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ARTICLE INFO ABSTRACT

Keywords: Cellular structures having the internal volumes of the cells filled with fluids, fibres or other bulk materials are
Composite very common in nature. A remarkable example of composite solution is the hygroscopic keel tissue of the ice
Cellular material plant Delosperma nakurense. This tissue, specialized in promoting the mechanism for seed dispersal, reveals a
Orthotropy

cellular structure composed by elongated cells filled with a cellulosic swelling material. Upon hydrating, the
filler adsorbs large amounts of water leading to a change in the cells’ shape and effective stiffness.

This paper, inspired by the configuration of the aforementioned hygroscopic keel tissue, deals with the
analysis of a two-dimensional honeycomb made of elongated hexagonal cells filled with an elastic material. The
system is treated as a sequence of Euler-Bernoulli beams on Winkler foundation, whose displacements are de-
rived by introducing the classical shape functions of the Finite Element Method. The assumption of the Born rule,
in conjunction with an energy-based approach, provide the constitutive model in the continuum form. It emerges
a strong influence of the infill’s stiffness and cell walls’ inclination on the macroscopic elastic constants. In
particular, parametric analysis reveals the system isotropy only in the particular case of regular hexagonal
microstructure.

Even though a rigorous analysis of the keel tissue is well beyond our aim, the application of the theoretical
model to estimate the effective stiffness of such biological system leads to results that are in good agreement with
the published data, where the keel tissue is represented as an internally pressurized honeycomb. Specifically, an
energetic equivalence gives an explicit relation between the inner pressure and the filler’s stiffness. Optimal
values of pressure and cell walls’ inclination also emerge.

Finally, the theory is extended to the hierarchical configuration and a closed form expression for the mac-
roscopic elastic moduli is provided. It emerges a synergy of hierarchy and material heterogeneity in obtaining a
stiffer material, in addition to an optimal number of hierarchical levels.

Winkler model
Linear elasticity
Delosperma nakurense
Keel tissue
Hierarchy

1. Introduction difficult to quote without omissions the vast literature flourished on the
mechanical modelling of such cellular structures in the last years.

Cellular materials are commonly observed in nature (Gibson et al., Noteworthy contributions such as Gibson and Ashby (2001),

2010; Meyers et al., 2008; Altenbach and Oechsner, 2010; Gibson and
Ashby, 2001; Gibson, 2012). Due to their specific structural properties,
they are very promising for engineering applications in a variety of
industries including aerospace, automotive, marine and constructions
(Wilson, 1990; Thompson and Matthews, 1995; Bitzer, 1994). As an
example, honeycombs are widely used in lightweight structures and
sandwich panels because of their high bending stiffness and strength at
low weight.

Many authors extensively studied cellular materials and it would be

Gibson (1989) and Gibson et al. (1982) present a detailed discussion of
the characteristics of many periodic cellular materials and provide
simple relations between their density and equivalent mechanical
properties through the application of beam theory. Other authors, like
Ongaro et al. (2016b), Davini and Ongaro (2011), Kumar and
McDowell (2004), Burgardt and Cartraud (1999) and Chen et al. (1998)
suggest alternative approaches to solve the crucial passage from dis-
crete to continuum and to derive the constitutive model for the in-plane
deformation of various two-dimensional microstructures by applying
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the energy equivalence. In addition, Warren and Byskov (2002),
Wang and Stronge (1999), Dos Reis and Ganghoffer (2012) and
Dos Reis and Ganghoffer (2010) exploit a method based on the prin-
ciples of structural analysis to obtain the homogenized continuum
model of the discrete lattice.

Although many efforts have been devoted to the prediction of the
effective properties of regular cellular materials with empty cells, in the
literature few investigations concern the characterisation of cellular
structures having the internal volumes filled with fluids, fibres or other
bulk materials as commonly happens in nature (Georget et al., 2003;
Niklas, 1992; 1989; Van Liedekerke et al., 2010; Warner et al., 2000;
Wu and Pitts, 1999; Zhu and Melrose, 2003; Mihai et al., 2015). For
example, in the context of sandwich panels, D'Mello and Waas (2013)
and Burlayenko and Sadowski (2010) present a finite element-based
technique to evaluate the structural performance of foam filled hon-
eycombs. It emerges an increase in the load-bearing capacity of the
material and an improvement in both the effective elastic properties
and energy absorption due to the presence of the filler. More recently,
Ongaro et al. (2016b) analyses the mechanics of a two-dimensional
filled honeycomb by representing the microstructure as a sequence of
beams on Winkler elastic foundation. The homogenized elastic moduli
derived confirm, from a mechanical behaviour point of view, the ben-
eficial effect due to the filling material. Other works,
Harrington et al. (2011) and Guiducci et al. (2014), concerning the
nature’s wonders of design, study the mechanics of the hygroscopic keel
tissue of the ice plant Delosperma nakurense (Fig. 1) by representing it as
a network of elongated cells internally pressurized. The ice plant, that
grows in the arid regions of Africa, is a source of inspiration because of
its sophisticated origami-like movement mechanism for seed dispersal.
The plant, in particular, has adopted its anatomy and material archi-
tecture to the unfavourable environmental conditions by producing a
special seed capsule to prevent the premature dispersion of the seeds. In
the dry state, Fig. 1, five petal-like sections, the protective valves, cover
the seed compartment as a box-like lid. When it rains, the valves unfold
backwards revealing a seed compartment composed by five seed
chambers partitioned by five septa, Fig. 1. Within few minutes, most of
the seeds are splashed out by the falling water (Lockyer, 1932). When
the capsule dries up, the valves return to the original position. The
specialized organ promoting this movement is the hygroscopic keel,
Fig. 1. In the dry state, this tissue consists of a network of elongated
cells filled with a ‘swelling cellulosic inner’ (CIL). If hydrated, the CIL
absorbs large amounts of water giving rise to a change of the keel initial
geometry and stiffness, Fig. 1. In addition, experimental observations
(Harrington et al., 2011) reveal that the filler contains a soft inclusion
that behaves like an elongated, thin septum partitioning the internal
volume of the cell. Consequently, the cell walls’ coupling effect due to
the presence of the filling material is compromised. Though many
studies experimentally investigated the morphology and composition of
the keel, little is known about the relation between microstructure’s
parameters and macroscopic mechanical behaviour (Guiducci et al.,
2014).

Hierarchy is another way to enhance the mechanical properties of
lightweight materials and structures.

water

dry state
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Various authors studied structural hierarchy in biological systems
(Gibson, 2012; Fratzl and Weinkamer, 2007; Mattheck and Kubler,
1995; Pan, 2014; Gao, 2010; Chen and Pugno, 2013) and man-made
materials (Barthelat and Mirkhalaf, 2013; Sanchez et al., 2005; Fratzl,
2007). Among others, Pugno and Chen (2011),
Haghpanah et al. (2014), Ajdari et al. (2012), Fan et al. (2008) and
Taylor et al. (2011) provide numerical and theoretical models, force or
energy based, to understand the role of hierarchy on the mechanical
behaviour of cellular solids. All of them conclude that many desirable
properties, like stress attenuation, superplasticity, and increased
toughness, are due to hierarchy. Conversely, for classical cellular ma-
terials, the introduction of some levels of hierarchy is detrimental for
the specific stiffness. In spite of this, in the case of hierarchical archi-
tectures of different types of fibre bundles, increasing the number of
hierarchical levels leads to an improvement in the material strength
(Bosia et al., 2012).

Inspired by the previously introduced hygroscopic keel tissue, this
paper deals with a two-dimensional composite cellular material made of
elongated hexagonal cells, filled with an elastic medium. The study
provides a theoretical model, based on the Born rule, that is able to
understand the mechanics of the examined orthotropic configuration and
is general enough to investigate the effects of adding some levels of
hierarchy. This work is organised in 6 sections, including this introduc-
tion. Section 2 initially illustrates the mathematical formulation and
modelling technique while, in Section 3, the effective elastic constants
and constitutive equations are derived. Some considerations about the
influence of the microstructure parameters, such as the stiffness of the
filler and the cell walls’ inclination, are presented in Section 4, as well as
the results of the application of the theoretical model to the biological
keel tissue. Despite a detailed investigation of the biological problem is
beyond our scope, it emerges that the elastic moduli obtained in this
paper agree with those proposed in the literature. Finally, in Section 5,
the theory is extended to the hierarchical configuration and explicit ex-
pressions for the macroscopic elastic moduli are derived. As a conclusion,
Section 6 summarizes the main findings.

2. Problem statement: geometrical description and theoretical
modelling of the discrete system

2.1. Geometrical description

In terms of crystallography, the configuration of the composite
material considered here can be described as the union of two simply
shifted lattices (Fig. 2(a))

Li(¢) = {x € R% x = nll, + n’l,, with(n!, n?) € 2%, L,(¢)

=s+ L(¥), @
with
1, =(2¢cosb, 0), L, =(€cosb, £(1 + sinb)) 2)
the lattice vectors,
s = (£cosB, £sinb) 3)

wet state

Fig. 1. A schematic representation of the hygroscopic keel tissue of the ice plant Delosperma nakurense.
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Fig. 2. Theoretical modelling of the composite hexagonal microstructure: (a) geometrical modelling, (b) the unit cell.

the shift vector, £ and 6, respectively, the length (the lattice size) and
angle of inclination of the cell walls.

