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Emergence of the interplay between hierarchy
and contact splitting in biological adhesion
highlighted through a hierarchical shear
lag model

Lucas Brely,a Federico Bosia a and Nicola M. Pugno *bcd

Contact unit size reduction is a widely studied mechanism as a means to improve adhesion in natural

fibrillar systems, such as those observed in beetles or geckos. However, these animals also display

complex structural features in the way the contact is subdivided in a hierarchical manner. Here, we

study the influence of hierarchical fibrillar architectures on the load distribution over the contact

elements of the adhesive system, and the corresponding delamination behaviour. We present an

analytical model to derive the load distribution in a fibrillar system loaded in shear, including hierarchical

splitting of contacts, i.e. a ‘‘hierarchical shear-lag’’ model that generalizes the well-known shear-lag

model used in mechanics. The influence on the detachment process is investigated introducing a

numerical procedure that allows the derivation of the maximum delamination force as a function of the

considered geometry, including statistical variability of local adhesive energy. Our study suggests that

contact splitting generates improved adhesion only in the ideal case of extremely compliant contacts.

In real cases, to produce efficient adhesive performance, contact splitting needs to be coupled with

hierarchical architectures to counterbalance high load concentrations resulting from contact unit size

reduction, generating multiple delamination fronts and helping to avoid detrimental non-uniform load

distributions. We show that these results can be summarized in a generalized adhesion scaling scheme

for hierarchical structures, proving the beneficial effect of multiple hierarchical levels. The model can

thus be used to predict the adhesive performance of hierarchical adhesive structures, as well as the

mechanical behaviour of composite materials with hierarchical reinforcements.

Introduction

Animal contact elements exploiting dry adhesion, such as those
found in insects,1,2 spiders3,4 or geckos5,6 share a common
strategy to enable optimized attachment to a non-adhesive
substrate: contact is achieved through a large number of
fibrillar structures that interact with the surface through van
der Waals7 and/or capillary forces.8 A large variety of behaviours
have been observed,9 but in general the adhesive strength of
the contact pads has been found to increase as the size of the
terminal elements (i.e. spatulae or setae) decreases and their

number increases.1 Indeed, contact models such as that by
Johnson, Kendall and Roberts (JKR)10 predict an unlimited
increase in the adhesive strength as the size of the contact tips
decreases. This decrease in size also leads to an increase of the
total peeling line, i.e. the sum of all contact tip widths, which is
proportional to the peeling force according to thin-film peeling
theories.11 Additionally, as the size of the animal increases and
the dimensions of the contact units are reduced, hierarchical
splitting is observed. For example in geckos, the lamellae support
so-called setae, which are themselves split into hundreds of
spatulae.6 Similar structures are observed in arachnids.4 Fibrillar
contacts have been shown to be beneficial over non-fibrillar ones
in certain ranges of the mechanical parameters.12 Additionally,
the hierarchical arrangement of fibrillar adhesives has been
described as a way to increase the work of adhesion,13 optimize
surface adaptability14 or self-cleaning abilities15 and to avoid
self-bunching,13 and has been extended not only to the hairy
adhesive structures, but also to spider silk anchorages.16–18

Frictional properties of adhesive systems have also been recently
discussed.5,19,20 Despite these numerous works, important
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aspects remain to be discussed relative to the biological or
artificial fibrillar adhesives, such as the influence of hierarch-
ical structure on the load distributions to which the contact
elements are subjected, or on the energy dissipation occurring
during delamination. With the recent introduction of artificial
micro-patterned surfaces that mimic animal adhesion,21,22

including hierarchical structures,23,24 reliable analytical and
numerical approaches need to be developed in order to derive
optimization criteria for such systems25 or dependence on
various parameters26 and the interplay between contact size
and hierarchical organization needs to be adequately addressed.

In this work, we present an extension of the classical shear-lag
model to hierarchical configurations and introduce a numerical
approach to simulate the detachment process of thin films with
an arbitrary hierarchical structure from rigid substrates, with the
objective of calculating the load distributions acting on their
contact units, validating the theory and providing predictions
for the peeling force of hierarchical adhesives.

