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Abstract

Composite materials with engineered band gaps are promising solutions for wave control and
vibration mitigation at various frequency scales. Despite recent advances in the design of phononic
crystals and acoustic metamaterials, the generation of wide low-frequency band gaps in practically
feasible configurations remains a challenge. Here, we present a class of lightweight metamaterials
capable of strongly attenuating low-frequency elastic waves, and investigate this behavior by numerical
simulations. For their realization, tensegrity prisms are alternated with solid discs in periodic
arrangements that we call ‘accordion-like’ meta-structures. They are characterized by extremely wide
band gaps and uniform wave attenuation at low frequencies that distinguish them from existing
designs with limited performance at low-frequencies or excessively large sizes. To achieve these
properties, the meta-structures exploit Bragg and local resonance mechanisms together with
decoupling of translational and bending modes. This combination allows one to implement selective
control of the pass and gap frequencies and to reduce the number of structural modes. We
demonstrate that the meta-structural attenuation performance is insensitive to variations of geometric
and material properties and can be tuned by varying the level of prestress in the tensegrity units. The
developed design concept is an elegant solution that could be of use in impact protection, vibration
mitigation, or noise control under strict weight limitations.

1. Introduction

Engineered composites capable of manipulating elastic waves in an unconventional way [ 1-3] are rapidly
becoming attractive in multiple application areas, including seismic wave shielding [4, 5], sub-wavelength
imaging [6], vibration abatement [7, 8], acoustic cloaking [9], sound control [10], etc. A distinguishing
peculiarity of these materials, also known as meta-structures [ 11], is their ability to generate band gaps—
frequency ranges with inhibited wave propagation. In phononic crystals, periodic patterning of constituents or
material phases activates Bragg scattering [ 12] opening band gaps at wavelengths comparable with the spatial
periodicity [7, 13]. Acoustic metamaterials exploit local resonances to induce low-frequency band gaps allowing
the control of waves at much larger wavelengths than their microstructural scales [14—16]. The local resonance
effect is induced by coated inclusions or pillars, increasing the total structural weight. In this case, wave
attenuation is efficient only at the resonator eigenfrequencies and abruptly decreases away from them [5, 14,
17—19]. Therefore, broadband control of low-frequency waves using lightweight structures remains a challenge.

©2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft
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tapered bars prestressed strings

Figure 1. (a) Accordion-like meta-chain of circular discs interlayed by minimal tensegrity prisms, which are formed by tapered bars
and prestressed strings; (b) structure and geometric parameters of a representative unit cell.

Band-gap widths can be enlarged by exploiting rainbow-trapping designs [5], topology optimization
techniques [20, 21], or coupling the Bragg and local resonant mechanisms [18, 22]. Alternatively, the
incorporation of slender elements with small values of effective stiffness can lower the Bragg scattering limit [20].
Simultaneous use of these strategies can provide promising results [11, 23].

Another constraint hindering practical applications of meta-structures is a fixed operating frequency range.
Proposed tuning strategies include harnessing mechanical instabilities [ 15, 24], thermal radiation [25],
piezoelectric effects [26] or magnetic nonlinearities [27], and incorporation of rotational elements [28]. These
require a specific non-trivial material behavior or mobile constituent elements that entail expensive
manufacturing processes and high exploitation costs. Therefore, metamaterial designs with easily adjustable
functionalities remain to be developed.

In this work, we propose the use of tensegrity prisms as a new design strategy for realizing lightweight meta-
structures with wide band gaps atlow frequencies that can be tuned in a simple way by varying the level of
prestress or tailoring the unit cell geometry. The developed designs with lattice-type units interlayered by solid
discs resemble the structure of an accordion, leading us to adopt the term ‘accordion-like’ (figure 1(a)). The
imposed continuity conditions between tensegrity units and solid discs ensure structural functionality and
integrity. In addition, the absence of moving parts entails a simple fabrication process, e.g. using additive
manufacturing techniques, making these structures cost-efficient and attractive for various applications.

We demonstrate that band gaps, originating from a combination of Bragg scattering in the slender bars and
local resonances of the constituent elements, are particularly wide due to the decoupling of the bending and
longitudinal modes in the peculiarly organized tensegrity prisms. The presence of several band-gap formation
mechanisms ensures efficient wave attenuation using only a few meta-structural units. Finally, we show that the
band gaps can further be merged, provided a minimum amount of structural damping is present, as is the case in
all real materials.