2.2. Theoretical modelling

2.2.1. The discrete system continuum-springs

The discrete system is treated as a sequence of Euler-Bernoulli
beams on Winkler foundation, where a series of independent, linear
elastic springs, the Winkler foundation, represent the material within
the cells. In particular, each beam is supported by two sets of springs:
the springs a, in the — 7, direction, and the springs b, in the 5, (Fig. 3).

Being a rigorous analysis of the biological keel tissue a complex
undertaking that does not coincide with the scope of our investigation,
in the present paper the missing cell walls’ coupling effect caused by the
septum is modelled by anchoring the springs at the nodes of the lattice
L3, defined by

Li(6) = 2s + L (0). @

As illustrated in Fig. 2(a), the nodes of L3 are connected to the lattice
L, by means of line elements that, from a mechanical point of view, are
represented as Euler—Bernoulli beams having stiffness much smaller
than the stiffness of the cell walls. Consequently, the energetic con-
tribution of the beams composing the lattice L3 can be neglected with
respect to those composing the skeleton of the cells (i.e., the principal
lattices L; and L,), introduced in the following section.

With reference to the equilibrium conditions of the springs’ an-
chorage points it should be noted that the forces brought by the springs
to such nodes balance with one another because of the symmetry of the
hexagonal cells.

(a)

Fig. 3. The discrete system continuum-springs: (a) springs a, (b) springs b.
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In particular, let us focus on the hexagonal cell illustrated in Fig. 4,
where each beam is connected to the central point of the cell by closely-
spaced elastic springs (i.e., the Winkler foundation). Note that, for ease
of reading, in Fig. 4 the series of closely spaced springs are schemati-
cally represented by a single spring connecting the beams to the central
point of the cell. As it can be seen, the symmetry of the hexagonal cell
leads to a symmetric configuration of the springs. To make it more
clear, in Fig. 5 the two sets of symmetric springs (i.e., the springs a
represented in blue and the springs b represented in red) are enhanced.
Let us now imagine to apply external forces to the cell, leading to a
generic deformation of the cell. Again, because of the symmetry of both
the hexagonal cell and the configuration of the springs, it emerges that,
in terms of anchorage points (i.e., the central point of the cell), the
forces brought by the springs balance with one another. Further details
are provided in Section 2.4.

2.2.2. The Euler-Bernoulli beam on Winkler foundation element

In the two-dimensional Euler-Bernoulli beam, each node has three
degrees of freedom, two translations and one rotation. Thus, the vector
of nodal displacements can be expressed as
u® = [u; uj]T = [wvi g u; v (%]T~ (5)

According to the Finite Element Method (FEM), the axial and
transverse displacements at every point within the beam are approxi-
mated by

[u(x)] - WO,

v(x) 6)

with (0 < x < ) and

Fig. 4. The anisotropic hexagonal cell in the Winkler model with focus on the
springs’ anchorage point.
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SRR

Fig. 5. Equilibrium of the forces at the springs’ anchorage point: the two sets of symmetric springs (springs a represented in red, springs b represented in blue). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

h3
120 -v9)°
7 respectively, the tensile and bending stiffness (per unit width) of the
beams, E;, v, h, 4, in turn, Young’s modulus, Poisson’s ratio, thickness,

W(x) = Y(x) O 0 Yk o 0 ] with K,, the Winkler foundation constant, C, = 2 and D, =

0 W(x) W) 0 Wx) %)

is the shape functions matrix, whose components are

weo=1=5 w01 (5 < o5) e =(F-o() ()

x x\? x)? x\? x\?
Yx) =—, Ysx) =3|1—| =2, ) =11=] +|=]) |¢-
=7 ) (e) (e) 1) (e) (6) (®)
The elastic strain energy of the Euler-Bernoulli beam on Winkler and length of the beams, while (-) = a) and () = 52( ) . Substituting
foundation element can be evaluated as the sum of three terms (Ongaro 8 15) and (16 l’ d ox
et al., 2016b; Dinev, 2012): (8) into (15) and (16) leads to
1 1 1 Cel€ 0 0 — Col¢ 0 0
e — — (¢ T-ke c + —(Au®? T,ke Au®?® + —(A e,b T,ke A e,b.
wh = S )Tk + (A Tki, A 5 (AU KyAu 9 0 12D,/¢* 6D,/ ¢? 0 —12D,/¢* 6D,/&?
2 2
The first is the elastic energy due to the axial and bending de- 15 0 6D,/¢ 4De/€ 0 —6Dy/¢ 2Dl ¢
formations of the beam, the second and third are related to the elon- =Gl 0 0 Cel€ 0 0
gation of the springs, 0 —12D,/6* —6D,/¢* O  12D,/6% — 6D,/¢>
0 6D,/ ¢? 2D,/ ¢ 0 — 6D, /6>  4D,/¢
Au*® = [Auf Auf]T, (10 4 ¢ 4 4
17
T
Au = [Auf Auj] . (11)  and
In particular, for the beams 0-1, 0-2 and 0-3, the quantities in (10) 0 0 0 0 0 0
and (11) are, respectively, 0 13K,,/35 11K,,¢/210 0 9K,,/70 — 13K,,£/420
- : 1 . 0 11K,£/210 K,£?/105 0 13K,£/420 —K,£%/140
a Uy — Ug Uy — Uy wf =
Auf=| 'l Aw =t 0 0 0 0 0 0
[ | ] (12) 0 9K,/70  13K,¢/420 0 13K,/35 —11K,¢/210
- - 1 0 —13K,#/420 —K,¢%/140 0 —11K,£/210 K, £?/105
_ | —uy b _ Uy — Us
Auj = w —uy | Au; = [uz —us |’ 13) . (18)
_ i i} It should be noted that there are different approaches in evaluating
Auf = Uo — Us Aud = Yo — g [ the stiffness matrix of beam elements on elastic foundations
| U~ s | U — Us | 14) (Tsiatas, 2014). The two main techniques are based on either the use of

approximated shape functions (Janco, 2010; Kuo and Lee, 1994; Hosur
and Bhavikatti, 1996; Chen, 1998) or the development of exact ones
(Eisenberger and Yankelevsky, 1985; Sen et al., 1990; Razagpur and
Shah, 1991). In the first case, both ki and ki, are evaluated by
adopting the cubic polynomial shape functions typical of the Eu-
ler-Bernoulli beam, listed in (8). In the second, the shape functions are
derived by solving the governing differential equation of the Eu-
[kpl; = ‘/‘g DglP,-”(x)lI‘"-(x) dx, i,j=23,56 ler-Bernoulli beam resting on Winkler foundation (Eisenberger and

0 Yankelevsky, 1985). However, despite the simplifications introduced,

Finally, with obvious notation, kj and ki, in turn, stand for the
stiffness matrix of the classical Euler-Bernoulli beam and of the Winkler
foundation. In the FEM framework, their components are obtained by
applying the strain energy principle (Tsiatas, 2014). In particular,

e ’ '
fo CoV ()W) dx, i,j=1,4,

0, otherwise @5) several existing studies dealing with a broad range of engineering

and problems (Janco, 2010; Tsiatas, 2014; Karkon and Karkon, 2016)
conclude that the results of the numerical implementations based on

» ‘/“‘) K U)W () dx, i,j=2,3,5,6 the approximated solution compare favourably to those obtained by the
[ f]l] exact ones. Considering this and aiming to obtain a more mathemati-

0, otherwise, (16) cally tractable problem, in this work the approximated approach is
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adopted (cf. Eq. (16)).
2.3. Elastic energy of the discrete system

For any given deformation, the elastic energy representative of the
whole discrete structure, W, can be evaluated from the analysis of the
unit cell of the periodic array.

As illustrated in Fig. 2(b), the unit cell is composed by the central
node 0 and the external nodes 1, 2, 3, 4, 5, 6, linked by the line ele-
ments 0-1, 0-2, 0-3, treated as Euler-Bernoulli beams on Winkler
foundation, and 0-4, 0-5, 0-6, modelled as Euler-Bernoulli beams. In
the global reference system (e;, e,), the beams are represented, re-
spectively, by the vectors

b1 = ].1 — S,
=(s - 1)/2.

b2 = 12 — S, b3 = —S, b4 =S, b5 = —11 — S, b6

19)

The elastic energy W, in particular, is obtained by summing the
elastic energies of the beams. However, as stated in Section 2.2.1, the
contribution of the beams composing the lattice Ls;, 0-4, 0-5, 0-6, is
assumed to be negligible with respect to those composing the principal
lattices L, and Lo, 0-1, 0-2, 0-3. Consequently, in evaluating W, only
the beams 0-1, 0-2, 0-3 will be considered.

Furthermore, as it can be seen in Fig. 2(b), the first node of each
beam coincides with the central node 0, where it is imposed the balance
of forces and moments. This condition guarantees the equilibrium of the
examined cell and allows us to condense the degrees of freedom of 0,
leading to

W=W(, Au}, Au)),  j=1,2,3, (20)
with

Auf = [u — ug), Au) = [ — uy], @1
Auf = [, —uy],  Aud=[u, - us), (22)
Auf = [w; —us], Auj = [u3 — ug. (23)

2.4. Discussion

According to our method, it emerges that the elastic energy of the
discrete system is given by (cf. Eq. (20))

W=Ww, A}, Aud), j=1,2,3 (24)

In particular, the energetic contribution due to the Winkler foun-
dation,

Wivinkier = WWinkler(AuL;a Aul})’ J =123, (25)

is a quadratic function of the elongation of the springs involving, as
stated, the difference between the displacements of the end points of
the beams and of the anchorage points. As it can be seen, the dis-
placements of the nodes 4, 5 and 6 does not “directly” take part in the
description of the system; they only contribute via the terms Auj and
Aul]’-.

