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ABSTRACT: In this work, we propose a theoretical and
computational model for taking into account the anisotropic
structure of highly oriented pyrolitic graphite (HOPG) in the
Monte Carlo simulations of charge transport. In particular, the
dielectric characteristics, such as the inelastic mean free path and
energy losses, are treated by linearly combining the contributions
to these observables along the two main orthogonal directions
identifying the layered crystalline structure of HOPG (along the
layer plane and perpendicular to it). Energy losses are evaluated
from ab initio calculations of the dielectric function of the system
along these two perpendicular directions. Monte Carlo simulated
spectra, obtained with our anisotropic approach, are compared
with acquired experimental data of reflection electron energy loss
and secondary electron spectra, showing a good agreement.
These findings validate the idea of the importance of considering properly weighted interplanar and intraplanar interactions in
the simulation of electron transport in layered materials.

■ INTRODUCTION

Carbon-based materials have recently attracted significant
attention due to the discovery of new exciting science,
particularly in connection with the unique band structure of
graphene. Within this 2D material, in which the planar topology
is realized by a sp2-net of carbon atoms, electrons behave like
relativistic Fermions offering the potential for high-speed
nanoscale electronics and for replacing silicon in lightweight
and wearable devices. Other carbon allotropes, obtained for
example by rolling up graphene in carbon nanotubes, display
further interesting properties, as they can be produced with
both semiconducting and metallic character depending on the
twist and on the diameter of the tube.1,2 Nevertheless, these
materials are still difficult to be synthesized in a cost-effective,
scalable way.
At variance with other allotropes of carbon, graphite can be

naturally found (the others two being amorphous carbon and
diamond). Thus, it is worthy to explore its properties,
particularly with respect to its electronic characteristics for

applications in optoelectronic devices and imaging. Graphite
represents a 3D stacking of graphene sheets and thus displays
an uniaxial layered structure which retains some characteristics
of graphene, while its thermal, acoustic, and electronic
properties are highly anisotropic. Most notably, the large
anisotropy of the electric conductivity means that along the
planes graphite shows an higher conductivity than in the
direction normal to the surface.3

In this work we present Monte Carlo (MC) simulations of
reflection electron energy loss (REEL) and secondary electron
(SE) spectra of highly oriented pyrolytic graphite (HOPG),
taking into account the target anisotropic structure. Simulated
spectra are compared with experimental data recorded in our
laboratories. In this model, elastic scattering events between
electrons and target atoms are treated via the Mott theory,4
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which is based on the solution of the Dirac equation in a central
field. At variance, inelastic collisions between the primary
electron beam and the electron cloud of the target can result in
the excitation of bulk and surface plasmon oscillations. In this
regard, an accurate description of the electron energy loss is
provided by the dielectric theory developed by Ritchie.5 Within
this approach, the key quantity for the calculation of the
inelastic cross section is the energy loss function (ELF), defined
as the imaginary part of the inverse of the dielectric function
ϵ(q ⃗, W), where q ⃗ is the transferred momentum owing to the
inelastic interactions and W is the energy loss.
To take into account graphite anisotropy, we assess from ab

initio time-dependent density functional simulations the
dielectric function optical limit (ϵq⃗→0) along two orthogonal
directions: along the direction normal to the layer (identified by
the vector c)⃗, which accounts for interplanar interactions, and
along the one perpendicular to c,⃗ which describes intraplanar
excitations (in-plane direction). Finally, the ELFs, obtained by
combining these two dielectric functions, were fitted in the
optical limit by using Drude−Lorentz functions and extended
to finite momenta by a dispersion law obtained within the
random phase approximation (RPA).6 In this way, the energy
losses in both planar and interplanar directions were taken into
account appropriately in our Monte Carlo simulations.
In the following sections the Monte Carlo model as well as

the experimental procedures will be described in detail. Then
the comparison between experimental and simulated spectra
will be presented.