The paper is organized as follows: section 2 describes the model and properties of the developed meta-
structures. Section 3 discusses the structural dispersion and transmission characteristics, as well as the
mechanisms of the band-gap formation and tunability. The main conclusions are given in section 4. Additional
details are provided in three appendices.

2. Metamaterial model

Among the plethora of design possibilities for tensegrity structures [29], we choose the simplest regular minimal
prism shown in figure 1(b). By periodically alternating it with circular discs, we create a one-dimensional meta-
chain. A representative unit cell of the chain consists of the prism and two halves of the terminal discs.

The regular tensegrity prism of height / is composed of three inclined tapered bars connected by five
prestressed strings. Two strings form horizontal equilateral triangles of side length ! at the ends of the bars, which
can rotate relative to each other by an arbitrary twist angle ¢. Simple geometric considerations lead to the
relation between the bar length b, the length of the three cross-strings s and the other parameters:

b= [hz—i-élzsinzé, s:\/bz—l—ﬁlzcos(gb—}—z). (1)
3 2 2 6

We assume continuous displacements at the prism-disc joints, implying that tapered bars and discs constitute a
continuous chain made of a single-phase material. This assumption ensures structural robustness and allows us
to eliminate the horizontal strings from further consideration.
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The discs are identical with thickness ¢t = 2 mm and radius R = 10 mm. We assume the cables to be made of
0.28 mm diameter PowerPro” Spectra fibers (Young’s modulus Ef = 5.48 GPaand mass density py = 793 kgm ),
which are among the strongest and lightest fibers available on the market, with particularly high specific strength and
remarkable durability [30]. The material of the bars and the discs is assumed to be titanium alloy Ti6A14V (Young’s
modulus E; = 120 GPa, Poisson’s ratio v/, = 0.33, and mass density p, = 4450 kg m ), which is widely employed in
industrial applications, including additive manufacturing through electron beam melting (see [31] and references
therein). The choice of materials is also dictated by the availability of experimental tests on the tensegrity structures of
the same composition [32]. The central and end diameters of abar are D = 0.8 mm and d = 0.18 mm, respectively.
For non-prestressed strings, po = 0, the prism heightis iy = 5.407 mm and the triangle sideis l, = 8.7 mm. The
material volume fraction is 27%, corresponding to an effective unit-cell density peg = 1216 kg m >, evaluated as the
sum of the material phase density multiplied by its volume fraction.

3. Elastic waves in tensegrity meta-chains

3.1. Dispersion analysis

Assuming linear elastic behavior of the constituents (see appendix A), we first analyze an equilibrium non-
prestressed configuration of the meta-chain with ¢ = 57/6 and py = 0[31]. Finite-element simulations (see
appendix B for details) reveal that the corresponding dispersion relation has six adjacent band gaps shown in
figure 2(a). Their mid-gap frequencies are 10.02 kHz, 18.93 kHz, 32.10 kHz,41.50 kHz, 51 kHzand

73.30 kHz, and the normalized gap width (the percentage ratio between the gap width and the mid-gap
frequency) is 38.2%, 69.3%. 38.8%, 9.1%, 21.2%, and 46.3%, respectively.

To understand the mechanisms governing the wave dispersion, we consider the mode polarization,
indicated by the color of the dispersion curves. Blue describes translational modes without bending
deflections of the discs; red corresponds to pure bending modes. The degree of bending deflection b of the
discs is evaluated as:

el Hlwhda [ (wal + lwp)dA
S 0ol + o + wdA [ (ol + lwp P + |wa)dA’

where |2 = w,@, = (25 — 20)(2% _ 2B )P — @ —(%—G”Z)(a’z*—a@)‘
T T oy 0z dy oz YN T YTy T ez Ox 0z ox )’

) i = . . .
| = w,&, = (% — %1;’“)(% — ({;;‘).Here, A = 7R?t, and the superimposed bar indicates complex

conjugation. The subscript k, designates that component w; (with i denoting x, y or z) is evaluated for a fixed
value of k, at the Brillouin zone border I'—Z. In figure 2(a), all the modes are of either pure translational or pure
bending polarization, i.e., the two fundamental mode types are fully decoupled, which is not the case for most
existing continuous and lattice-type meta-structures. This feature results in a comparatively small number of the
dispersion curves (see, e.g., the dispersion relations in [11, 20, 23]), since the coupled modes are absent, which in
turn enables the generation of multiple band gaps.