This can be verified by imagining to represent the composite ar-
chitecture in Fig. 2(a) as an hybrid system composed by one-dimen-
sional (1D) beams and two-dimensional (2D) filler. With reference to
the unit cell in Fig. 2(b), the elastic energy of the hybrid 1D-2D con-
figuration is the sum of the elastic energies of the beams, Wyums, and of
the filler, Wyyer:

Wip—20 = Wheams + u/ﬁller~ (26)
Wrier, in particular, is given by

_1 T
"Vﬁller = E ‘/“/ Sf af av, (27)
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with
[ & 1
. &1 &2 _ |
Sf. =| & « [512 & = .€f
72812 _ (28)
and
[ on1 ]
. on o2 | _ .
oy = Uzz] — [012 on| = Ty,
| 012 ] (29)

respectively, the infinitesimal strain tensor, e and stress tensor, Ty,
expressed in Voigt notation, C; the stiffness tensor of the material within

the cell, satisfying the generalised Hooke’s law
Or = Cf &r. (30)

For two-dimensional isotropic materials in plane-stress tensional
state, Gy is defined by
1 v 0
Ef 5 Vf 1 0
T lo 0 a-v)2

CfZ =

>

1
(31)

with Efand v, in turn, Young’s modulus and Poisson’s ratio of the filler.
Accordingly, by substituting (30) into (27) and considering a uni-
tary width, b = 1, it emerges
=1 T
Wihiler = 3 _/;0 g Crgr dA, (32)
being V = bA, and A, the area of the examined cell (Fig. 2(b)).

By discretizing the area Ag into a set of two-dimensional triangular
elements having nodes

0—-1-4,
0—4-2,
0—-2-75,
0-5-3,
0-3-6,
0-6-1 (33)

and by considering the so-called constant-strain triangular element
(CST) frequently used in the Finite Element Method, (32) takes the form

6
1
"Vﬁller = Z Edzkedes

e=1

(34

with k, and d, = [w; w; u,,]7, respectively, the local stiffness matrix and
displacements vector of each triangular element of nodes i, j and m
(Fenner, 1996). Specifically,

do_1—s=[uom u4]T,
do_s—z = [up uy wyf”,
do_z—s = [up uy us|”,
do_s_3 = [up us ws]”,
do_3_6 = [uo uz ug)’,

do—6—1 = [up ue wy]” (35)

provide the displacements vector of the examined triangles.
In terms of the global displacements vector, D, and stiffness matrix,
K, obtained by “summing” their local counterparts, (34) becomes

T

Uy Uy
m m
1 1 w, u
Willer = —DTKD =—| W K w3
/i
2 2| 4 uy
us us
Ug Ug (36)

or, by splitting the vector D into the vectors D; = [uy u; u, us]” and
D, = [u, us ug]” that, with reference to our model, represent the dis-
placements of the principal lattices, L; and L,, and of the central points
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of the cells (i.e., the springs’ anchorage points),

_1 D, [k K.|[D,
2|D:| Ky Ky ||D2f (37)

leading to

Whiter

Wiilter = %(D{Knnl + D{Ky;D; + DKy Dy + DI KyDy), 38)
with Kj; obtained by partitioning K.

When v; = 1/3, value that coincides with Poisson’s ratio of the hy-
groscopic keel tissue considered in the present paper, it emerges that
the elastic energy in (38) can be expressed as a quadratic function of the
quantities u; — w;, withi =0, 1, 2, 3 and j = 4, 5, 6. Specifically,

%ller = M/ﬁller (W — up, W — W, Wy — Uy, Uz — Uy), (39)

where k =4,5,6,l=6,4, m=4,5andn =5, 6.

As it can be seen, similarly to (25), in Eq. (39) the displacements of
the nodes 4, 5, 6 are not “directly” involved in the description of the
system; their contribution is only related to the terms u; — u; that, in
the Winkler model, represent the elongation of the springs.

Also, by assuming that the elastic energy of the beams is the same in
the two considered models (i.e., hybrid system 1D-2D and Winkler
model), it can be concluded that, in the case of v; = 1/3,

1
Whitter = E(DlTKnDl + D{K;;D; + DIKyD; + DJK;,D,)

~Wivinkier = 2 %((Aue’a)T'kfvaue’a + (Aue’b)T'k\efquue’b)- .
e

A final observation concerns the equilibrium conditions of the
springs’ anchorage points, i.e., the nodes 4, 5 and 6 (Fig. 2(b)).

As mentioned in Section 2.2.1, the symmetry of both the hexagonal
cell and the configuration of the springs provide the equilibrium of the
forces at the springs’ anchorages. This geometrically-based considera-
tion can be verified by considering the equivalence between the hybrid
system 1D beams-2D filler and the system Euler-Bernoulli beams on
Winkler foundation described above. In particular, when the hexagonal
cell in Fig. 4 is subjected to a set of external forces leading to a generic
deformation of the cell, the reaction forces of the springs along the
direction n; take the form

f; = (n]K,n)Au;n;, 41)

where K,, is the stiffness matrix of the elastic foundation and Au; the
elongation of the springs in the n; direction.

At the anchorage points (i.e., the central point of the cell), the sum
of the springs’ reaction forces is expressed by

fanc = Z fl = Z (anKwni)Auinl 42)
or, by splitting the contribution of the two sets of springs,
fane = 3, (HTK,nHAund + Y () 'K,n)Auln!, (43)

with Au/ and Au?, respectively, the elongation of the springs a and of
the springs b in the directions n¢ and n? (Fig. 4).

By taking into account the equivalence between the system 1D
beams-2D filler and the Winkler model, it can be assumed

Au; = Ad,, (44)
being Au; and Ad,, respectively, the elongation in the n; direction in the

Winkler foundation model and in the system 1D beams-2D filler. From
classical continuum mechanics,

Ad; = (n] ¢rny)d; (45)

with d; the original length of the cell in the n; direction and e the in-
finitesimal strain tensor (cf. Eq. (28)).
By substituting (44) into (42) and splitting the contribution of the
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springs a and of the springs b as in Eq. (43), it emerges
fane = 25 (MOTK,n)(n)ern)d nf
+ 2, (@)'K,n))(@) gnd)d/n). (46)

Finally, by observing that d? = d? and that nf = —n?, Eq. (46)
provides

fone =0, 47)

relation that coincides with the equilibrium of the forces at the springs,
anchorage points. It should be noted that the above equation is valid for
any deformation of the cell, both symmetric and not-symmetric.

3. The homogenized model
3.1. Elastic energy

It is possible to express W in a continuum form by introducing the
affine interpolants of the nodal displacements and microrotations, t(-)
and @ (-), and by assuming that in the limit £ — 0 the discrete variables
(uj, ;) previously introduced can be expressed by

The terms @, and @, stand for the values of ti(-) and @ (-) at the central
node of the cell in the continuum description, while b; are the vectors
formerly defined. Substituting (48) into (20) and dividing the expres-
sion that turns out from the calculation by the area of the unit cell,
Ag = 26%cos0(1 + sin6) (Fig. 2(b)), give the strain energy density in
the continuum approximation w. Similarly to Ongaro et al. (2016b) and
Davini and Ongaro (2011), in the limit {— 0 it emerges the in-
dependency of w by the microrotation gradients, @, that scale with first
order in 4. Accordingly,

w=w(e, &, &, (@ — §)), (49)

with gqg = %(ﬁayﬁ + fig ) and w = %(ﬁl,z — il ;) the infinitesimal strains
and the infinitesimal rotation of classical continuum mechanics. More
details are given in Appendices A and B.

3.2. Constitutive equations

The stress-strain relations of the equivalent continuum take the
form

CgC(£11(24C4Dg + CZ(Cg€2 + 48D€S2)) + S(Ezz(ngz - 12Dg)f6
+ 811(12Dgs(1 + 2S2))))

(o] = T
" f, (24¢2D, + C,0*(1 + 25%))
Kyc(anf; — eafy)
1041, f, ’
o _ Cg(CgSzzgzssz + C2(€1](C¢1€2 S — 12Dgs) + 12Dg€22f6))
2 (242D, + C,2(1 + 25%))
Kw(EZZﬁ;/C - Eucfz)
1041, f, ’
oM _ gum _ 3Dpe12(c?(Co?(4 sfy (s* + 5 + 3) + 3) — 24D,sf,))
12 4 20%,¢(2C, €22 + 3D, (4 sf, + 3))
3D,pe15(4c*(Co 022 sfy + 1) + 3Dp) + 4Co €% + 12D,5%f7)
20%f,c(2C, €%c* + 3D, (4 sfy + 3))
Kw£12f5
208¢f, f,
gfhw — _ gskw _ 9Dp(w — 65)
12 2 cf3(3 + 4sf;)
o = oY+ o, o =" + o,

(50)

sym ;’“W in turn, the symmetric and skew-symmetric part of

with 0,5™ and
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the Cauchy stress tensor defined by

g L OW
T Ay dva’ (6D
Note that, to simplify the notation, in (50) ¢ and s stand, respec-
tively, for cos 6 and sin 6 while f; = f,(cos 6, sin 6) are polynomial ex-
pressions listed in Appendix B.