Model
Thin film peeling

Fig. 1A schematically illustrates a thin film, or tape, adhering to
a substrate and the longitudinal and shear stress distributions
sI(x) and tI(x) occurring at the interface along an infinitesimal
length dx when a load is applied in the vicinity of the detach-
ment front, referred to as the ‘‘peeling line’’.11 The interface
region where these distributions occur is referred to as the
‘‘process zone’’.27 Kaelble proposed to model the film deforma-
tion by assigning to it a finite axial, bending and shear stiffness,
in order to study the problem in terms of an elastic beam on
an elastic foundation.28 He proposed to use a differential
beam and adhesive element to extract these distributions
analytically, relating them to strain energy release considera-
tions. Considering that the detachment propagation of an
adhesive tape is a mixed mode fracture problem involving
normal (mode I) and tangential (mode II) load to failure, the
peeling front propagates when:

GI + GII 4 G (1)

where GI and GII are the strain energy release rates corres-
ponding to mode I and mode II failure, and G the adhesive
energy of the interface between the tape and the substrate.
Kendall also used energy balance criteria to analytically describe
the delamination (‘‘peeling’’) of a tape from a substrate, and
developed a general model in the case of a thin-film geometry.29

In his model, detachment occurs when

G ¼ Fc

w
ð1� cos yÞ þ Fc

2

2Ebw2
(2)

where FC is the detachment force, w the tape width, b the tape
thickness, E the tape elastic modulus and y the angle between
the load direction and the substrate, referred to as the ‘‘peeling
angle’’. Only when the load is parallel to the substrate, the
adhesive energy coincides with mode II strain energy release
rate, i.e. GI = 0 and G = GII, so that only the tangential forces

along the interface are responsible for the adhesive interface
failure, with:

G ¼ Fc
2

2Ebw2
(3)

In this case, the strain energy release rate is only linked to the
recoverable work of the deformable tape under tension.27 For
stiff tapes, (i.e. E - N), as the peeling angle increases, the
normal distribution becomes more critical and, especially
for large y values, the strain energy release rate is mostly
influenced by the non-recoverable work due to the advancing
peeling line:

Fc ffi
wG

ð1� cos yÞ (4)

The latter equation is usually associated with the Rivlin
model,30 which provides the peeling force of an inextensible
tape as a function of the adhesive energy.

Here, we consider the case where the tangential forces at the
interface are mainly responsible for the detachment, i.e. we
focus our analysis on small peeling angles. As shown in Fig. 1B,
in this case the strain energy release rate of the problem tends
to eqn (3). Hence, only the axial load of the attached tape

Fig. 1 (A) Differential beam element used in ref. 24 to extract normal
and shear load distributions at the interface between the tape and the
substrate. (B) Peeling force vs. angle for various models: Kendall’s model
(eqn (2)), Rivlin model (eqn (4)) and the peeling force limit in pure extension
(y = 0, eqn (3)). (C) Mode I and mode II strain energy release rate at
detachment as a function of the peeling angle.
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structure transferred trough the interface layer is considered
and the force balance can be reduced to a 1-D problem, usually
referred to as the ‘‘shear-lag model’’,31 leading to a simple
description of the load distribution. This loading configuration
corresponds to the case in which the detachment force reaches
its maximum, and is representative of the loading condition
acting on biological contact elements (e.g. a gecko toe pad)
in a stable attached configuration. Indeed, it has been shown
that animal attachment systems27,32–34 take advantage of the
increased adhesive strength at small peeling angles. Geckos, for
example, use opposing legs to stick to a surface in an inverted,
upside-down position, thus reducing the peeling angle and
optimizing adhesion.

Kaelble28 extracted the exact shear distribution from the tape/
interface shear lag model, which also allows to obtain the mode
II strain energy release rate from the finite shear stress level at
the peeling line:

GII ¼
Fc

2

2Ebw2
cos2 y (5)

From (eqn (2)) and (eqn (5)), the mode I strain energy release
rate can be obtained:

GI ¼
Fc

2

2Ebw2
sin2 yþ Fc

w
1� cos yð Þ (6)

Fig. 1C shows the contributions of the two considered
failure modes in a peeling test, showing that shear failure is
dominant at small angles, and in general remains non negligible
within the entire range of peeling angles observed in animal
adhesion (y o 201).