The two lowest translational modes (figures 2(b) and (c)) with parallel uniform axial motions of the discs are
analogous to the fundamental translational mode in a one-dimensional mass-spring system [12]. The second of
the modes (figure 2(¢)) exists due to the continuity conditions between a prism and two discs and has maximum
displacements at the joints. Note that translational motions are accompanied by small rotations of the discs in
their planes, as alterations of the prism height are coupled to variations of the twist angle ¢ [31, 33]. Hence, it is
more accurate to refer to these modes as ‘translational-twisting’.

The mode forming the upper bound of the first band gap is governed by the bending displacements of the discs
(figure 2(d)). The decrease of the displacements towards the center of the bars suggests that bending momenta are
inefficiently transmitted through the tapered inclined bars, as in the case of extremal materials [34].

The modes at the edges of the higher-frequency band gaps exhibit either confined vibrations in the inclined
bars (figures 2(e), (g) and (h)) or higher-order bending harmonics of the discs with the bars at rest (figures 2(f)
and (i)). The corresponding flat dispersion bands in figure 2(a) have a close-to-zero group velocity typical for
localized motions.

The decoupling of the translational-twisting and bending modes is attributed to the peculiarities of wave
propagation through the inclined bars of a tapered geometry. Simulations show that when the bars are
perpendicular to the discs (see appendix B, figure B1(b)), the lowest band gap disappears; the translational and
bending modes become coupled, and the rotational components degenerate (see appendix B, figure B1(d)). If
the end diameter of the inclined bars increases (i.e., tapering is reduced), the band-gap edges move to higher
frequencies, the gap widths decrease, and the separation between adjacent band gaps increases (see appendix B,
figure B2(a)). In this case, the modes are again coupled, as can be seen by the color change of dispersion bands
(see supplementary video 1 available online at stacks.iop.org/NJP/20/073051 /mmedia). However, even for

)
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Figure 2. (a) Dispersion relation for an accordion-like meta-chain with discs of radius R = 10 mm and thickness t = 2 mm. Shaded
regions denote frequency band gaps (numbered from 1 to 6). The color of the dispersion curves indicates the level of bending
deflection of the discs evaluated using equation (2). Mode shapes are calculated at the Z point of the Brillouin zone. The color

designates the distribution of the total displacements, ,/u2 + uy2 + u?, within the unit cell ranging from zero (metallic blue) to a
maximum value (metallic red).

straight bars of a constant cross-section and for bars with thicker ends than the central diameter (figure B2(c)),
the wave attenuation functionality is preserved (figure B2(a)), which distinguishes the proposed ‘accordion-like’
meta-structures from other designs with tapered bars, e.g. pentamode materials [34]. It should be also noted that
the feature of the mode decoupling is preserved for three-dimensional accordion-like designs analyzed in
appendix C.

An additional advantage of using tensegrity prisms is the reduction of the total structural weight. The
comparison of data in figure 3, showing the band-gap widths of several optimized metamaterial designs as a
function of their effective density, reveals that the accordion-like meta-structures have the smallest material
filling fraction and the widest band-gap sizes at low frequencies. The reported data refer to three-dimensional or
two-dimensional (in-plane waves) configurations of continuous (bold lines) or cellular (dashed lines) structures.
The band-gap widths have been re-calculated for a unit cell size of 10 mm, based on the data provided in the
original works [17-21, 35], for a uniform comparison.