■ EXPERIMENTAL DETAILS

Reflection Electron Energy Loss Spectra Acquisition.
The sample of HOPG was initially cleaved ex situ and then was
cleaned by annealing at 600 °C for 10 min in ultrahigh vacuum.
The REEL measurements were realized at a base pressure of ≈2
× 10−2 mbar in a PHI 545 system. The experimental apparatus
is composed by a coaxial electron gun, a nonmonochromatic
MgKα (hν = 1253.6 eV) X-ray source, a He discharge lamp,
and double-pass cylindrical mirror analyzer (CMA). In CMA,
the angle between primary electron beam and the surface
normal is maintained constant, while emitted electrons cross
the surface in different directions that are described by the
angle between the surface normal and the CMA axis (30°), the
entrance angle to the analyzer (42° ± 6°), and the azimuth
angle in a plane normal to the CMA axis. The energy resolution
was maintained constant at 0.6 eV, as measured on a Pd Fermi
edge. The zero-loss peak has a measured full width at half-
maximum of 0.9 eV. The energy of the impinging electron

beam spans the range from 250 to 2000 eV. The acquired
spectra are corrected for the energy dependence (E−0.9)
according to the analyzer transmission function.

Secondary Electron Spectrum Acquisition. SE spectrum
acquisition was performed with a FEI Helios NanoLab G3 UC
scanning electron microscope (SEM). HOPG with a mosaic
spread of 3.55° ± 1.5° (purchased from Agar scientific) was
mounted on an aluminum pin-stub using silver paint. Prior to
specimen insertion into the SEM, the HOPG surface was
mechanically exfoliated. The maximum time between exfolia-
tion, insertion into the SEM vacuum chamber, and pump down
to vacuum was less than 3 min. For imaging and spectra
collection, the vacuum pressure at room temperature was 3 ×
10−6 mbar, and the working distance was kept to 4 mm. The
design of the in-lens detector of this SEM allows the collection
of different SE energy ranges by changing a mirror electrode
voltage (M parameter). Images were collected at different M
settings ranging from minimum electron energy of −0.7 eV to a
maximum of 12.7 eV. SE spectra were collated by differ-
entiating the mean intensity of each image from each individual
M step. The SE energy calibration method for this system can
be found in Young et al.7 and the Supporting Information of
Wan et al.,8 while the absolute energy value was checked by fine
structures reported experimentally in literature (3, 4, and 7.5
eV9) for HOPG and fine structure for diamond (6 eV10).
Detection artifacts within a certain M range were identified by
evaluating the average intensity of a reference gold sample with
the smallest possible filter parameter step difference (0.1 V).
The artifacts manifested as an increment in M without an
associated signal change, signifying a discrepancy between the
stated and actual M. A lookup table of corrected M was created,
excluding the artifacts and rescaling the remaining M to the
initial filter parameter collection range. The differentiation of
the S-curve to obtain the spectrum was performed using the
corrected SE energy values associated with the respective M
values.

■ COMPUTATIONAL DETAILS

Elastic Scattering. Elastic scattering between the impinging
electrons and the atoms of the target is described by the Mott
theory (see, for example, refs 11−15). The atomic potential was
obtained self-consistently by solving the Dirac−Kohn−Sham
equations for the carbon atom within the local spin-density
approximation (LSDA) as implemented in the ELK software
program.16 The elastic scattering cross section is calculated as
reported in ref 17.

Figure 1. Total elastic scattering cross section σel (left panel) and elastic mean free path λel (right panel) calculated from the bare Mott theory (blue
line) and by using the correction proposed by Ganachaud and Mokrani (α = 0.003 1/eV2) (red line).
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For T = 10 eV we find a total elastic scattering cross section
σel = 28.3 Å2 and an elastic mean free path λel = 0.31 Å. This
value of λel is 1 order of magnitude lower than the lattice
parameters of graphite (a ⃗ = 2.46 Å, c ⃗ = 6.71 Å) and is thus
unphysical. Therefore, we introduce a correction to the Mott
cross section at low energy.18 Ganachaud and Mokrani19

proposed to multiply the total elastic scattering cross section σel
by a cutoff function in order to diminish σel at low energy.
Similarly to this model, the total elastic scattering cross section
can be obtained by multiplying the cross section calculated
using the partial-wave expansion method by the following
factor

