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Abstract. Strength (or hardness) and toughness of micro- and nano-structured grained materi-
als are analysed, assuming the key role played by the interfaces. A new fractal approach is
developed to unify the influences on the mechanical properties of volumetric grain content, grain
size and structural dimension. In particular, the finding of grain size effect on material strength
represents an extension of the well-known empirical Hall-Petch law. A fractal structural param-
eter, representing an extension of the Gurland’s structural parameter, is proposed to investigate,
design and optimise new materials. An experimental comparison on Poly-Crystalline Diamond

and WC/Co alloy concludes the paper.

1. INTRODUCTION

The relation between the macroscopic mechanical
properties and the micro- or nano-structure of ma-
terials is becoming of increasing interest, playing a
fundamental role in the design of new composites
for high-tech applications.

Indicating with 6. the strength of a micro- or nano-
structured material, which is composed by a ma-
trix having strength ¢ ™™ and grains with volu-
metric fraction v and strength ¢ ", the simplest
rule of mixture would predict 6 =~(1-v)c (M
+vo 92" Furthermore, according to the well-known
Hall-Petch law 6 - k < d"" where diis the mean grain
size (and kis a constant). Finally, according to Frac-
ture Mechanics, in the common statistical assump-
tion of largest crack length proportional to the char-
acteristic structural size R, it results 6, < R™"2. The

aim of this paper is the generalization and unifica-
tion of the previous influences, of composition v,
grain size d and structural dimension R, not only for
strength but also for fracture toughness. A fractal
structural parameter, representing an extension of
the Gurland's structural parameter [1], is proposed
to design new materials as a compromise
optimisation of strength and fracture toughness.

2. ENERGY SCALING

To predict the influence of grain size, structural di-
mension and volumetric grain content in a unified
manner, a fractal approach is herein considered.
Accordingly, we assume a fractal (or self-similar)
distribution of grains, for which the probability den-
sity function p(r), describing their distribution in size
r, has to be written as [2,3]:
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D

p(r) = D2, (1)
r

where D=3y is the fractal exponent (usually com-
prised between 2 and 3) and r___is the size of the
smallest grain. The case of a Gaussian distribution
is also treated at the end of the section, as an ex-
ample of different grain size distribution.

The main assumption of the theory is that we
assume a key role to be played by the interfaces. In
particular, we assume that the energy dissipation
W connected to the presence of the grains takes
place at the interfaces and thus is statistically pro-
portional to their surface area S_ [2,3], i.e.:

W oS, e [ridN e [Nrp(r)dr = Nyr2 . (2
where r__ is the size of the largest grain (r__ >>r_ )

and N, is the total number of grains. On the other
hand, the total volume Vg of the grains is:

0" min" max

V. o jrst o jN0r3p(r)dr o< Nrore?, (3)
Deriving the expression of N, from the previous equa-
tion and putting it into Eq. (2), yields:

W ooV riPro?, (4)

g min " max

As a consequence, the energy dissipated (at the
interfaces) per unit volume V of material is:

W =—ovrr (5)

where v= Vg/Vrepresents the volumetric fraction of
grains.

Assuming the statistical self-similarity hypoth-
esis, i.e., r o« 3\/;@, (the larger the total grain vol-
ume, the larger the largest grain [2,3]), the effect of
the structural size (size effect) can be obtained as:

D-3

W, oev'r2V 2 (6)

Usually r . is assumed to be a constant, i.e., a
material property. The mean value of the surface of
grains, proportional to <r?>, as well as of their vol-
ume, proportional to <r®>, are substantially esti-
mated in Egs. (2) and (3). On the other hand, the
evaluation for the mean value of the grain size rgives:

1 Toax Tvax
(r) e N jrdN o er(r)dr <r.. (7)
0 Tvin Tnin

Introducing D=3y and Eq. (7) into Eq. (6), noting
that Ve<R® with R structural size, and d «<<r> being
the grain size, we can write:

WC oc VVd2*3VR3(V’1) (8)

that represents the scaling law of the energy den-
sity dissipated at the interfaces.