3.3. Elastic constants

Mathematical manipulations provide the elastic constants of the
limit problem, given by

(K (WEPREDIY + fKw (252 + 1)) + 42E;((1040°Esfy0)/ (fy) + f,Kw))
4(f Ky (222%c? + 25 + 1) + 10421, E; (2% + 5%))
N K 2f,ved
2(fy KV (22%¢% + 257 + 1) + 1044,  E;(A2c? + 52))’
c2(Kyvf, (24%¢% + 25s% + 1) + 1044 (A% — DEsf;,)
T Kuvf, Q232 + 257 + 1) + 1084, B (22 + s)fy, /s
AAE;(L04REf,)/(vfy) + fKw) + K> (4A3Efy + Kopufy (252 + 1))
af, e (Kwvf; 22%% + 25% + 1) + 10483 Eg(s(3 + 2¢?) + 2¢* + ¢2))
N K Zvc’f,
2f, (K vfy (2222 + 25 + 1) + 10443 E(s2(3 + 2¢2) + 2¢* + ¢2))’
Kf, 22%% + 252 + 1) + 1044 (2% — 1)f,, Es
- KVf, 222%¢% + 25% + 1) + 104PEfy (s>(3 + 2¢2) + 2¢* + ¢2)’
L 1 (104/13Es(cz(2/12 +i) =22 s +i) | wan)
416f;c v(A2(4f, s + 3) + 8¢c?) fo J

*
Y2 =

Ef =

*
Vi =

(52)
with A =h/¢, v=00—92), ¢c = cosb, s = sin6 and f = f(cos®, sin6)
the expressions in Appendix B. Also, with obvious notation, E;*, v and
E}, v} denote, in turn, Young’s modulus and the corresponding Pois-
son’s ratio in the e; and e, direction, G* the shear modulus. As ex-
pected, the macroscopic elastic moduli derived satisfy the classical re-

*
the G* = Ei, with
2(1 + v¥)
Ef = Ef = E* and ;5 = v;; = v*, only in the particular case 6 = 30°.

lation revealing system isotropy,

4. Discussion
4.1. The hygroscopic keel tissue: Comparison with other authors

As stated, the present work is inspired by the hygroscopic keel tissue
of the ice plant. This biological tissue reveals a cellular microstructure
composed by elongated hexagons filled with the CIL. If hydrated, the
CIL adsorbs large amount of water, leading to a change of the cells’
shape and, consequently, to the macroscopic stiffness.

Table 1

Mechanics of Materials 124 (2018) 80-99

As a matter of fact, let us consider the compact expression of the
stress—strain relations derived in Section 3.2

oy" Ciu Cp G| e
op" | =|Ca Cn Cyuf| &2 |,
a3 Cyn Gy Cy|l282 (53)

with C; the components of the effective stiffness tensor previously ob-
tained and reported here for ease of reading

Cpc(24c*Dy + c*(Cp#? + 48Dys%) + s(12D,s(1 + 252)))

Cu = 2f, (24D, + C,22(1 + 25%))
Kycf,
1041,
sz C,(Cpts? + 12Dyc?)f, wa4/c’
cl(24c’Dp + Co0*(1 + 25%))  104fyf,
Coes(Cpl? — 12Dy) Kycf,
Co = Cu= > > N >
€(24c*D, + Cp0*(1 + 25%)) 1041y f;
C 3Dpc(Cot?(4 sfy (s* + s + 3) + 3) — 24D,sf;)
20%f,c(2C,€%c* + 3D, (4 sfy + 3))
3D, (4c*(Co€2(2 sfy + 1) + 3Dp) + 4Cp 62O + 12D,5%7)
20%f,c(2C,€%c* + 3D, (4 sfy + 3))
Kufs
208¢f,f;
Ci3 = C3=C3=C3,=0.

(54

It emerges a strong influence of the inclination of the cell walls 6
(Fig. 2), via the terms ¢ =cosf,s=sin6 and the polynomials
f; = f;(cos B, sin6).

Before addressing a parametric analysis to investigate further this
influence, let us verify the adopted modelling technique by comparing
the proposed results with the available data in the literature.

As summarised in Table 1, the comparison is established by com-
paring the Cj; constants of the present paper with those suggested in
Guiducci et al. (2014), where the keel tissue, represented as a pres-
surized diamond-shaped honeycomb, is analyzed by Finite Element
homogenization and theoretical modelling based on the Born rule.
Specifically, four cell configurations are considered, characterised by
different values of 6 and inner pressure, p. Notwithstanding the diverse
strategies adopted, Table 1 reveals that the agreement is generally
good. The discrepancies that emerge in some cases are due to the dif-
ferent cells’ shape considered: diamond-shaped cells in
Guiducci et al. (2014), elongated hexagons in the present work. Also,
neglecting the compromised cell walls’ coupling effect could be another

A practical application to the keel tissue of the ice plant. Comparison between the results of the present paper and those of Guiducci et al. (2014).

Guiducci et al. (2014)

E;=1 GPa, vs=0.3, h/£=0.07
p (MPa) Cy (GPa) C11 (GPa) C33 (GPa) C15 (GPa) Cs; (GPa)
0 0.1+ 0.3 0.002 0.004+ 0.012 0.028 0.028
2.5 0.03 0.020+ 0.027 0.03+ 0.086 0.020+ 0.026 0.023+ 0.026
5 0.025 0.03-+0.05 0.03+ 0.086 0.015 0.015
6 0.02 0.03+ 0.04 0.02+ 0.096 0.02 0.02
Present
E;=1 GPa, vs=0.3, h/£=0.07
o) K,, (MPa) C22 (GPa) C11 (GPa) C33 (GPa) C12 (GPa) C21 (GPa)
75 0 0.15 0.002 0.0035 0.025 0.025
48 15.27 0.020 0.020 0.04 0.018 0.018
47 33 0.019 0.046 0.057 0.018 0.018
46 41.1 0.02 0.05 0.054 0.016 0.016

86



F. Ongaro et al.

optimal
0.03 / value

0.025

A 002
[mm?]

0.015

0.01

0.005

O T o e o B ol

0O 10 20 30 40 50 60 70 80 90
(%)

Fig. 6. Optimal value of 6, with ¢ = 1 mm: area of the cell.

source of dissimilarities. As mentioned in Section 2.1, a rigorous ana-
lysis of the biological keel tissue is beyond our aim. However, from
Table 1 it emerges that the proposed theory could be applied in biology
to study the mechanics of composite tissues having a not-regular hex-
agonal microstructure.

In addition, in Table 1 the values of the Winkler foundation con-
stant, K,, are obtained by the energetic equivalence described in
Appendix C. In particular, it emerges that K,,, expressed by

ﬁp(—w + 1)0036\/1 + sin6

(4sin36 + 4cos’6 1)2 +cos@( 4cosf 1)2’
6+2 6-2 6— 2

is a function of the pressure, p, and cell walls’ inclination, 6 = 6(p).
One question that arises is if there exist an optimal value of p, p,
that maximises the area of the hexagonal cell, Ao, given by

Ao (p) = 26%cosO(p)-(1 + sinb6(p)), (56)

Ky (P) =

(55)

with £ and 6(p), in turn, the length and inclination of the cell walls.
As illustrated in Fig. 6, Aq attains the maximum at 6 = g = 30° and,
according to the analysis of Guiducci et al. (2014), the corresponding
value of p is given by p ~ 15 MPa. It should be noted that the outcome
of the analysis is not affected by the particular value of cell walls’ length

water water

I

(a) (b) (c)
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assumed in Fig. 6, ¢ = 1 mm.

Finally, a schematic representation of this smart mechanism is
shown in Fig. 7. In the dry state, at zero pressure, the tissue is composed
by elongated cells characterised by high values of 6 and minimum
absorption (Fig. 7(a)). When it starts raining, the filler absorbs more
and more large amounts of water, leading to an increase in the inner
pressure and, consequently, to a decrease in 6. In particular, decreasing
6 provides an increase in Aq (cf. Fig. 6), as well as an increase in the
absorption (Fig. 7(b)). At 6 = 30°, the stationary condition of maximum
absorption is reached (Fig. 7(c)). Then, when the rain stops, the pres-
sure inside the cells decreases, as the absorbed water starts to evaporate
(Fig. 7(d)). It follows an increase in O and a decrease in Ag, until the
original configuration is restored (Fig. 7(e)).

4.2. Parametric analysis

From the expressions in (54) it is clear that the macroscopic me-
chanical behaviour is strongly affected by the microstructure’s geome-
trical and mechanical properties.

Assuming lignified cell walls as in the keel tissue, with E; = 1 GPa
and v; = 0.3 (Guiducci et al., 2014), this section investigates the influ-
ence of the infill’s stiffness, K,, and cell walls’ inclination, 6, in the
effective stiffness. In particular, two different cases are considered:
slender beams, with h/¢ = 0.01, Fig. 8, and thick beams, with h/¢ = 0.1,
Fig. 9. As it can be seen, Figs. 8(a) and 9(a) suggest that when K, is
fixed, an increase in O leads to a decrease in the C;; constant, that is
more significant in the case of h/¢ = 0.1 (Fig. 9(a)). Conversely, for
fixed K, increasing the cell walls’ inclination provides an increase in
Coo (Figs. 8(b) and 9(b)). This is not surprising since the smaller the
angle 0, the more elongated in the e; direction will be the resulting cell.
Consequently, the smaller 6, the higher C;;. Similarly, increasing 0
yields a more and more elongated cell in the e, direction and a more
and more higher C,,. In addition, Figs. 8(a), 9(a) and 8(b), 9(b) show
that, for fixed 0, to high values of K,,(10~!E,, 1072 E;) corresponds an
higher initial value of both C;; and Cs,.