3.2. Transmission through finite-size meta-chains
To evaluate the actual wave attenuation performance of the accordion-like configurations, we analyze wave

transmission through a meta-chain of a finite size. Figure 4 shows the magnitude of total transmitted
displacements ,/u? + uf + u? averaged upon three adjacent discs and normalized with respect to the
applied excitation u,,. The blue (solid), red (dotted) and black (dashed) curves correspond to displacements
atdistances of 3, 5, and 10 unit cells from the loaded end. The attenuation of waves passing through only 5
unit cells is uniform and largely exceeding three orders of magnitude even for localized pass bands. The
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Figure 4. Normalized transmitted displacements ,/u? + uy2 + u? / 1, versus frequency ffor an accordion-like meta-chain (30 unit

cells). The curves indicate the displacement values averaged on three adjacent discs at distances of 3, 5, or 10 units from the loaded end.
The unit cell parametersare R = 10 mm, t = 2 mm for the discs,and D = 0.8 mm, d = 0.18 mm, 1 = 5.407 mm, [ = 8.7 mm for
the tensegrity prisms with non-prestressed strings.

translational-twisting modes characterized by intense motions in bars are more attenuated compared to
bending modes. This occurs partly due to the applied structural damping in the bars (see appendix B for
details), but also due to an inherent difficulty to excite isolated vibrations in the bars while keeping the discs
motionless. Based on this argument and the data in figure 4, we conclude that the first two pairs of band gaps
are merged into two wide band gaps with a gap width of 103.6% and 50.6%. An excellent agreement
between the band gaps of an infinite meta-structure (figure 2(a)) and those for a finite-size chain confirms

the accuracy of the numerical simulations.

3.3.Band-gap mechanism
To gain a deeper insight into the origin of the band-gap formation mechanism, we estimate the Bragg mid-gap

frequency f fl 4 = ¢p/ 2hy) deriving from the structural periodicity, where ¢, is the phase velocity of waves
propagating in the medium. For cellular-type structures with slender elements, the phase velocity depends on
effective medium parameters, such as the effective stiffness modulus and the effective mass density. In our case,
the values of ¢, can be extracted directly from the dispersion relation in figure 2(a) as the ratio 27f/k in the
vicinity of the T point for each mode type [11]. For the translational-twisting modes, the frequency f,q is located
at the intersection between a tangent to the second mode (green solid line in appendix B, figure B1(c)) and the
vertical line k, = Z. This frequency falls within the first band gap, indicating that Bragg scattering governs the
gap formation mechanism. An additional argument supporting this conclusion is the uniform level of wave
attenuation at the inhibited frequencies (figure 4), typical for Bragg band gaps[22, 36].
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Figure 5. Frequencies of the three lowest band gaps (numbered from 1 to 3) versus the radius (a) or the mass density (b) of a disc
normalized to the mass density of titanium p,. The red dashed line refers to the dispersion relation shown in figure 2(a). The notation
b4 indicates the fourth bending mode that is the lower bound of the first band gap.

On the other hand, the flattening of the dispersion bands at the band-gap edges (figure 2(a)) and localized
character of the corresponding mode shapes (figures 2(e)—(i)) clearly point to the presence of local resonant
effects. The involvement of local resonances is also demonstrated in appendix B (figure B2(a)), where the band-
gap edges are flat for varying material filling fraction of the bars [17].

Therefore, the resulting complete band gaps in the accordion-like meta-structures originate from a
superposition of the Bragg scattering and local resonances. This provides multiple possibilities for varying the
gap width and tuning the pass bands by manipulating frequencies of selected modes linked to the structural
geometry.

3.4. Band-gap tunability

Variations of geometric parameters of the unit cells result in different dispersion characteristics of a meta-chain.
For example, by altering the bar geometry one can shift the band gaps to different frequencies or modify the band
widths, as shown in section 3.1. Similarly, one can alter the disc sizes. Figure 5(a) shows the dependence between
the disc radius R and the frequencies of the three lowest band gaps. The corresponding dispersion relations are
presented in supplementary video 2. Results show that the increase of R can shift the band gaps to about half
their previous frequencies. Note that the related variations of the effective mass density and the material volume
fraction are small and range from peg = 1250 kg m™>and V,,, = 28% to per = 1206 kg m > and V,,, = 25% for
the analyzed geometries. For discs of a larger radius, the shift to lower frequencies is accompanied by the
excitation of localized and bending modes that reduce the gap widths.

The variations of the material mass density (normalized to the mass density of titanium p,) provide similar
results, as shown in figure 5(b) (the related dispersion curves can be found in supplementary video 3). These data
can also be considered as representative of inhomogeneous meta-structures with the discs made from a different
material. To facilitate the comparison with the homogeneous case, the disc geometry is fixed.