α=R T T( ) tanh( )2
(1)

where α is a parameter to be determined. It is worth noting that
in the previous function, the α parameter is different from the
αC parameter of the Ganachaud and Mokrani cutoff function.
Indeed, the latter includes also the material energy band gap. By
choosing α = 0.003 eV−2, the value of the elastic mean free path
for T = 10 eV is λel = 1.15 Å. Figure 1 shows the behavior of σel
(left panel) and λel (right panel) obtained with α = 0.003 eV−2,
along with those calculated by using the bare Mott theory. By
introducing this factor, one obtains a behavior of the elastic
scattering cross section consistently decreasing at low energy.
Moreover, we find out that the use of a cutoff function is

necessary to obtain good agreement between calculated and
experimental SE spectra.
Inelastic Scattering. The inelastic scattering between the

impinging electrons and the electron clouds of the target atoms
was dealt with using the Ritchie theory.5

Within this approach, the total inelastic cross section can be
computed by assessing the inelastic mean free path λinel
(IMFP). The latter can be obtained by integrating over the
energy loss interval the differential inverse inelastic mean free
path (DIIMFP)
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where T is the primary beam kinetic energy and the DIIMFP is
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where a0 is the Bohr radius. The limits of integration of the

integral in eq 3 are set to = ± −±q mT m T W2 2 ( ) for

momentum conservation.11 The integrand in eq 3 is the so-
called ELF.

According to eq 3, to model the inelastic collisions one needs
to compute the dielectric function of the target material as a
function of the momentum q ⃗ and of the energy transferred
during the inelastic collision W. ELFs were calculated in the
optical limit (q ⃗ → 0) from ab initio simulations using the ELK
code16 within the framework of linear response time-dependent
density functional theory (LR-TDDFT). In these calculations
we used a k-point sampling of 20 × 20 × 20 mesh points, a
cutoff for augmented plane waves equal to 400 eV, and a Fermi-
smearing of 0.2 eV.
Considering the anisotropic structure of HOPG, two possible

different orientations for energy losses were taken into account:
on the one hand, we considered the transferred momentum q ⃗
parallel to the vector normal to the graphite plane (identified by
the vector c)⃗ and on the other hand q ⃗ perpendicular to c.⃗
Dielectric functions and derived observables, such as inelastic
mean free paths, are reported for these two cases in the
following discussion respectively as ϵ||(q, W) and ϵ⊥(q, W), and
the same notation is applied to the inelastic mean free paths λ||
and λ⊥. Optical ELFs were then fitted by Drude−Lorentz (D−
L) functions as follows

∑=
Γ

− − Γ
A W

E q W W
ELF

( ( ) ) ( )n

n n

n n
2 2 2 2

(4)

where An is the excitation strength of the nth oscillator, Γn the
damping constant, and En the plasmon excitation energy. In
Figure 2 ab initio data and final fit functions are shown, while in
Tables 1 and 2 the fitting parameters are reported. In the fitting

procedure the number of oscillators was chosen to reproduce
the ab initio spectra. Moreover, the choice of these optimal
parameters leads to fulfilling the f-sum rule.
Finally, ELF fit functions are extended to finite values of q ⃗ by

applying the quadratic dispersion law obtained within the
RPA:6

Figure 2. ELF functions along the two possible orthogonal directions of transferred momentum q ⃗: ab initio calculations (red lines) are compared to
the Drude−Lorentz best fits (black lines).

Table 1. D−L Parameters (q⃗||c ⃗ Direction)
n An (eV

2) Γn (eV) En (eV)

1 0.15 1.75 0.80
2 0.62 1.76 4.06
3 13.26 4.22 15.57
4 51.80 1.90 18.23
5 25.52 6.23 20.73
6 452.31 20.02 37.93
7 112.91 19.84 48.25
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These data were used to compute the total inelastic scattering
cross section σinel and the IMFP λinel by eq 2 (see Figure 3).
To calculate the total IMFP by taking into account the

anisotropic structure of graphite, λinel and W were determined
by linearly combining at each inelastic interaction the
corresponding values along the two possible orthogonal
directions of the transferred momentum q ⃗, as follows