Regarding the constant Css, from Figs. 8(e) and 9(e) it emerges that
when K, is fixed, an increase in 6 leads to an increase in Cs3, that is
more evident for high values of K, (107 E;, 1072 E).

In terms of the cross stiffness components, C1, and C»q, Figs. 8(c),
9(c) and 8(d), 9(d) reveal that increasing 6 provides a fast initial in-
crease followed by a gradual decrease. In contrast to what would be

(d) (©)

Fig. 7. The smart mechanism of the hygroscopic keel tissue: (a) dry state, (b) when it starts raining, the filler absorbs water leading to an increase in the absorption
capability, (c) stationary condition, maximum absorption, (d) the rain stops and the water absorbed starts to evaporate, until (e) the original configuration is restored.
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Fig. 8. The influence of K, and 6 in the effective stiffness constants in the case of h/¢ = 0.01: (a) Cy1, (b) Caz, (c) Ci2, (d) Ca1, (e) Css.

expected, for small values of 0 the presence of the filling material does
not stiffen the structure. Also, by comparing the curves corresponding
to slender beams (Fig. 8(c) and (d)) and thick beams (Fig. 9(c) and (d)),
it can be said that this peculiar behaviour is geometry-related. This
result could be of interest in practical applications as a strategy to de-
sign a new more mechanically efficient material or to improve existing
ones.

As in classical orthotropic materials, it emerges C;; = Cy> and

88

Ci, = Cy;. Regardless the values of h/{, only in the particular case
0 = 30° the equivalence C;; = Cy, holds true. This, as expected, reveals
the system isotropy.

5. Hierarchical extension

A hierarchical material can be defined as a material that contains
structural elements which themselves have structure (Lakes, 1993;
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Fig. 9. The influence of K,, and 0 in the effective stiffness constants in the case of h/¢ = 0.1: (a) Cy1, (b) Caa, (¢) Cy2, (d) Ca, (€) Cas.

Ongaro et al., 2016a).

This work, in particular, deals with a hierarchical composite cellular
material having n levels of hierarchy and an elongated hexagonal mi-
crostructure with filled cells at all levels (Fig. 10). Similarly to
Section 2, the Euler-Bernoulli beam on Winkler foundation element
represent the skeleton of the cells, the (n — 1)th level. Again, the elastic
springs are imagined to be anchored at the nodes of the lattice Ls,
modelled as a sequence of Euler-Bernoulli beams much less stiff than
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the principal ones (cf. Section 2.1).

5.1. Effective elastic constants

Let us focus on the nth level structure of Fig. 10. By assuming that
the size of the microstructure of each cell wall, the (n — 1)th level, is
fine enough to be negligible with respect to the nth level, each cell arm
can be treated as a continuum having the elastic moduli derived in
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Level 1

- Leveli

Level n-1

Fig. 10. The hierarchical composite cellular material.

Section 3.3. Consequently, the effective elastic constants of the nth level
structure in the continuum form are

5 - ER ¥ (AL + [ Ry (282 + 1)) + 44 E’((1?4135’ﬁ0)/(5ﬁ)) + 5K
4 Ry S @12 + 282 + 1) + 1040 f  EA* & + 52))
PRAS &

25 Ky 5@ + 282+ 1) + 1044 [ 22 + 52)

. PRy VA% + 257 + 1) + 104101 - DES,)

TRV, 4 2%+ 1) + 1040, QPR + 8], /5

o AAE(Q04LE o)) + f Ka) + K @GP ER + KWV /252 + 1)

4 R DF QI E + 252 + 1) + 1040 [ EG2G + 282) + 264 + 60)

PRI S,
W Ky F QI + 22 + 1) + 104 LEGG + 28%) + 264 + &)
Ry f, 1 & + 282 +1) + 104101 - 1, E
CRPLQPE 282 4 1) + 104 BG4 20 + 260+ )

+

v =

% 1

3y o 2. % -
_ 10417 E (€2 A7 + fi3) — 2475 fy + 1) . Kwha
416f, & fo |

S 4hs +3) + 862) Jo

(57)

with Ey, ¥, and E, vy, Young’s modulus and corresponding Poisson’s
ratio in the e; and e, direction, respectively, G the shear modulus. In
addition, A =h/, & =cos é, §: =sin6 with h, 2, é, in turn, the thick-
ness, length and inclination of the cell walls (Fig. 10), K,, the Winkler
constant, V= 1- 15), E and ¥ Young’s modulus and Poisson’s ratio of
the beams in the longitudinal direction (Chen and Pugno, 2013; Pugno
and Chen, 2011) obtained in Section 3.3. The polynomials
f = f(cosé, sinf) are derived by substituting & for 6 into the expres-
sions listed in Appendix B. It should be noted that the previous notation,
() for (O™ and (*) for (-)"~D, is introduced to simplify the relations and
facilitate reading.

5.2. The stiffness-to-density ratio

The stiffness-to-density ratio takes the form

s>2
'Ery

pap

E E,
+b53° poodp+

o]
Q<

b

O«

bg ag +bp (58)
with ¢ and Ey, E,, G, in turn, the density and the effective elastic con-
stants of the nth level structure previously defined. In particular, as

explained in Appendix D, g is given by

90

=dp + b,

O«

. (26 +35-31), . 31
P\ 2ea+s» )T zea+s

where g, and 3 are the density of the filling material, the first, and of
the cell walls, the second, at level n.

(59

5.3. Parametric analysis and optimal values

Based on the above formulation, this section aims at understanding
how the microstructure’s parameters affect the macroscopic elastic
moduli in the case of structural hierarchy. The analysis involves a three-
level hierarchical honeycomb having a elongated hexagonal micro-
structure with filled cells at all levels and such that the self-similar
condition (Pugno and Chen, 2011)

A=2 60=g, i=1,2,3, (60)

holds true. The hypothesis that the density of the filling material, o, is
the same at all levels leads to

o =p=ap, i=1,23, 61)

with a = 04, 0.2, 0.1, 0 for assumption. In addition, the lignified cell
walls of the starting element, the level 0 in Fig. 10, have Young’s
modulus E; = 1 GPa, Poisson’s ratio v, = 0.3, density o, = 1400 kg/m3

(Gibson and Ashby, 2001). The Winkler constant, derived in
Appendix D, is expressed by

. 4.3

(1) — - 3 -
K =Ky = =B, i=1,23. 62)

As Fig. 11 shows, for fixed K,, the stiffness-to-density ratio, E>/o®,
EP/0®, G®/p® s strongly affected by the inclination of the cell walls
0, as in the not-hierarchical case. In particular, increasing the values of
6 leads to an increase in E{Y/p® and to a decrease in E&/p®). This is
explained by the fact that the higher 6, the more elongated in the e,
direction will be the cell. Also, it emerges that the cell-filled config-
uration is generally stiffer than the hollow one (K,, = 0), especially in
the case of high values of K,, (107'E,, 10—2E;). However, for high values
of O, Fig. 11(a) illustrates that the composite configuration with high
values of K,, is not the best solution in terms of E&/p®). The reason is
that, firstly, the macroscopic stiffness in the e; direction is more and
more smaller by increasing the cell walls’ inclination. Secondly, filling
the cells provides not only a stiffer material but also a higher value of
the density. Regarding E®/p®, analogous considerations apply
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Fig. 11. The influence of K,, and 0 in the stiffness-to-density ratios of a three-level hierarchical composite in the case of h/¢ = 0.01: (a) Young’s modulus in the e;

direction, (b) Young’s modulus in the e, direction, (c) shear modulus.

(Fig. 11(b)). That is to say, high values of K,, leads to a stiffer material
when 0 > 24°, since small values of 0 result in a hierarchical config-
uration characterised by cells strongly elongated in the e; direction
and, consequently, by smaller values of E{>.

As expected, EY/p® = EP/o® only in the case 6 = 30°.

Finally, in the cell-filled configuration, in contrast to the standard
hierarchical material (Pugno and Chen, 2011; Bosia et al., 2012), in-
creasing the number of hierarchical levels leads to an increase in the
specific stiffness (Fig. 12) and an optimal number of levels also
emerges.

In the practical context, these findings could suggest a method to
obtain a stiffer composite material via structural hierarchy and could
assist the designer in the selection of the geometric and mechanical
characteristics of the microstructure.
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6. Conclusions

Composite cellular materials have been credited with significantly
improving the mechanical behaviour of hollow structures. However, in
the literature a small number of analytical techniques has been pro-
posed to predict the effective properties of filled cellular materials,
especially in the case of not-regular microstructures.

This paper, inspired by the keel tissue of the ice plant Delosperma
nakurense, deals with the analysis of a composite honeycomb composed
by elongated cells filled with an elastic material. By modelling the
composite hexagonal microstructure as a sequence of Euler-Bernoulli
beams on Winkler foundation and by applying an energy-based tech-
nique, the constitutive equations and elastic moduli in the continuum
approximation are derived. It emerges a strong influence of the cell
walls’ inclination and of the filler’s stiffness on the effective elastic
constants.
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Fig. 12. Stiffness-to-density ratio vs levels of hierarchy, optimal value in the case of h/¢ = 0.01 and 8 = 30°.

The application of the theoretical model to the keel tissue of the ice
plant, in conjunction with a comparison with the available data in the
literature, reveals the validity of the proposed modelling approach.
Despite the simplifications introduced to obtain a mathematically
tractable problem, the present work could be useful to gain some in-
sights into the mechanics of biological and bio-inspired structures.