The flat edges of the second and third band gaps in figure 5 confirm the involvement of the local resonance
effect in the band gap formation [17], while the monotonic decrease of the lower edge of the first band gap
indicates the presence of other effects. These data agree well with the conclusions relative to the simultaneous
presence of several band-gap mechanisms discussed in section 3.3.

Another possibility to tune the band gaps is to vary the prestress level in the incorporated cross-strings.
The prestressed state follows from the action of a set of self-equilibrated internal forces or applied external
tensile loading, and can be usefully characterized through the prestrain level p, = (s — s9)/s9, where spis an
initial non-prestrained length of a cross-string. The prestress alters the prism height, modifies its geometry
and mechanical response, as shown in table 2 of [37]. For our structures, the prism height /i varies from
5.407 mm for pg = 0t05.97 mm for p, = 0.1. The analyzed range of the applied prestrain is restricted to
experimentally realistic values [38]. Larger prestrain levels may result in variations of the axial stiffness of
the tensegrity prisms and thus require the incorporation of nonlinear constitutive equations (see
appendix A for details).

The variation of the prestrain level naturally results in modifications of the band-gap frequencies, as shown
in figure 6. Here, the frequency f* = fh,_/c,is normalized with respect to effective phase velocity ¢, in the
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meta-chain. The percentage indicates the normalized gap width for the prestrain level denoted by the dashed curves (the black curve at
Ppo = 0,theblue curveat p, = 0.05, and the red curve at py = 0.1). The unit cell parameters are the same as in figure 2. The blue and
red band-gap bounds indicate, respectively, the absence and the maximum amount of bending deflections of the discs evaluated
according to equation (2).

disc-bar material. This means that the tunability of the gap width is less dependent on the material characteristics
of the solids, and governed by the elasticity of the strings. The numbers in figure 6 indicate the normalized gap
width at different levels of prestrain. They reveal that the percentage changes in the band-gap frequencies can
reach 15%, which can be of interest for many practical applications.

Possible approaches to introduce prestress include either the application of external mechanical forces i situ
or the utilization of micro-stereolitography setups for manufacturing the strings. The latter use materials that
strongly contract, when dehydrated, and thus create internal prestrain (see [37] and the references therein). The
exploitation of materials with different values of thermal expansion coefficients also opens a way to control the
level of prestrain by varying the ambient temperature.

4, Conclusion

In summary, we have developed metamaterial designs supporting multiple low-frequency band gaps with
uniform wave attenuation performance. With a material filling fraction of 27%, they are the lightest practically
feasible configurations reported to date (to the best of our knowledge). A significant weight reduction is achieved
by periodically alternating solid elements with tensegrity prisms in ‘accordion-like’ configurations. This peculiar
structure enables to decouple translational from bending modes, while the continuity conditions between the
lattice and solid elements improve the wave attenuation functionality and contribute to structural integrity and
robustness. Thus, the proposed metamaterials can easily be fabricated by means of additive manufacturing
techniques from a wide range of materials at comparatively low costs.

We have demonstrated that the band gaps originate from a superposition of Bragg scattering and local
resonances of slender elements combined with the decoupling of longitudinal and bending modes. These
features ensure strong wave attenuation at the band-gap frequencies by means of a limited number of unit
cells and provide ample freedom in tuning pass and gap bands by selective modifications of the unit-cell
geometry. The geometry-based nature of wave attenuation mechanisms makes them independent of a
specific material, and thus, broadband low-frequency band gaps can be induced in ‘accordion-like’
configurations made of a wide spectrum of materials. Additional tunability of the band-gap frequencies can
be achieved exploiting variations of the prestress level in the strings incorporated in the tensegrity units.
Our numerical results reveal that the gap widths are maintained with respect to variations in the material or
geometric parameters, whereas optimal band-gap merger is obtained for tapered designs of the
inclined bars.

Our study demonstrates the promising nature of accordion-like designs for broadband control of low-
frequency elastic waves. In the presence of a small level of structural damping, which is present in all real
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materials, the gap width exceeds 100%, making these meta-structures especially attractive for various
applications, including vibration mitigation or impact and shock wave protection.