λ θ λ θ λ= + − +|| ⊥f f f[ cos ] [(1 ) sin ]inel
2 2

(6)

θ θ= + − +|| ⊥W f W f f W[ cos ] [(1 ) sin ]2 2
(7)

where f is an anisotropy parameter in the range [0:1], and θ is
the angle between c ⃗ and q ⃗. The f parameter has been introduced
in this anisotropic model of the inelastic observables to favor
the electron motion in the planar direction, since HOPG shows
a higher conductivity along the plane (q ⃗⊥c)⃗. The value of f is
determined to obtain the best agreement between theoretical
and experimental spectra.
Monte Carlo Model. Monte Carlo simulations were

performed in order to interpret REEL and SE spectra of
HOPG acquired in house. Details on our Monte Carlo
approach can be found in ref 21.
To carry out Monte Carlo calculations, some input

information about the target material, such as atomic and
mass number, density, elastic and inelastic mean free paths, and
probability distributions of elastic and inelastic scattering, is
required. In particular, the characteristic quantities of the target
material are the atomic number (Z = 6), the atomic mass (A =
12.011 uma),22 the density (d = 2.25 g/cm3),23 the electronic
band gap Eg (0.0 eV), and the work function (WF = 4.6 eV).24

On the one hand, in the case of inelastic collisions the
primary electrons lose their kinetic energy according to the
cumulative probability distribution
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that depends on the initial kinetic energy T and on the energy
loss W.
On the other hand, the change in the direction of the

elastically scattered electrons can be obtained by using the
elastic cumulative probability
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that is determined for a fixed initial kinetic energy T by varying
the scattering angle θ in the range [0, θ̅]. In eq 9 σel is the total
elastic scattering cross section.
Elastic and inelastic scattering probability distributions lead

respectively to the assessment of the scattering angle and of the
energy loss. Probability distributions were calculated at specific
energies of the electrons, and in Table 3 we report both the
electron kinetic energy ranges and the relevant mesh intervals
(ΔE) that we used in our MC simulations.

Depending on the kinetic energy of the electron undergoing
the collision, we select a probability distribution. The scattering
angle (elastic interaction) or the energy loss (inelastic
interaction) is determined by generating a random number,
uniformly distributed in the interval [0, 1]. In fact, (see eq 9)
the value of the elastic scattering cumulative probability (or of
the inelastic scattering cumulative probability, see eq 8) that
equalizes this random number determines the scattering angle
(or the energy loss). The total mean free path (λ), which
characterizes the electron path within the target material, is
defined as

λ λ λ
= +1 1 1

el inel (10)

Table 2. D−L Parameters (q⃗⊥c ⃗ Direction)
n An (eV

2) Γn (eV) En (eV)

1 0.43 5.36 2.58
2 8.96 1.73 6.99
3 0.25 8.30 14.53
4 33.93 10.16 21.77
5 32.00 10.50 24.32
6 466.69 6.99 28.03
7 100.30 30.03 38.09

Figure 3. Inelastic mean free paths calculated along the two possible orthogonal directions of transferred momentum q ⃗. In the case q ⃗⊥c,⃗ the
calculated values are compared with the data by Tanuma et al. (dashed lines).20

Table 3. Energy Values at Which Scattering Probabilities Are
Calculated

range ΔE (eV)

0 < E ≤ 10 eV 0.5
10 < E ≤ 50 eV 1.0
50 < E ≤ 100 eV 5.0
100 < E ≤ 200 eV 10.0
E ≥ 200 eV 100.0
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where λel is the elastic mean free path. The probabilities of the
elastic and inelastic events can be evaluated, for any fixed value
of kinetic energy and angle, as

λ
λ

λ
λ

= =p pel
el

inel
inel (11)

The decision on the type of collision that the electrons
undergo is made by generating another random number
uniformly distributed in the interval [0, 1]. When this number
is lower than pel the interaction will be elastic; otherwise, it will
be inelastic. In Figure 4 we report the elastic and inelastic
collision probabilities as a function of the relevant variables θ
and T.