The theory is also extended to the hierarchical configuration and a
closed-form expression for the effective elastic moduli and specific
stiffness is provided. From the parametric analysis developed, it
emerges that increasing the hierarchical levels leads to an increase in
the specific stiffness and an optimal number of levels also exists.
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The elastic energy of the Euler-Bernoulli beam is the sum of three terms:

we = %(u“)7~k§ue + %(Au“*“)T~ka,fAue’“ + %(Aue-b)T.kfvaue-b.
The first,

1
E(ue)T,k;?)ue,

(A1)

(A.2)

is related to the axial and bending deformations of the classical elastic beam, while the second and the third,

%(Aue’“)T~kfvaue'“, %(Auevb)T~kﬁ)fAue-b,

(A.3)

are related to the Winkler foundation and, in particular, to the elongation of the springs a, the first, and of the springs b, the second (Fig. 14).
The elastic energy of the unit cell, W, derives from that of the beams composing the skeleton of the cells: 0-1, 0-2, 0-3. Also, imposing the
balance of forces and moments in 0 and condensing the corresponding degrees of freedom, provides

W =W, w, u;, Au, Aud, Aué, Awd, Aud, Aud).

A4

Then, the assumption that in the limit £ — O the discrete variables (u;, @;) can be written as

$=@ + Véb, j=1,2,3,

(A.5)

provides the continuum description of the discrete structure. The terms @i, and &, are the values of ti(-) and @ (-) at the central point of the cell in the
continuum description and in what follows, to simplify the notation, they will be denoted with @ and . Finally, substituting (A.5) into (A.4) gives

the strain energy of the unit cell as a function of the fields @i and &.
In particular, the aforementioned quantities are (Figs. 13-15):
— Beam 0-1
Discrete system

a_ u — U b_ w — uy
Aul_[gol—goﬁ’ Au] = o —a |
In the continuum description,

ui=ﬁ+Vﬁbi, (pi=fﬁ+V$bi, i=1,6,4,

that, substituted in (A.6), lead to
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€

€ 4

(a)

Fig. 14. The two sets of springs connecting the triplet of elastic beams: (a) springs a, (b) springs b.

Fig. 15. The by vectors.
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Auf = Vib; — Viibg » | Vab, — Vib,
! V@ bl - Vqﬁ bG ’ V{O\ b] - Vq’ﬁ b4 ’ (A.S)
— Beam 0-2
Discrete system
a_ u — Uy b_ U — Us
Auz—[%_%], Auz_[fpz_g"s]' (A.9)
Continuum description
u; = u + Vﬁbi, ¢i = a + Va bi’ i= 2, 4, 5, (A.lO)
and
Aut = V1:1b2 - V§b4 . Aul= thz - ijbs '
Véb,— Vb, V@b, — V@ bs (A.1D)
— Beam 0-3
Discrete system
u—u u—u
Au§ = >, Aud = S C
P3— @5 P33~ P (A.12)
Continuum description
w =4+ Vib, ¢=0+V@b, i=356, (A.13)
and
“ Vib; — Vubs b Vib; — Vibg
Auj = A~ A~ , u; = ~ A~ .
V@ by — Vo bs Vo bs — V@b (A.19)
Finally, the vectors b; are (Fig. 15):
b1=11—S, b4=S,
b2=12—s, b5=—S—11,
b; = —s, b, = (s — /2. (A.15)
Appendix B
B.1.  Energy
The strain energy density in the continuum form defined in Section 3.1 is expressed by
€2, Coc(24¢*D, + 12D,52(1 + 25%) + c2(Cp6? + 48D,s2))
- 20(1 + 5)(24¢™D, + Co2(1 + 252))
£2,Co(1 + 5)(12¢2D, + Cp€2%52)  g185 Coc(—12D, + Cp62)s
2¢6(24¢?D, + Cp6%(1 + 2s2)) 24¢?D, + Cp6%(1 + 2s2)
+ £2,3D,(4C,c562 + 12D,5%(1 + 5)% + 4c* (3D, + Co6%(1 + 25(1 + 5))))
2¢63(1 + 5)(2C,c?6? + 3D,(3 + 4s(1 + 3)))
. €3,3D,(c2(=24Dps (1 + 5) + Co€2(3 + 4s(1 + 5)(3 + 5 + 52))))
2063(1 + 5)(2C,c?6? + 3D,(3 + 4s(1 + 5)))
+ 9D, (w — §)? €182 Ky (—1352 + s(9412 + s(1901 — 8s(8 + 1851s))))
3B+ 4s(1 +5)) 104(1 + 5)(347 + 484s + 452s2)
N €2 K,y (11518 + 5(13520 + 5(23761 + 24s(540 + 6175))))
208(1 + 5)(347 + 484s + 452s2)
. €2, K,y (20280 + 5(9464 + 5(9721 + 8s(—1604 + 1851s))))
208(1 + 5)(347 + 484s + 452s2)
" szKw(c4(10969 + 85(1958 + 1851s)) + 6¢%5(4158 + s(2063 + 8(44 — 6175)s)))
208¢(1 + 5)(347 + 484s + 4525%)
. €2, K,,52(35114 + 5(22836 + 5(21585 + 85(—2222 + 1851s))))
208¢(1 + 5)(347 + 484s + 452s?) ’ (B.1)
with K,, the Winkler foundation constant, C, = 1E_S :2 and D, = 12(E1xf3vz)’ respectively, the tensile and bending stiffness (per unit width) of the beams,

E,, vg, h, £ and 6, in turn, Young’s modulus, Poisson’s ratio, thickness, length and inclination of the cell walls. Also, to simplify the notation, ¢ = cos@

and s = sin 6.
In the case of regular hexagonal microstructure, 6 = 30°, (B.1) takes the form
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w - (8% + €2)(C26* + 36D, Cp0?) + 281185,(C26* — 12D, Cp0?) + 96D, Cp 6%},
- 43 63(12D, + C,6?)
LG o) N K,y (305(e3, + £2,) + 5442, + 668185)
J3¢63 1664+/3 ' (B.2)

B.2.  Constitutive equations and elastic constants

The polynomial expressions f; = f;(cos 6, sin @) introduced in Section 3.2 are:
fo = 1+s,
f, = 11518 + 5(13520 + s(23761 + 24s(540 + 6175))),
f, = s(s(8s(1851s + 8) — 1901) — 9412) + 1352,
fi = 347 + 484s + 45252,
fi = (s(s(8s(1851 — 1604) + 9721) + 9464) + 20280)c?,
£ = (((8(1851s — 2222)s + 21585)s + 22836)s + 35114)s2 + (8(1851s + 1958)s + 10969)c*
+ 6((8s(44 — 617s) + 2063)s + 4158)sc?,
fa = 25, 688 + 5(9464 + s5(24, 093 + 4s5(581 + 8207s))),
fo= 2+ s)*fy + 2 f, + 231 + 9)f,,
fo = 11,518 + 2f,(1 + s?) + 33, 8525 + 98, 719s?
+ 253(53, 046 + 5(59, 222 + 5(9464 + s(9721 + 8s(—1604 + 18515))))),
fo = A +9)f, fio =@+ 9)3f,, fi =56+ Df,
fiz = B(s+ s + 4)c* + 4cS, fis =46+ Ds(s + s>+ 3) + 3, (B.3)
with ¢ = cos6 and s = sin 6.
In particular, for regular hexagonal microstructure, 6 = 30°,

fy =302, f, =107,055/4,  f, = —11,583/4, f, =702, f, = 321, 165/16,
f=35802,  f,=77,571/2,  f, =53,703/2, f, =249, 561/2, f, =963,495/32,
fio = 9477/4, f, =1053/2,  f, =117/16,  f,; = 57/4. (B.4)

Accordingly, the constitutive equations and elastic moduli of Sections 3.2 and 3.3 take the form:

_ (C}€% + 36D, Co)eny + (C36% — 12D,Cp)er, | K\y(3058; + 33ex)

o1 = 03" s
243 (12D, + C,¢2) 8323
om _ (Co0% + 36D,Cp)ey + (C50% — 12D,Cp)e; | K,y (3058, + 33e11)
On = 0Op = > + )
243 (12D, + C,6?) 832./3
oym — gym _ 48D€C€512 17K, &2
© T 2/3e(12D, + C6%) T 5243
V3D (w - )
af = —afr= e
o = o3+ 0N, oy ="+ o, (B.5)
and

Ef = EfzEto (13K, (1 = v2) + 32AE)(17(1 + K, (1 — v?) + 104A%Ey)
231 —v2)(305(1 + DK, (1 — v2) + 416(1 + 3)E,)
A 33(1 + 2K, (1 — 1) — 4161 (2% — 1E; ,
305(1 + A2)K,, (1 — v2) + 416A(1 + 342 E;
17(1 + K, (1 — v2) + 10413E;
1043 (1 + A3 — v?) ' (B.6)

Appendix C

As stated, an energetic equivalence provides a suitable relation between the Winkler foundation constant of the present work, K,,, and the
hydrostatic pressure p of Guiducci et al. (2014).