Hierarchical shear-lag model (HSLM)

A schematic of the considered hierarchical attachment system
geometry is given in Fig. 2A. For the reasons explained above,
we now focus our study on the case of a load directed parallel to
the substrate, since this provides significant insight in the role
of hierarchy and contact splitting, starting from the analysis
of the corresponding load distributions, and their influence
on delamination. Rather than directly transferring the load
between the tape (level-h structure) and the interface, inter-
mediate structures are introduced (level-(h � 1),. . ., level-1,
level-0) in the form of arrays of smaller tapes. The stress is
transferred to the substrate only through tape-like contacts that
support axial stress only, according to a Kendall model descrip-
tion. The attachment system thus becomes a self-similar struc-
ture that transfers load through hierarchically organized
contact units. The force acting on an infinitesimal length dx
of the level-h tape is shown in Fig. 2B. At each scale level-h, the
tape geometrical and mechanical properties are the width wh,
the thickness bh, the attached length lh, the detached length Lh,
the elastic modulus Eh, the axial load in the tape attached
length Ph, and the force transferred to the sub-level contacts
Fh�1. We assume that the contact is split at the lower level
(h � 1) along the attached length of the tape in Nh ‘‘rows’’ and
Nh ‘‘columns’’ (along x and y) of sub-level contacts (Fig. 2A).

To simplify the analytical model, we choose a number of
geometrical rules to define our hierarchical systems. First,
we impose that the addition of a scale level does not reduce
the total contact area, so that lh = Nhlh�1 and wh = Nhwh�1.
Additionally, we apply a general ‘‘self-similar’’ scheme
whereby all dimensions scale by the same factor between
hierarchical scales, so that bh = Nhbh�1 and Lh = NhLh�1.
Finally, we consider a constant elastic modulus E at every
scale level, which allows us to evaluate the role of pure
hierarchy, although it is not necessarily realistic for some
biological systems.2

We adopt a top-down scheme to determine the load sup-
ported by each contact, starting from the larger (level-h) struc-
ture. The load transfer between level h and level (h � 1) is
obtained from force balance on an infinitesimal length of the
level h attached region dxh (Fig. 2B), as:

dPh

dxh
¼ Nh

dNh

dxh
Fh�1 (7)

where dPh is the variation of the axial load over dxh and NhdNh

is the number of contact units on the infinitesimal area whdxh.
The load transferred to level h � 1 is assumed to be constant
along the width wh of the level h tape. The axial force in each
contact is:

Fh�1 ¼
Ebh�1wh�1

Lh�1
uh (8)

where uh is the axial displacement in the level h structure.
Substituting eqn (8) into eqn (7) and writing the strain in the

Fig. 2 (A) Schematic of the hierarchical attachment system. (B) Force
equilibrium between two hierarchical levels.
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level h structure as eh = duh/dxh = Ph/(Ebhwh), we obtain after
differentiation:

d2Ph

dxh2
¼ Ph

lhLh�1
(9)

We apply the boundary condition Ph(xh = 0) = P̂h, where P̂h is
the applied external load, and suppose that the length lh is
sufficiently long for the axial load to tend to zero at the far end
of the tape (as is verified in all the cases considered in this
study). This is equivalent to imposing Ph(xh = �N) = 0. We
obtain from eqn (9) the load distribution on level h as:

Ph xhð Þ ¼ P̂h exp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

lhLh�1

s
xh

 !
(10)

From eqn (10) we derive:

Fh�1ðxhÞ ¼ P̂h
lh

Nh
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

lhLh�1

s
exp

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1

lhLh�1

s
xh

 !
(11)

We can then repeat the procedure iteratively for the lower
levels, considering that the force applied as a boundary condi-
tion of a given contact at a given level is the force that has been
transferred from the above level, i.e.:

P̂h = Fh(xh+1) (12)

so that:

Fh�2 xh; xh�1ð Þ ¼ Fh�1 xhð Þ
lh�1
Nh�12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

lh�1Lh�2

s
exp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

lh�1Lh�2

s
xh�1

 !

. . .

F0 xh; . . . ; x1ð Þ ¼ F1 xh; . . . ; x2ð Þ l1
N1

2

ffiffiffiffiffiffiffiffiffi
1

l1L0

s
exp

ffiffiffiffiffiffiffiffiffi
1

l1L0

s
x1

 !

(13)

where h = 0 is the level where the tapes are in contact with the
substrate, i.e. the smallest scale level.

These results are valid when the deformations in the attached
regions of the level h structure are small with respect to the
deformations of those at level (h� 1). This assumption is generally
valid in the study of fibrillar adhesion, since due to the elongated
shape of tape-like elements and their relatively small contacts (see
e.g. ref. 35), the displacements in the attached regions are small
with respect to the ones in the detached region. If the attached
length is not sufficiently long for the axial load to naturally tend to
zero, eqn (9) can be solved by imposing a boundary condition of the
form Ph(x1 = �Lh) = 0, which leads to an analogous exponential
form for the load distribution. This case is not considered for
simplicity, since we are interested in evaluating cases where the
maximum of detachment force is achieved, corresponding to axial
loads naturally tending to zero within the contact length.