Finally, the developed designs can be seen as modifications of ‘extremal’ materials [39], which inhibit the
propagation of shear waves only, if the diameter of tapered ends is small [34]. We have shown that our meta-
structures are not subject to this restriction and can generate low-frequency band gaps even if the end diameter
of inclined bars is larger than the central one. Further interesting possibilities can be envisioned for future
extensions to recently proposed ‘rank 2’ and ‘rank 3’ walled structures [40].
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Appendix A. Linearized response of accordion-like meta-structures

The mechanical response of tensegrity prisms with bars, which are allowed to rotate freely, is governed solely by
the level of prestress in the cross-cables [38, 41]. This behavior is described by a nonlinear stress—strain relation
due to geometric effects emerging from large values of the twist angle ¢ [31, 33]. For small oscillations of the
prisms around their initial positions, as in the case of small-amplitude waves, this relation can be linearized, and
the prisms act as linear springs. Atlow frequencies, the dynamics of a meta-chain, in which the prisms alternate
solid discs in frictionless contact, is thus analogous to that of a one-dimensional linear spring-mass system, as
discussed in [37].

On the contrary, in the accordion-like meta-structures with continuity conditions between the prisms and
discs, the axial stiffness of the prism kj, also depends on tangential stiffness of the bars, and is thus non-zero in the
absence of prestress. The kj, can be estimated by means of finite-element simulations taking into account
geometric nonlinearities (Comsol Multiphysics 5.2). For this purpose, we consider an equilibrium configuration
of the unit cell with the twist angle ¢ = 57/6 in the absence of prestretch p, = 0 (figure B1(a)). A tensile force is
distributed at at the top surface of the upper disc in a unit cell, while the bottom disc is clamped. The estimated
dependence of the stiffness k;, on the force Fis given in table A1. Note that up to displacements of the order of
10~° m, the axial stiffness is nearly constant. This justifies the assumption that the accordion-like unit cell
exhibits a linear response to a small amplitude excitation. Therefore, the dynamic response of the designed
metamaterials can be described by a linear constitutive relation that allows us to use the standard Bloch-wave
analysis procedure.

Table Al. Relation between the static loading F and
induced axial displacement u, in the accordion-like
unit cell. The axial stiffness is evaluated as

kh = F/uz.

F(N) u,(m) ky(Nm™)
3.18 x 107° 7.8209 x 1077 4061
3.18 x 107* 7.8208 x 10°® 4061
3.18 x 107> 7.8208 x 1077 4061
1.59 x 1072 3.906 8 x 10° 4065
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Figure B1. Unit cells of an accordion-like meta-chain with the twist angle of the tapered bars ¢ = 57/6 (a)and ¢ = 0(b). (c) The
low-frequency part of the dispersion relation for the unit cell with ¢ = 57/6. The Bragg mid-gap frequency for translational-twisting
modes is located at the intersection of the green line with the vertical line k, = Z. (d) The dispersion relation for the metamaterial unit
cellwith ¢ = 0.1In (c), (d) the band gaps are highlighted by shaded regions, and the color of the dispersion curves indicates the level of
bending deflections of the discs evaluated by means of equation (2).
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Figure B2. (a) Frequencies of the three lowest band gaps (numbered from 1 to 3) versus the end diameter of a bar in the tensegrity
prism. The green and red dashed lines indicate the bars of a uniform cross section (d = D) and a reference configuration with
dispersion relation shown in figures 2(a). (b), (¢) The unit cells with the end diameters of abar (b)d = 0.1 mmand (c)d = 1.7 mm.

Appendix B. Numerical models and methods

The wave dynamics of the accordion-like metamaterials is studied numerically by means of the finite-element
method using Comsol Multiphysics 5.2. The dispersion relations are evaluated for a single unit cell with the
Floquet—Bloch conditions at central cross-sections of the discs. The lateral faces of the discs are free of stresses.
The related eigenfrequency problem is solved for positive real values of wavenumber k, at the border of the
irreducible Brillouin zone I'-Z.
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Wave transmission is estimated in the frequency domain for a finite-size meta-chain composed of 30 unit
cells. One end of the chain is excited with an axial displacement of amplitude 1,y = 0.1 g m applied uniformly to
the disc surface. Another end is attached to a perfectly matched layer (of 5 unit cell size) to minimize undesired
wave reflections. We eliminate unrealistically large displacements at resonant frequencies by introducing a
vibration loss factor in the material of the bars. The loss factor 1 takes into account inherent structural damping
in a dynamically loaded material and enters the stress—strain relationship as o = D(1 + jn)e. We choose
1 = 0.001 Pa s that corresponds to the minimum value of losses in titanium alloys, as assessed
experimentally [42].