Note that if D<2 in Eq. (1), y=2/3 in Eq. (8),
whereas if D>3 in Eq. (1), y=1 in Eq. (8), see [2].
We will show now how such a result is more gen-
eral than expected. In particular, we will show that,
assuming a Gaussian distribution for the grain sizes,
the energy density scales as predicted by the fractal
approach in the limit case of y=1. Accordingly, we
assume a Gaussian (or normal) distribution of grains,
for which the probability density function is

(r=r,)’

2
20
e

p(r) = , Where o is the standard de-

2no
viation and r_=<r> is the mean grain size,

1= -
r, = N*deN = pr(f)df. Note that the integrals
00 —oo

evaluated between minus infinite and zero must
give negligible contributions to the final results,
the variable r being defined as positive. The en-
ergy dissipation W connected to the presence
of the grains is statistically expected to be pro-
portional to their surface area, i.e.,

WS, o Jrsz = JNorzp(r)dr =N,(r’ +c")
0 0
On the other hand, the total volume of the grains is
V, o jr3dN = JNOr3p(r)dr =N, (r} +3r,c°)
0 0

Eliminating N, from the previous equations, being
re<d, yields asymptotically We<V_d-'. As a conse-
quence, the energy dissipated per unit volume of
material becomes W _evd, identical to Eq. (8) if

y=1.

3. STRENGTH AND FRACTURE
TOUGHNESS SCALING

Eqg. (8) represents the unified law to evaluate the
grain and structural size effects as well as the influ-
ence of the volumetric grain content on dissipated
energy density. Noting that the square root of the
energy dissipated due to the presence of the grains
per unit volume of material (if we assume negligible
size effects on the elastic modulus) can be consid-
ered to be proportional to the strength of the grains
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(not intrinsic, but in the matrix) [4], coupling Eq. (8)
with a classical rule of mixture gives the following
unified scaling law:

LN 3(*{*1)
G(Qfain) ~ kGVZd 2 R2 (9a)

¢ ’

Gc — (1 _ V)(j{(:matrix) + V(j(grain), (9b)

c

where k_is a constant. More complex rules of mix-
ture could be also considered [5,6]. We note that
Eq. (9a) represents an extension, including the struc-
tural size, of the Gurland structural parameter [1],
that is an extension, including the volumetric grain
content, of the Hall-Petch relationship for grain size
effect on material strength. Thus, for hardness H < 6,
(or wear resistance) the same scaling is expected.

An approximated law can be also proposed for
fracture toughness. According to Griffith, if the char-
acteristic crack length is /, K'"™" oc og"’a’”’\ﬁ . Two
plausible hypotheses for / are l<R or [ed; thus, in
general, we can assume /o< d'"2*R?* where 0<20<1
is a constant. Accordingly, coupling this law with
Egs. (9) and with a classical rule of mixture yields:
Ko = (1= VKT + vKE™,

Ic

(10a)

Kl(cgrafn) ~ kKGEgram)dUZﬂRq (10b)

where k, is a constant and K" is the fracture
toughness of the matrix.

4. FRACTAL STRUCTURAL
PARAMETER AND DEVIATION
FROM THE HALL-PETCH REGIME

The Hall-Petch relationship has been used for sev-
eral decades to describe the relationship between
strength and grain size, namely:

o, —ked™. (11)

It is interesting to observe that a deviation of the
exponent from that of the Hall-Petch relationship
occurs [7]. The experiments on fine grained micro-
and nano-structured materials seem in fact to sug-
gest three different regions for the negative expo-
nent of the Hall-Petch relationship:

(1) a region from single crystal to a grain size of
about 1um, where the exponent seems to be
close to 1/2;

(2) a region for grain sizes ranging from about 1 mm
to 30 nm, showing exponents lower than 1/2;
(3) a region below a very small critical grain size (of
about 30 nm), with an exponent nearly equal to

zero.
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The fractal approach is able to justify the empiri-
cal law of Hall-Petch, as well as the deviation of its
exponent, which is observed to be close to zero at
small size scales and to -1/2 at larger size scales.
The inversion of the Hall-Petch law, formally de-
scribed by positive exponents, still remains a not
fully understood phenomenon.

The predictions of the fractal approach for strength
(or hardness) and for the fracture toughness are
described by Egs. (9) and (10). Accordingly, we can
define a Fractal Structural Parameter FSP:

L 26 1y (12)
FSP =v*R* d ?
as an extension of the Gurland’s structural param-
eter [1].

Previous investigations on grain size distributions
[3] seem to suggest that y=2/3 (surface effects pre-
vail) at small scales, as well as y=1 at large scales
(volume effects prevail). These limit cases corre-
spond respectively to FSP « v'?’R™*d" or
FSP < v"’R°d". Since o_<k+FSP, this repro-
duces exactly the discussed deviation of the expo-
nent in the Hall-Petch law.