Hierarchical load distributions

Fig. 3 shows the typical exponential contact unit load distribu-
tion for two- and three-level structures whose geometrical and

mechanical properties are reported in Table 1, and applied
external loads P̂1 = 100 mN and P̂2 = 3 mN. In the two-level
(h = 0 - h = 1) structure (Fig. 3A), the contact units adhere to
the substrate and are directly attached to the tape. The expo-
nential distribution of force transferred to the contact units
presents a maximum at the peeling line (x1 = 0). In the case of a
three-level (h = 0 - h = 1 - h = 2) structure (Fig. 3B),
an intermediate level has been included, consisting of a set
of sub-tapes. The distribution presents multiple local force
maxima for each of the intermediate structures. The detach-
ment behaviour of the first structure can easily be predicted:
delamination occurs in the vicinity or the area where the load
peak occurs, after which peeling proceeds at a constant pulling

Fig. 3 Adhesion force distribution for 2-level (0–1) (A) and 3-level
(0–1–2) (B) structure applying an external load P̂1 = 100 mN and P̂2 =
3 mN, respectively.

Table 1 Gecko-like hierarchical structure geometrical and mechanical
parameters

Level E (GPa) W b L l N

0 2 200 nm 5 nm 0.5 mm 200 nm —
1 2 8 mm 200 nm 20 mm 8 mm 40
2 2 240 mm 6 mm 600 mm 240 mm 30
3 2 4.8 mm 120 mm — 4.8 mm 20
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force (as predicted by Kendall’s theory), so that a single ‘‘crack
front’’ propagates along the substrate. All subsequent local
detachment events will take place in the area adjacent to the
peeling front. In the second case, the delamination events in
the intermediate structures are simultaneous and several crack
fronts will be involved in the detachment process. This is
verified in simulations, as discussed in Section ‘‘Scaling of
adhesion with hierarchical levels’’. In both scenarios, the force
at which the system detaches depends on the specific overall
load distribution.

Scaling of hierarchical adhesive energy and strength

As discussed in section ‘‘Thin film peeling’’, the energy dis-
sipated by a detaching hierarchical structure can be obtained
by considering the energy balance during delamination,28

which can be written as:

dWh

dAh
� dUe;h

dAh
¼ dUI;h

dAh
(14)

where Wh is the work of the external force during detachment,
Ue,h is the stored elastic energy in the adhesive, UI,h the
available energy at the interface between the adhesive and the
substrate and Ah = whlh the attached area at level h. For a single-
level tape, the latter is usually written in terms of critical energy
release rate Gh

36 as:

dUI;h

dAh
¼ Gh (15)

In a hierarchical adhesive structure, this can be written as the
total energy that the lower scale structures can dissipate per
unit area of contact before complete detachment, so that:

Gh ¼
Wh�1
Ah�1

(16)

Thus, the total amount of dissipated energy can be obtained
from eqn (14) as:

Wh ¼
ð
Ah

Wh�1
Ah�1

dAh þUe;h (17)

This highlights the fact that in a hierarchical scheme, the
energy balance at the upper scales depends on the total energy
that the sub-scale structures can dissipate at full detachment,
and not directly on the maximum load they can bear before
detachment starts. Therefore, the stored elastic deformation
at lower hierarchical levels contributes to enhanced energy
dissipation. These considerations are an extension of those
presented in ref. 13, and are applied here to the detachment of
a thin-film contact unit initially attached to the substrate.
According to eqn (17), the total energy dissipated by these
contacts is:

W0 ¼ l0w0G0 þ l0 þ L0ð Þ F0c
2

2Eb0w0
(18)

here, G0 is the adhesive energy at the interface between
the contact unit and the substrate, and F0c

is the detachment
force of the contact units, which can be obtained from

Kendall’s equation (eqn (2)). At the upper hierarchical scale, the
available energy at the interface G1 is the total amount of energy
that the contacts can dissipate per unit area (from eqn (18)):

G1 ¼
W0

l0w0
¼ G0 þ 1þ L0

l0

� �
F0c

2

2Eb0w0
2

(19)

We can then repeat the procedure iteratively for an increasing
number of levels to obtain for each the available interface
energy (and therefore the detachment force, applying Kendall’s
energy balance):