Figures B1(a) and (b) show unit cells of the accordion-like meta-structure analyzed in the main text and with
the bars perpendicular to the discs (¢ = 0), respectively. The corresponding dispersion relations are given in
figures B1(c) and (d). The color of the dispersion bands indicates the level of bending deflections ranging from 0
to amaximum value. Figure B1(c) presents alow-frequency part of the relation shown in figure 2(a) with the
label ‘b4’ describing the fourth bending modes. The frequency at the intersection of the green line with the
vertical line at the edge of the Brilloiun zone k, = Z approximately equals the Bragg mid-frequency for the
translational-twisting modes in the tapered bars.

Figure B2(a) presents the frequencies of the three band gaps versus the end diameter d of the bars. Green and
red dashed lines refer to the bars of a uniform cross section (d = D) and the case analyzed in the main text with
d = 0.18 mm (figure 2(a)), respectively. The unit cell geometries with the smallest and largest analyzed values of
dare depicted in figures B2(b) and (¢).

Appendix C. Three-dimensional accordion-like metamaterials

To analyze the dynamics of three-dimensional accordion-like structures, we replace the circular discs by square
elements (figure C1(a)). The thickness of an element, t = 2 mm, is the same as for the discs. The lateral size of
the squareis b = 17.72 mm, so that the circular disc in a meta-chain analyzed in the main text (figure 2(a)) and
the square element in the three-dimensional meta-structure have equal masses.

A three-dimensional model is obtained by periodic replications of the unit cells along three mutually
perpendicular directions. Such a design restricts the excitation of bending modes in the low-frequency range,
which dominate in the meta-chain with stress-free lateral faces.

The dispersion analysis is performed numerically by applying the Floquet—Bloch boundary conditions at the
three pairs of the unit-cell faces. The absence of translational and rotational symmetries in the unit cell design
requires to analyze the values of wave vector k = { k,, k, k.} within the irreducible Brillouin zone depicted by a
parallelepiped in figure C1(b). To simplify the consideration, we analyze only specified directions and planes
within the Brillouin zone highlighted in figure C1(b).

We first examine the direction I'-Zwith k, = 0 and k, = 0 describing a wave propagation perpendicular to
the central planes of the square elements. Figure C1(c) shows the dispersion relation with multiple adjacent band
gaps at low frequencies, similar to that for a meta-chain with circular discs (figure 2(a)). The distinctive feature is
asmaller number of dispersion curves, most of which belong to the translational-twisting modes. The bending
modes appear only at higher frequencies, when a quarter of the wavelength of shear bulk waves approximately
equals the unit-cell size, i.e., f = ¢,/ (4hy) ~ 45 kHz with ¢, denoting the shear wave velocity in titanium.
Therefore, they originate due to the Bragg scattering at the lateral boundaries of the square elements.

The mode shapes of the two lowest translational-twisting modes (figures C1(d) and (e)) resemble those for
the meta-chain with circular discs (figures 2(b) and (c)). The highest of the two forms a lower bound of the first
band gap, while the upper band-gap bound is a flat curve describing a localized mode with vibrating bars
(figure C1(f)). The first band gap is generated at almost the same frequencies as in the meta-chain (see
figure 2(a)).

The dispersion relations for several cross-sections of the Brillouin zone (figure C1(b)) and their projections
are shown in figure C2. Their inspection reveals the conservation of most of the band gaps in the case of oblique
waves (figures C2(a)—(d)), which makes the designed accordion-like meta-structures particularly attractive for
practical applications. The worst situation occurs if waves propagate in the plane of the square elements
(figures C2(e) and (f)), since the attenuation mechanisms based on interactions between the solid and tensegrity
parts become inefficient. Nevertheless, even in this case, the lowest band gap is preserved.
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Figure C1. (a) Unit cell of an accordion-like meta-structure with square terminal elements; (b) the corresponding Brillouin zone in
the k-space with the irreducible part highlighted by red edges. (c) The dispersion relation for waves propagating along I'—Z direction
in the three-dimensional accordion-like meta-structure. Band gaps numbered from 1 to 6 are highlighted by shaded regions. (d)—(f)
Selected mode shapes at point Z.
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