First of all, let us focus on a single cell and let us consider its elastic energy, W,, obtained by summing the contribution of the walls, W,,, and of the
filling material, Wx

W, =W, + W, (C.1
In particular,

W = We,winkier = Wip,beams + "Vf,Winkler Winkler model
c= .
I}VCJ_WL’ssurized cell = Ww,walls + I}Vpressure PressurlZEd Cell: (C2)
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e, a e,
w e e

Fig. 16. Practical application to the keel tissue of the ice plant. Equivalence between (a) the Winkler foundation model and (b) the pressurized cell (Guiducci et al.,
2014).

with Wy, peams» Wr winkier and Wi, watts;, Whressures in turn, the elastic energies of the cell walls and of the filling material in the case of Winkler
foundation model, Fig. 16(a), and pressurized cell (Guiducci et al., 2014), Fig. 16(b). By assuming

Wav,beams = Wav,walls» (C.3)

the energetic equivalence

W, winkler = We,pressurized cell (C.4)

takes the form

Wi winkler = Wpressure- (C.5)
The first term, Wy, winkier is the sum of the elastic energies of the three series of springs in the directions n,, ny, ns:

3
1
‘/Vf, Winkler = [Z 5 AUiT'KwAUi)bs

i=1

(C.6)

where AU; is the elongation of the springs in the n; direction, b the width,

K, 0
K, =
[0 Kw] (C.7)

the stiffness matrix of the elastic foundation, K, the Winkler constant. Also, Wpresaure is related to the change in the volume of the cell and its
expression, given in Guiducci et al. (2014), is

V-1
7 2 = —p(( + &)@ + &) — 1)b, .8)

"Vpressure =-p

with p the inner pressure, V = V (p) and V;, = V (p = 0), respectively, the volume of the cell in the deformed and undeformed configuration, b the
width. From classical continuum mechanics, the strains ¢; = £;(p) take the form

Ad

£i(p) = nf e (p)n; = 71‘ i=1,2,3, 9

with Ad; the elongation in the n; direction, e{p) the infinitesimal strain tensor,

dy=d; =¢2 + 2sinb(p), dy, = 2¢cos6(p), (C.10)

and 6(p) the inclination of the cell walls in the deformed configuration (Fig. 16). In addition, the assumption

AU =Ad, i=1,273 (C.11)

provides, in view of (C.9),

n/e (p)n; = ATLEI", i=1,2,3, €12

leading to

AU = (nfe(pn)d;,  i=1,2,3. (C.13)
Substituting (C.13) into (C.6) and taking into account (C.5), gives

3

2 %dmn?sf(p)nifani(n? g @m)'di = p((1 + en (@) + ex(p)) — 1). 14

From standard mathematical manipulations, it follows
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p(=( + & (P)( + ex(p)) + D2cosO(p)(1 + sinB(p))

K, =

J2 + 25in6(p) (sinb(p)2en(p) + cosB(p)%en(p))? + cos&(P)en(p)?’ (C.15)
being

_siné(p) _ _cosf(p)
) =~ ) Lo ap) == % 1 (C.16)

obtained from classical continuum mechanics and simple geometrical considerations. In the above relations, 6, = 6(p = 0) stands for the inclination
of the cell walls in the undeformed configuration and its approximated value, 75°, is given in Guiducci et al. (2014). By considering this and inserting
(C.16) into (C.15), it emerges

ﬁp(_w + 1)cose(p)1/1 + sin6(p)

17
(4sin36(p) , 4c0s0(p) 4cos6(p) 1)2’

6+ 2 6— 2 _1) +Cose(p)(6—ﬁ

where the values of O(p) are derived from Guiducci et al. (2014).

Ky (P) =

(C17)

Appendix D
D.1.  Density

Let us focus on the Oth order level structure in Fig. 11. From the rule of mixtures, the density of this composite configuration, p®, is given by
0© = f© p}o) +Q —f(o))Pss (D.1)

with f© = V}O)/ v the porosity, V}O) and V9, in turn, the volume of the filling material and of the entire cell, p, and p}o) the density of the cell walls,
the first, and of the filler, the second. In particular,

7O = A}O)b _ 2c0s6@(1 + sin6©) — 3q©®

B A9 b B 2c0s0@ (1 + sin6©®) (D.2)

where Ay and A}O) are, on order, the total area of the cell and of the filling material, b the width, A© = h®/¢© the ratio between the thickness and
length of the walls. Accordingly,

o0 = (2cos 6@ (1 + sin6®) — 3/1(0)) © ( 310 )Ps

2¢0s6@ (1 + sin6©) Fr 2c0s 8@ (1 + sin6©) (D.3)
or, to simplify the notation,
0® = a(O)pf«J) + bOp, (D.4)
with
4 = 2¢c0s0@ (1 + sin8©@) — 3@ © — 31
2c080@ (1 + sin6©®) ’ 2c0s6© (1 + sin6©®)’ (D.5)

Regarding the density of the first level structure (n = 1), p?, let us assume that the length of scale of the cell walls’ microstructure is much
smaller than the cell wall itself. So, as done in Section 5.1, a continuum having density p® approximates each cell arm. As a consequence,

P = a®p + bVpO D.6)

where p}l) is the density of the filling material, a®®, b™® are derived by substituting 6 and A® = h®/e® for 6 and L,
Finally, analogous calculations provide the density in the case on n levels of hierarchy:

P = a®p® 4 ppn-D), 0.7)

with p}") and o@D, in turn, the density of the filler and of the cell walls, a™ and b™ obtained as before.
D.2.  Winkler foundation constant as a function of the filler’s Young’s modulus

In Section 5.3, the hypothesis that the density of the filling material, p{?, is the same at all levels provides
p}i) = pf =ap, i=1,2,3, (D8)
with a a positive constant depending on the material inside the cells. For simplicity, let us assume that the filler is a standard cellular material with
hexagonal microstructure, as commonly happens in nature (Gibson and Ashby, 2001). Thus, the classical relations (Gibson and Ashby, 2001)
() @

P, . E .
T2 29, r_ 4 (/1}0)3, i=1,2,3
py V3 Ey 3 (D.9)

provide its (effective) Young’s modulus, E¥, and density, o, as a function of the cell walls’ properties, i.e., the thinness ratio, 1%, the density, Ps, f>
and Young’s modulus, E; f
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By taking into account the energetic equivalence in Ongaro et al. (2016b),

8
EP,

KO =
w 573

i=1,2,3,

together with the assumption

psj = Py Esj = E,

simple mathematical manipulations give

K =

43 o0 3
TESL ; i=1,23,

s

(D.10)

(D.11)

(D.12)

a suitable relation between the Winkler constant, K‘ﬁf), and the filler’s density. Finally, in view of (D.8),

: 4
KD =K, = —f o B, i=1,23.

(D.13)

In particular, four values of a are considered: 0.4, 0.2, 0.1, 0, leading to K,, = 107'E;, 1072E,, 10-3E;, 0, respectively.

References

Ajdari, A., Jahromi, B.H., Papadopoulos, J., Hashemi, H.N., Vaziri, A., 2012. Hierarchical
honeycombs with tailorable properties. Int. J. Solids Struct. 49, 1413-1419.

Altenbach, H., Oechsner, A., 2010. Cellular and Porous Materials in Structures and
Processes. CISM.

Barthelat, F., Mirkhalaf, M., 2013. The quest for stiff, strong and tough hybrid materials:
an exhaustive exploration. J. R. Soc. Interface 10, 1-11.

Bitzer, T., 1994. Honeycomb marine applications. J. Reinf. Plast. Compos. 13, 355-360.

Bosia, F., Abdalrahman, T., Pugno, N.M., 2012. Investigating the role of hierarchy on the
strength of composite materials: evidence of a crucial synergy between hierarchy and
material mixing. Nanoscale 4, 1200-1207.

Burgardt, B., Cartraud, P., 1999. Continuum modeling of beam-like lattice trusses using
averaging methods. Comput. Struct. 73, 267-279.

Burlayenko, V.N., Sadowski, T., 2010. Effective elastic properties of foam-filled honey-
comb cores of sandwich panels. Compos. Struct. 92, 2890-2900.

Chen, C.N., 1998. Solution of beam on elastic foundation by DQEM. J. Eng. Mech. ASCE
124, 1381-1384.

Chen, J.Y., Huang, Y., Ortiz, M., 1998. Fracture analysis of cellular materials: a strain
gradient model. J. Mech. Phys. Solids 46 (5), 789-828.

Chen, Q., Pugno, N.M., 2013. Biomimetic mechanisms of natural hierarchical materials: a
review. J. Mech. Behav. Biomed. Mater. 19, 3-33.

Davini, C., Ongaro, F., 2011. A homogenized model for honeycomb cellular materials. J.
Elast. 104, 205-226.

Dinev, D., 2012. Analytical solution of beam on elastic foundation by singularity func-
tions. Eng. Mech. 19, 381-392.

D’Mello, R.J., Waas, A.M., 2013. In-plane crush response and energy absorption of cir-
cular cell honeycomb filled with elastomer. Compos. Struct. 106, 491-501.

Dos Reis, F., Ganghoffer, J.F., 2010. Discrete homogenization of architectured materials:
implementation of the method in a simulation tool for the systematic prediction of
their effective elastic properties. Tech. Mech. 30, 85-109.

Dos Reis, F., Ganghoffer, J.F., 2012. Construction of micropolar continua from the
asymptotic homogenization of beam lattices. Comput. Struct. 112-113, 354-363.

Eisenberger, M., Yankelevsky, D.Z., 1985. Exact stiffness matrix for beams on elastic
foundation. Comput. Struct. 21, 1335-1359.

Fan, H.L., Jin, F.N., Fang, D.N., 2008. Mechanical properties of hierarchical cellular
materials. part i: analysis. Compos. Sci. Technol. 68, 3380-3387.

Fenner, R.T., 1996. Finite Element Methods for Engineers. Imperial College Press.

Fratzl, P., 2007. Biomimetic materials research: what can we really learn from nature’s
structural materials? J. R. Soc. Interface 4, 637-642.