Ghþ1 ¼
Wh

bhwh
¼ Gh þ 1þ Lh

lh

� �
Fhc

2

2Ebhwh
2

(20)

For y = 0, i.e. the previously considered particular case of
hierarchical shear lag, Kendall’s equation becomes:

Fhc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ebhwh

2Gh

p
(21)

Injecting eqn (21) in eqn (20), the scaling of the dissipated
energy between levels thus becomes:

Ghþ1 ¼ Gh 2þ Lh

lh

� �
(22)

so that each additional level gives an increase in the adhesive
strength by a factor

ffiffiffiffiffiffiffiffiffiffiffi
2þ b
p

, where b = Lh/lh is the ratio between
the detached and attached length of the introduced hierarch-
ical level ‘‘tape-like’’ structure. Thus, contrary to the analysis in
ref. 13, consideration of peeling in hierarchical structures leads
to a scaling dependence on the ratio of the attached/detached
lengths at each level. The case of nonzero peeling angles is
treated below, where eqn (21) is replaced by an angle-dependent
detachment force expression.

The scaling in adhesive energy in eqn (22) corresponds to
the ideal case where the introduction of a new hierarchical level
does not lead to a reduction of contact area, which is not
necessarily realistic, since a packing density smaller than 1
usually occurs in fibrillar interfaces. Therefore, we introduce a
‘‘packing density factor’’ a as the fraction of contact area Ac with
respect to the available area of contact as:

Ac,h�1 = aAh�1 (23)

where Ac,h�1 and Ah�1 are the available contact area and the
total contact area at level-h, respectively. The total energy that
the lower scale can dissipate (eqn (16)) thus becomes:

Gh ¼
dUI;h

dAc;h
¼ a

dUI;h

dAh
¼ a

Wh�1
Ah�1

(24)

Using the same procedure as in eqn (17)–(22) leads to the
following relationship between two adjacent levels:

Ghþ1 ¼ aGh 2þ Lh

lh

� �
(25)

Thus, adding realistic packing density leads to the possibility of
observing a decrease in the adhesive strength as a new scale
level is introduced, occurring when ao lh/(2lh + Lh). Here again, the
ratio between detached and attached length of the sub-contacts
is fundamental in adhesive strength optimisation.
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Numerical model

To verify the mechanisms outlined in the previous section, we
develop a numerical procedure to simulate the delamination of
hierarchical structures. The approach is similar to that adopted
in the literature in models used to describe static and dynamic
friction,37–39 although here we do not consider these aspects
for simplicity. The system is discretized and modelled using a
linear system of equations based on the Finite Element Method
(FEM) in one dimension.40 In particular, for a two-level system,
the length l1 is discretized in n1 segments of length l1/(n1 � 1)
each containing N1

2/(n1� 1) contacts, and we add one detached
segment of length L1. The linear system of load-displacement
equations of size n1

2 is written as Q = Ku1, where K is the
stiffness matrix derived using eqn (8) and explicitly provided in
the Appendix. The external load P1 is applied on the terminal
element of the discretized tape, so that the external force vector
is Q( j) = P1 for j = n1 and Q( j) = 0 for j a n1. The equilibrium
is written as u1 = K�1Q and the load distribution acting on
each contact unit is then computed from the corresponding
displacement field. For a three-level structure, the above
systems are assembled over the length l2 which is discretized
in n2 segments of length l2/n2, each of which contains N2

2/n2

sub-units, resulting in a linear system of size (n1n2)2. The
number of levels can be increased following the same iterative
procedure. The explicit form of the stiffness matrix in this case
is also provided in the Appendix and the schematic of the
element connectivity is shown in Fig. 7.

Simulations are performed by imposing a stepwise incre-
mental displacement. An elasto-plastic force/separation law is
introduced at the contact level to simulate the load response of
the single contacts as well as the detachment behaviour, i.e. the
initial response of these bonds is linear elastic until it reaches
the theoretical peeling force from eqn (21) and becomes
perfectly plastic until full detachment occurs.

Statistical distributions are also introduced in the numerical
model for the adhesive energy G0 to capture the influence of
surface roughness, defects and inhomogeneities, as occurs in
real systems.41 Therefore, surface energies G0(xh) are randomly
assigned for each segment along xh extracting the values from a
Weibull distribution,33,42 as shown in the inset of Fig. 4C
considering various shape parameters m.

