated by the transient

oisy response of the system. 

The final Fig. 12 illustrates 3D plots of the FFTs of the 
F out-

uts recorded at units # 5 and # 50 of the nonlinear Mono 1 and

ono 2 chains, as the excitation frequency varies from values be-

ow the band gap edge of the linear system, i.e., f = 40 Hz in Mono

 ( ̄f = 0 . 32 ) and f = 90 Hz ( ̄f = 0 . 72 ) in Mono 2 (cf. Fig. 4 ), to val-

es lying above such a threshold. The results in Fig. 12 show that

nly inputs with excitation frequencies up to the band gap edge

f the linear chain are allowed to propagate through the nonlin-

ar systems under consideration. The presence of band gaps in the

requency spectrum is a property of linear systems (cf., e.g., Ref.

erbold et al., 2009 ). However, we observe that the presence of

oderately large incremental strains does not substantially alter

he structure of the ‘linear’ dispersion curves shown in Fig. 4 , for

oth the Mono 1 and the Mono 2 chains. 
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Fig. 10. 
F outputs in units # 1 (a), #2 (b), # 5 (c), and # 10 (d) of the Mono 1 chain, and FFTs of outputs in units # 1 (e), # 5 (f), # 20 (g), and # 50 (h), induced by a 

sinusoidal time-displacement input with 0.03 mm amplitude and 30 Hz frequency. 
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Fig. 11. 
F outputs in units # 1 (a), #2 (b), # 5 (c), and # 10 (d) of the Mono 1 chain, and FFTs of outputs in units # 1 (e), # 5 (f), # 20 (g), and # 50 (h), induced by a 

sinusoidal time-displacement input with 0.03 mm amplitude and 80 Hz frequency. 
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Fig. 12. 3D plots of the FFTs of the outputs recorded in units # 5 and # 50 of systems Mono 1 (left: panels a, c) and Mono 2 (right: panels b, d) under sinusoidal time- 

displacement inputs with 0.03 mm amplitude and varying excitation frequencies. 
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. Concluding remarks 

We have analyzed the frequency band structure of 1D tenseg-

ity systems formed by alternating tensegrity prisms with lumped

asses. The conducted study assumed constant material proper-

ies (eventually accounting for units equipped with rigid bases and

ars Fraternali et al., 2015 ), and variable states of local and global

restress of the system. The results presented in Section 2 have

hown that the examined structures exhibit highly tunable fre-

uency band gaps in the linear regime induced by small vibra-

ion near the initial equilibrium state, as a function of a param-

ter p̄ describing cable prestretching in the tensegrity unit, and

he initial strain ε0 induced by the precompression applied to

he whole system. By suitably varying such parameters it is pos-

ible to design monoatomic and biatomic systems that feature

and gaps either in the audible and/or in the ultrasonic frequency

ange (cf. Section 2.2 ). In Sect. 3 we have generalized these re-

ults to the nonlinear regime induced by moderately large incre-

ental strains for a monoatomic system with stiffening-type elas-

ic response. Both the analytic and numerical results presented

n Sections 2 and 3 have revealed a novel feature of tensegrity

ystems, not previously investigated in the to-date literature (see

kelton and de Oliveira, 2010 - Rimoli and Pal, 2017 and references

herein), which consists of their ability to serve as band gap sys-

ems with easily tunable performance, through the control of lo-
2  
al and global prestress variables, while leaving material properties

nd the rest configuration of the system unchanged. 

The present study paves the way to a number of relevant exten-

ions and generalizations that we address to future work. One nat-

ral extension of the current research regards the band structure

f lattice materials equipped with multi-atomic bases ( Theocharis

t al., 2013; Ashcroft and Mermin, 1976 ), which can be richly de-

igned by alternating tensegrity units equipped with different, ma-

erial and prestress properties and lumped masses. Such systems

ay function as band gap systems ( Theocharis et al., 2013; Herbold

t al., 2009 ), wave guides ( Ruzzene and Scarpa, 2005; Casadei and

imoli, 2013 ), impact protection gear ( Fraternali et al., 2014, 2010 ),

nd/or acoustic lenses ( Spadoni and Daraio, 2010; Donahue et al.,

014 ). Another relevant generalization of the present study regards

he modeling of the dispersion behavior of tensegrity systems in

he nonlinear regime induced by large strains, to be conducted by

ecourse to particle dynamics simulations ( Herbold et al., 2009 ),

nd/or the transfer matrix method (refer, e.g., to Khajehtourian and

ussein, 2014 and references therein). Also the modeling of the

ynamical response and control of 3D tensegrity systems deserves

pecial attention ( Moored and Barth-Smith, 2009; Zhang and Feng,

017; Bel Hadj Ali and Smith, 2010; Bel Hadj Ali et al., 2011,

017 ), which requires the use of numerical codes dedicated to

he dynamics of spatial tensegrity structures ( Fabbrocino and Car-

entieri, 2017 ), and/or finite elements simulations ( Martin et al.,

010 ), to account for extensional, twisting and bending modes
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( Krushynska et al., 2018 ), as well as internal resonance phenom-

ena, and edge modes. 

Finally, the additive manufacturing and the experimental test-

ing of physical models of tensegrity systems at different scales is a

topic of great interest and a challenge at present ( Amendola et al.,

2015 ), since it requires the employment of advanced multimate-

rial deposition techniques that can handle internal prestress. One

viable strategy consists of using projection micro-stereolitography

setups ( Zheng et al., 2012 ) that employ swelling materials for the

tensile members ( Lee et al., 2012 ). Alternatively, one can use multi-

jet technologies that handle materials with different coefficients of

thermal expansion for struts and cables, in order to create internal

self-stress during the deposition process. 
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