Fratzl, P., Weinkamer, R., 2007. Nature’s hierarchical materials. Mater. Sci. 52,
1263-1334.

Gao, H., 2010. Learning from nature about principles of hierarchical materials.
Proceedings of the 2010 IEEE International NanoElectronics Conference (INEC).
Georget, D.M.R., Smith, A.C., Waldron, K.W., 2003. Modelling of carrot tissue as a fluid-

filled foam. J. Mater. Sci. 38, 1933-1938.

Gibson, L.J., 1989. Modelling the mechanical behavior of cellular materials. Mat. Sci.
Eng. A110, 1-36.

Gibson, L.J., 2012. The hierarchical structure and mechanics of plant materials. J. R. Soc.
Interface 9, 2749-2766.

Gibson, L.J., Ashby, M.F., 2001. Cellular solids. Structure and Properties. Cambridge
University Press.

Gibson, L.J., Ashby, M.F., Harley, B.A., 2010. Cellular Materials in Nature and Medicine.
Cambridge University Press.

Gibson, L.J., Ashby, M.F., Schajer, G.S., Robertson, C.I., 1982. The mechanics of two-
dimensional cellular materials. Proc. R. Soc. Lond. A 382, 25-42.

98

Guiducci, L., Fratzl, P., Brechet, Y.J.M., Dunlop, J.W., 2014. Pressurized honeycombs as
soft-actuators: a theoretical study. J. R. Soc. Interface 11, 1-12.

Haghpanah, B., Papadopoulos, J., Mousanezhad, D., Hashemi, H.N., 2014. Buckling of
regular, chiral and hierarchical honeycombs under a general macroscopic stress state.
Proc. R. Soc. A 470, 8-56.

Harrington, M.J., Razghandi, K., Ditsch, F., Guiducci, L., Rueggeberg, M., Dunlop, J.W.C.,
Fratzl, P., Neinhuis, C., Burgert, I., 2011. Origami-like unfolding of hydro-actuated
ice plant seed capsules. Nat. Commun. 2 (337), 1-7.

Hosur, V., Bhavikatti, S.S., 1996. Influence lines for bending moments in beams on elastic
foundations. Comput. Struct. 58, 1225-1231.

Janco, R., 2010. Solution methods for beam and frames on elastic foundation using the
finite element method. Proceedings of the 2010 International Scientific Conference
on Mechanical Structures and Foundation Engineering, MSFE.

Karkon, M., Karkon, H., 2016. New element formulation for free vibration analysis of
Timoshenko beam on Pasternak elastic foundation. Asian J. Civil Eng. 17 (4),
427-442.

Kumar, R.S., McDowell, D.L., 2004. Generalized continuum modeling of 2-D periodic
cellular solids. Int. J. Solids Struct. 41, 7399-7422.

Kuo, Y.H., Lee, S.Y., 1994. Deflection of nonuniform beams resting on a nonlinear elastic
foundation. Comput. Struct. 51, 513-519.

Lakes, R., 1993. Materials with structural hierarchy. Nature 361, 511-515.

Lockyer, S., 1932. Seed dispersal from hygroscopic mesembryanthemum fruits, berger-
anthus scapigerus, schw., and dorotheanthus bellidiformis, N. E. Br., with a note on
carpanthea pomeridiana, N.E. Br. Ann. Bot. 46, 323-342.

Mattheck, C., Kubler, H., 1995. The Internal Optimization of Trees. Springer Verlag,
Berlin.

Meyers, M.A., Chen, P.Y., Lin, A.Y.M., Seki, Y., 2008. Biological materials: structure and
mechanical properties. Prog. Mater. Sci. 53, 1-206.

Mihai, L.A., Alayyash, K., Goriely, A., 2015. Paws, pads and plants: the enhanced elas-
ticity of cell-filled load-bearing structures. Proc. R. Soc. A 471, 1-20.

Niklas, K.J., 1989. Mechanical behavior of plant tissues as inferred from the theory of
pressurized cellular solids. Am. J. Bot. 76, 929-937.

Niklas, K.J., 1992. Plant Biomechanics: An Engineering Approach to Plant Form and
Function. University of Chicago Press.

Ongaro, F., Barbieri, E., Pugno, N.M., 2016. The in-plane elastic properties of hierarchical
composite cellular materials: synergy of hierarchy, material heterogeneity and cell
topologies at different levels. Mech. Mater. 103, 135-147.

Ongaro, F., De Falco, P., Barbieri, E., Pugno, N.M., 2016. Mechanics of filled cellular
materials. Mech. Mater. 97, 26-47.

Pan, N., 2014. Exploring the significance of structural hierarchy in material systems — a
review. Appl. Phys. Rev. 1, 1-31.

Pugno, N.M., Chen, Q., 2011. In-plane elastic properties of hierarchical cellular solids.
Phys. Eng. 10, 3026-3031.

Razaqpur, A.G., Shah, K.R., 1991. Exact analysis of beams on two-parameter elastic
foundations. Int. J. Solids Struct. 27, 435-454.

Sanchez, C., Arribart, H., Giraud Guille, M.M., 2005. Biomimetism and bioinspiration as
tools for the design of innovative materials and systems. Nat. Mater. 4, 277-288.

Sen, Y.L., Huei, Y.K., Yee, H.K., 1990. Elastic static deflection of a non-uniform
Bernoulli-Euler beam with general elastic end restraints. Comput. Struct. 36, 91-97.

Taylor, C.M., Smith, C.W., Miller, W., Evans, K.E., 2011. The effects of hierarchy on the
in-plane elastic properties of honeycombs. Int. J. Solids Struct. 48, 1330-1339.

Thompson, R.W., Matthews, F.L., 1995. Load attachments for honeycomb panels in racing
cars. Mater. Des. 16, 131-150.

Tsiatas, G.C., 2014. A new efficient method to evaluate exact stiffness and mass matrices
of non-uniform beams resting on an elastic foundation. Arch. Appl. Mech. 84,
615-623.

Van Liedekerke, P., Ghysels, P., Tijskens, E., Samaey, G., Smeedts, B., Roose, D., Ramon,


http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0001
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0001
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0002
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0002
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0003
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0003
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0004
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0005
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0005
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0005
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0006
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0006
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0007
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0007
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0008
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0008
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0009
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0009
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0010
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0010
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0011
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0011
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0012
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0012
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0013
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0013
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0014
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0014
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0014
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0015
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0015
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0016
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0016
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0017
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0017
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0018
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0019
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0019
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0020
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0020
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0021
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0021
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0022
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0022
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0023
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0023
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0024
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0024
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0025
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0025
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0026
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0026
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0027
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0027
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0028
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0028
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0029
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0029
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0029
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0030
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0030
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0030
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0031
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0031
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0032
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0032
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0032
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0033
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0033
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0033
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0034
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0034
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0035
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0035
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0036
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0037
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0037
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0037
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0038
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0038
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0039
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0039
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0040
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0040
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0041
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0041
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0042
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0042
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0043
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0043
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0043
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0044
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0044
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0045
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0045
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0046
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0046
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0047
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0047
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0048
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0048
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0049
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0049
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0050
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0050
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0051
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0051
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0052
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0052
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0052
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0053

F. Ongaro et al.

H., 2010. A particle-based model to simulate the micromechanics of single-plant
parenchyma cells and aggregates. Phys. Biol. 7, 1-13.

Wang, X.L., Stronge, W.J., 1999. Micropolar theory of two-dimensional stresses in elastic
honeycomb. Proc. R. Soc. Lond. A 455, 2091-2116.

Warner, M., Thiel, B.L., Donald, A.M., 2000. The elasticity and failure of fluid-filled
cellular solids: theory and experiment. PNAS 97 (4), 1370-1375.

Warren, W.E., Byskov, E., 2002. Three-fold symmetry restrictions on two-dimensional

99

Mechanics of Materials 124 (2018) 80-99

micropolar materials. Eur. J. Mech. A/Solids 21, 779-792.

Wilson, S., 1990. A new face of aerospace honeycomb. Mater. Des. 11, 323-326.

Wu, N., Pitts, M.J., 1999. Development and validation of a finite element model of an
apple fruit cell. Postharvest Biol. Technol. 16, 1-8.

Zhu, H.X., Melrose, J.R., 2003. A mechanics model for the compression of plant and
vegetative tissues. J. Theor. Biol. 221, 89-101.


http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0053
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0053
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0054
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0054
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0055
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0055
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0056
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0056
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0057
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0058
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0058
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0059
http://refhub.elsevier.com/S0167-6636(16)30341-6/sbref0059

	Mechanics of mutable hierarchical composite cellular materials
	Introduction
	Problem statement: geometrical description and theoretical modelling of the discrete system
	Geometrical description
	Theoretical modelling
	The discrete system continuum-springs
	The Euler–Bernoulli beam on Winkler foundation element

	Elastic energy of the discrete system
	Discussion

	The homogenized model
	Elastic energy
	Constitutive equations
	Elastic constants

	Discussion
	The hygroscopic keel tissue: Comparison with other authors
	Parametric analysis

	Hierarchical extension
	Effective elastic constants
	The stiffness-to-density ratio
	Parametric analysis and optimal values

	Conclusions
	Acknowledgement
	Appendix A
	Appendix B
	B.1.     Energy
	B.2.     Constitutive equations and elastic constants

	Appendix C
	Appendix D
	D.1.     Density
	D.2.     Winkler foundation constant as a function of the filler’s Young’s modulus

	References