Results and discussion
Scaling of adhesion with contact number and size

In order to first verify the role of fibrillar contact number and size
in adhesion, simulations are performed with varying lengths and
numbers of contact units. We consider a level-1 (non-hierarchical)
structure, with fixed geometry and mechanical properties, and a
level-0 structure with the same mechanical properties in contact
with the substrate. The reference structure has the properties
reported in Table 1 (level-1), which are representative of the gecko
spatula.5,35,43 To evaluate the influence of the contact unit size,
different values of N1 are considered (N1 = 40, N1 = 80, N1 = 120),
allowing an increase in the total number of contacts N1

2, and a

reduction in their dimensions at level-0, since the total contact
area is constant. A value of G = 30 mJ m�2 is chosen, which
corresponds to the typical adhesive energy between glass and a
hard polymer.44 This value is taken as the scale parameter of
the Weibull distribution (Fig. 4C) in simulations. As a first
approximation, the average adhesive energy increase with the
reduction of the contact tip size predicted by contact models10

is neglected. From eqn (21) and (22), we obtain the theoretical
force at which detachment initiates as:

F1c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eb1w1

2G0 2þ L0

l0

� �s
(26)

The numerically calculated external force F1 vs. displacement Z at the
load application point is shown in Fig. 4A for different N1 values.

Fig. 4 (A) Force vs. displacement plots during detachment for different
contact array numbers and sizes. (B) Maps illustrating the propagation of
the peeling front during delamination for N1 = 40 (first row) and N1 = 120
(second row) for three successive displacement values: Z = 0.5 mm,
Z = 0.55 mm and Z = 0.6 mm. The colour scale represents the contact unit
force intensity. The area where contact units are detached is displayed in
black. (C) Detachment force as a function of the ratio d between the number
of fully detached contacts and the initial number of contacts for various shape
parameter values m of the Weibull distribution (shown in the inset).

Paper Soft Matter



This journal is©The Royal Society of Chemistry 2018 Soft Matter, 2018, 14, 5509--5518 | 5515

In all cases, there is an initial linear elastic deformation phase, then
the load reaches a plateau corresponding to the detachment phase.

Despite statistical variation in the local detachment forces,
the average global adhesive force during detachment is rela-
tively constant, and coincides with the theoretical value in
eqn (26). Thus, despite the increase in the total peeling line
due to contact splitting, usually indicated by adhesive theories
as one of the main parameters governing adhesion,1,11 the
overall detachment force is found to be constant with the
number of contacts. This is due to the fact that the variation
in the load distribution shown in Fig. 4B counteracts the effect
of contact splitting, i.e. the load is distributed over a smaller
fraction of the available contacts as their size decreases, so that
there is no dependence of the overall detachment force with N1.
Only a uniformly distributed load applied to all contact units
would provide an improvement in the delamination load with
contact size reduction F0c /

ffiffiffiffiffiffi
N1

p� �
. In other words, only in

the ideal case of extremely compliant contacts would contact
splitting be beneficial.

Fig. 4C shows that the dependence of the detachment force
on the chosen type of Weibull distribution is limited: for all
three chosen shape parameters (governing the dispersion of the
distribution) the force remains fairly constant as delamination
proceeds, i.e. as function of the ratio d between the number of
fully detached contacts and the initial number of contacts.

Scaling of adhesion with hierarchical levels

We now consider the level-2, level-1 and level-0 structures with
the parameters given in Table 1, as in the case discussed in
Section ‘‘Hierarchical load distributions’’. The adhesive energy
is assigned as in the previous simulation. We also introduce a
distribution for the contact unit stiffness K0 = Ew0b0/L0, so that
K0(xh) are randomly assigned along the attached length of the
adhesive system, extracting again the value form a Weibull
distribution. The load response during delamination of the
resulting hierarchical system is shown in Fig. 5A (the Weibull
distribution is shown in the inset). Comparing this structure
with the one obtained from the same number and dimensions
of contacts, but without the intermediate level (level-1), with the
analytical detachment force as in the previous simulation, an
increase in the total detachment force can be observed for the
3-level structure, together with an increase in the total dissipated
energy (the integral of the force vs. displacement curve). Due to
the particular shape of the load distribution within the hierarch-
ical system, more contacts are involved during the detachment
process, resulting in an increased overall detachment force. As
previously, an analytical force at which detachment occurs can
be calculated from eqn (21) and (22) as follows:

F2c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eb2w2

2G0 2þ L1

l1

� �
2þ L0

l0

� �s
(27)