5. EXPERIMENTAL ASSESSMENT
AND MATERIAL DESIGN

Let us consider that the structural size effects pre-
dicted by Egs. (9) and (10) agree with the experi-
ments satisfactorily [4], so that we are herein more
interested in the effects of size and volumetric con-
tent of grains. We can rewrite Eqgs. (9) for strength
(or hardness) as:

3
(GC ~(1=v)ol™ )RE
vd

13 sy
:kﬁ[szzd ] —k X'

Therefore, the fractal approach predicts a power-
law between the auxiliary variables y and x, with the
exponent y comprised between 2/3 and 1. This is
equivalent to verify the validity of the FSP-based
approach. The advantage here is that the exponents
v, as well as the constant of proportionality k_, can
be easily obtained as best fit parameters.

When the material strength is predicted and y
determined, then the fracture toughness can be also
estimated by Egs. (11), as a best fit of:

(13a)
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Strength: comparison theory vs. experiments
(PCD, Huang et al.)

y=0.7812x% + 8.3009

13 } R?=10.996
6

7 8
log {x)

Fracture toughness: comparison theory vs.
experiments (PCD, Huang et al.)

13 y=0.8695x + 7.09940
12 R?=0.9938

G 7 8
log (x)
Fig. 1. (a) Experimental assessment: PCD strength

(Eq. (13a); [8]). (b) Experimental assessment: PCD
toughness (Eq. (13b); [8]).

3
(ch - (1 - V)K’(énaf'f)() )R2
y= 3

Y

v 2d?

2
3 3\ 20
:kKkﬁ(dezj =k,x °

on the parameters K,_,a..

We refer to the experimental investigation on fine
grained PCD materials [8,9] and on WC-Co alloy
[1], neglecting the inversion of the Hall-Petch law
observed at small scales for WC/Co [1].

In Fig. 1, the experimental assessment of the
fractal theory according to Egs. (13) (setting the
structural size arbitrarily equal the unity; all the pa-
rameters are expressed in [Sl] units) is presented
for the strength and toughness of PCD, deduced by
fitting the experimental data in [8]. Such experi-
ments strongly confirm the prediction of the fractal
approach. The exponent y = 0.78 for the considered
material is found belonging to the theoretical range
[2/3,1]; note that from the best fit we have deduced
20.=0.27, and as expected it is 0<20<1. The corre-
sponding laws for the PCD are fitted as follows:

(13b)

Strength: comparison theory vs. experiments
(PCD, Lammer)

y=0.8964x+7.3802
R*=0.9848

5 B 7 8 9
log (x)
Fracture toughness: comparison theoryvs.
experiments (PCD, Lammer)
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13 < y=0.9361x+ 7127

12 R*=0.9419
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Fig. 2. (a) Experimental assessment: PCD strength

(Eq. (13a); [9]). (b) Experimental assessment: PCD

toughness (Eq. (13b); [9]).

GC(d’ V) =
(1 _ V)G((:mam'x) +200 % 10° x V1.38d4).17’ (14a)
ch(d= V) =

(14b)

(1 _ V)K’(Cmamx) +100 x 106 x v1.33d4).13

in [SI] (c!™™ = 500MPa, K™= 2OMPa\/;).
Similar results are obtained by fitting the PCD ex-
periments described in [9], as reported in Fig. 2, or
on WC/Co alloy [1], as reported in Fig. 3.

In addition, considering a reference PCD mate-
rial with grain size d_and volumetric content v, we
can deduce the increments in the strength (or hard-
ness H = ) and fracture toughness expected for a
new PCD material, designed with different grain size
d and volumetric content v. For example, for the
hardness we would have to evaluate the ratio
V(H(d,v)-H(d v ))/H(d ,v ). The increments of the
hardness and of the fracture toughness for a stan-
dard PCD (v,=0.9, d =30 um, o™= 500MPa,
K™= 20MPa+/m ) are reported in Fig. 4, accord-
ing to egs. (14). This diagram can be considered an
example of material optimization map. Note the
small (upper) region where both the increments are
positive: a new material belonging to this optimal
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Strength: comparison theory vs. experiments
{WC-Co, Gurland)

15 e

" y=0.9494x + 7.1296
144, — R*=0.9817

7 § 9
log (x)
Fig. 3. Experimental assessment: WC-Co alloy

strength (Eq. (13a); [1]).

region will be harder and tougher than the standard
one.

6. CONCLUSIONS

A generalization of the Hall-Petch law for grain size
effect on material strength was introduced by
Gurland to take into account the volumetric grain
content. The result of our approach is a generaliza-
tion of the Gurland parameter, introducing a fractal
structural parameter (FSP), in which the scaling
related to the structural dimension R is also included
and in which the exponents are generalized. The
same approach is extended to the fracture tough-
ness; experiments on PCD materials and WC/Co
alloy seem to confirm its validity. Future works will
be focused on the inversion of the Hall-Petch rela-
tionship on material strength (formally described by
a fractal exponenty lower than 2/3), which here were
neglected.
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