This load level is also plotted in Fig. 5A, showing good agreement
with numerical simulations. The increase in adhesive strength can
be explained by the fact that the detachment process involves the
creation of multiple ‘‘crack fronts’’, as illustrated in Fig. 5B, which

is beneficial to the overall adhesive performance. We note that the
hierarchical load distribution is observed even with the random
distributions introduced on detachment energies and contact unit
stiffnesses. As shown in Fig. 5C, the load distribution during the
3-level peeling test displays some noise due to the statistical
distributions, but can still be fitted by the theoretical distribution
obtained in the deterministic case. Results in terms of global
detachment force remain relatively insensitive to the local varia-
tions at the contact level, as in the previous simulations. However,
the present model only considers one-dimensional effects. In a
more realistic scenario, two- and three-dimensional load concen-
trations as a result of imperfect contact could lead to a decrease in
the overall detachment force. As the system starts to detach, an
equilibrium between the propagation of different crack fronts is
reached. These results confirm that the maximum load that an
adhesive structure can bear is related principally to the energy
that can be dissipated by its interfacial contacts rather than to
their delamination strength. In other words, the increase in
detachment strength is mainly due to the increase in adhesive

Fig. 5 (A) Force vs. displacement curves for 2-level and 3-level structures.
(B) Propagation of multiple peeling fronts during simulation of the 3-level
structures. (C) Adhesion force distribution including statistical distributions
over the contact length of the system.
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energy occurring at each additional hierarchical level. Addi-
tionally, these results highlight the fact that as the contact sizes
become critical, biological adhesives adopt hierarchical orga-
nization to maintain the presence of multiple peeling fronts
over the whole length of the attached system, giving rise to
optimized distributions and developing a maximal delamina-
tion force from a given overall contact area.

The application of the proposed model for contact load
distribution within a hierarchical attachment geometry is limited
to the transfer between axial load in the tape and tangential forces
within the interface, but the proposed method to extract the
scaling of adhesive strength from the energy balance can be
extended to different loading cases. Let us consider for example
peeling under pure bending as described in ref. 45, where a
rotation is applied at the end of the detached length rather than a
force parallel to the substrate. In this case, the elastic energy term
in eqn (17) no longer corresponds to the tensile strain energy due
to axial forces, and is now due to the bending of the tape, so that:

Wh ¼ lhwhGh þ lh þ Lhð Þ 6Mhc
2

Ebh3wh
(28)

where Mhc
is the applied bending moment when detachment occurs.

At the upper level, the available energy at the interface becomes:

Ghþ1 ¼ Gh þ 1þ Lh

lh

� �
6Mhc

2

Ebh3wh
2

(29)

Introducing the relationship between the critical bending
moment and the geometrical and mechanical properties of
the system, we have:45

Mhc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ebhwh

2Gh

6

s
(30)

The scaling of adhesive strength when a new hierarchical level
is introduced becomes:

Ghþ1 ¼ Gh 1þ 1

bh2
þ Lh

bh2lh

� �
(31)

here, in contrast to the shear lag case, the tape thickness strongly
influences the adhesive properties of the hierarchical system. In
a more general case, the peeling of the adhesive tape involves
tensile, shear and bending strain energies, which are stored in
the interface as the detachment propagates. Since the analytical
calculation of the critical tensile, shear and bending load and the
corresponding strain energies stored in the sub contacts as a
function of the tape geometries are difficult to find in closed
form (see ref. 28), numerical models as the one presented here
are useful for the calculation and optimization of hierarchical
systems when mixed loading conditions are considered.

Peeling angle-dependency of hierarchical tape arrangements

In terms of load distributions, both normal and tangential loads
are present for peeling angles greater than zero. For the tangential
component, the distribution remains the same as for the
zero-angle case discussed in Section ‘‘Hierarchical Shear-Lag
Model’’, with reduced amplitudes. For the normal component, a

closed-form analytical solution cannot be derived for a thin film,
since it would require the solution of a nonlinear system of
equations. However, eqn (20) can be generalized using Kendall’s
theory (eqn (2)) to the detachment of a thin film at a peeling
angle y, and the relationship between the detachment force and
available interface energy at a given level h can be written as:

Fhc ¼ Ebhwh cos y� 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cos yÞ2 þ 2Gh

Ebh

s !
(32)

This expression replaces eqn (21) in the case of nonzero angle
peeling.

Starting from level-0, the detachment force of each contact
unit is calculated as a function of the contact interface energy.
The upper level available energy and detachment forces are then
iteratively calculated following this scheme in order to derive the
overall detachment force. We apply this iterative procedure to
the whole structure described by Table 1 (level-0, level-1, level-2
and level-3). Fig. 6A illustrates the scaling of available adhesive
energy at the interface Gh for each considered level as a function
of the peeling angle. A clear advantage of a hierarchical arrange-
ment with multiple levels is highlighted in terms of energy
dissipated by the ‘‘hierarchical interface’’ at small angles.

As the peeling angle increases, the available energy at each
level tends to that at the contact level G0, so that no improve-
ment is obtained from structural features. The angle depen-
dency is that found in single-peeling theory, and results show
that the efficiency of the hierarchical structures is also angle-
dependent, as shown in Fig. 6B.

Conclusions

In conclusion, we have developed a generalization of the shear lag
model to describe hierarchical fibrillar systems such as those
observed in gecko and arachnid attachments and applied it in
numerical simulations. We have shown that improved adhesion in
fibrillar structures is not simply due to contact splitting alone, but

Fig. 6 (A) Scaling of the adhesive energy of hierarchical self-similar
tape structures: overall adhesive strength as a function of peeling angle
for 2-level, 3-level and 4-level structures with constant overall number of
contacts. (B) Overall adhesion force vs. peeling angle y for the three
structures, normalized with respect to the y = 0 value.
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rather to hierarchical organization, giving rise to optimized load
distributions, enabling reduced stress concentrations, and therefore
a reduced risk of detachment. In fact, we show that the effect of
contact splitting, which was originally derived for punch-like geo-
metries using a JKR model10 and discussed in detail in ref. 12, is
counterbalanced by the effect of load concentrations in the case of
tangential tape peeling, and therefore is not beneficial for increasing
adhesion in the absence of hierarchical structure, except in an ideal
case of extremely compliant contacts. These results are consistent
with those obtained with other approaches such as the spring-block
model in the case of static friction.46 Hierarchical architectures are
shown to provide the means to generate multiple delamination
fronts once detachment initiates, and therefore to increase energy
dissipation and adhesive strength. The general scaling behaviour of
the adhesion of hierarchical structures is discussed for constant and
reduced contact areas, showing a clear advantage in providing
multiple hierarchical levels. These mechanisms could help explain
results such as those reported in ref. 47, where an increase in animal
pads’ adhesive efficiency with size, for which the mechanism is still
unclear, is observed. Both the calculated pull-off forces (in the 50 mN
to 50 mN range for an increasing number of hierarchical levels)
and the gain in adhesive strength at each hierarchical level (from
50% to 150%), obtained for typical geometrical parameters such
as those in Table 1, are compatible with existing numerical12 and
experimental48 results on hierarchical adhesives. The presented
model and numerical analysis provide for the first time an
evaluation of the influence of load distributions and simulta-
neous delamination fronts in peeling problems, and the study
contributes to providing a better understanding of the mechan-
isms of adhesion of hierarchical structures. Results can be used
to provide design and optimization criteria for artificial adhesive
structures, and potentially for optimized composite materials
with hierarchical reinforcements.49
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Appendix
Equations for the numerical model

For a two-level structure, the linear system of equations for the
FEM simulations is banded and of size n1

2:

where k1 = n1E1b1w1/l1, k1d = E1b1w1/L1 and k0 = (N1
2E0b0w0)/

(n1L0).
For a three-level structure (Fig. 7), we first build the stiffness

matrix corresponding to the contribution in the linear system
of the level-0 and level-1:

K1 ¼

K 0 � � � 0

0 K . .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 K

2
66666664

3
77777775

(A2)

The sub-matrixes in the above matrix are obtained from (A1)
with k1 = (n1N2

2E1b1w1)/(n2l1), k1d = (N2
2E1b1w1)/(n2L1) and

k0 = (N1
2N2

2E0b0w0)/(n1n2L0).
We then add the level-2 contribution:

K2ij ¼

k2 for i ¼ j ¼ 1ð Þ [ i ¼ j ¼ n1n2ð Þ

2k2 for i ¼ j ¼ pn1ð Þ \ ian1ð Þ \ ian1n2ð Þ p 2 N

�k2 for i ¼ pn1ð Þ \ i ¼ j � pn1ð Þ

8>>><
>>>:

(A3)

with k2 = n2E2b2w2/L2.
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