■ RESULTS AND DISCUSSION

REELS. Different simulations were carried out at several
beam kinetic energies to simulate our recorded REEL spectra.
In the Monte Carlo runs, the trajectories of N = 109 primary
electrons were followed in order to achieve good statistics. The
beam incidence angle was fixed at 30° with respect to the
normal to the surface, according to our experimental
conditions. First, we investigated the dependence of the
REEL spectra on the parameter f by spanning a range of
possible values in eqs 6 and 7. Figure 5 compares the REEL
theoretical spectra (red lines), obtained for an initial kinetic
energy of 1500 eV, at different values of f with our experimental
data (black lines).21

The higher the value of f, the larger the contribution of
intraplanar excitations (q ⃗||c)⃗ to inelastic interactions. This effect

Figure 4. Collision probabilities as a function of the electron kinetic energy (T) and of the angle (θ) between the transferred momentum q ⃗ and the
vector c ⃗ normal to the surface.

Figure 5. REELs of HOPG for different values of the f parameter (red lines). The kinetic energy of the primary beam is set to 1500 eV. MC
calculations are compared with our experimental data (black lines).21 The spectra are normalized at a common area of the elastic peak.
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can be noticed in the spectra of Figure 5 by the rise of a
shoulder at an energy loss of 20 eV, which corresponds to an
oscillation in the ELF along the q ⃗||c ⃗ direction. The value of the
anisotropy parameter that shows the best agreement between
experimental and calculated REELS normalized at a common
area of the elastic peak is f = 0.6. Indeed, by performing a chi-
squared test in the energy loss range [−2:80] eV, the lowest
value of the χ2 can be obtained using f = 0.6 (see Table 4).

Nevertheless, a value equal to 0.6 of this anisotropic parameter
delivers the best agreement also in other primary beam energy
ranges. Thus, we set the anisotropy parameter to this value in
all MC simulations. This means physically that by considering,
e.g., a scattering angle θ = 0° (that is, orthogonal to the graphite
layers), the energy loss embeds 60% of collisions with a
transferred momentum along the q ⃗||c ⃗ direction, while 40% of
the spectrum is made by collisions along the q ⃗⊥c ⃗ (in-plane)
direction (see eqs 6 and 7). Of course, the directional change of
the electrons inelastically scattered by the target nuclei is taken
into account, for fixed f, by the scattering angle θ, which is
modified by the interactions at each MC step. This anisotropic
model is consistent with the higher tendency of the electrons to
move along the graphite planes rather than across the planes.

MC simulations were performed at several primary beam
kinetic energies and compared with our experimental data
(normalized at a common area of the elastic peak) in Figure 6.
We notice that the agreement between calculated and

experimental data is rather good and becomes progressively
better for increasing kinetic energies. This is due to the fact that
our experimental spectra report also the contribution of surface
plasmons, which is neglected in the MC calculations and whose
relative importance diminishes with respect to bulk plasmons at
higher values of the primary beam kinetic energy. It is worth
noting that the normalization of the data at a common area of
the elastic peak keeps the correct intensity ratios between the
two main plasmon peaks.

Secondary Electron Spectrum. A quantitative under-
standing of SE spectra is crucial in imaging techniques. SE
emission from graphite was thus assessed by MC simulations,
using a kinetic energy of the incident beam (N = 106) equal to
1000 eV. In the MC simulations, the beam incident direction
was chosen orthogonal to the sample surface, according to our
experimental conditions (see Experimental Details section). In
Figure 7, we compare our MC calculations with the acquired
experimental spectra. While the shape of the theoretical and
experimental SE spectra is comparable, the simulated spectrum
has been shifted by 0.7 eV along the positive axis direction, in
order to align the dominant emission peak.

■ CONCLUSIONS

In this work, we performed Monte Carlo simulations, based on
ab initio input data of the energy-dependent dielectric function,
of REEL and SE spectra of graphite, taking into account
features related to the anisotropic structure of the target
material. Graphite has indeed a layered structure, and this must
be considered in the treatment of the electron transport
properties. In particular, the determination of the inelastic
mean free path and of the energy loss was carried out by
considering a linear combination of the dielectric properties

Table 4. χ2-Test Carried Out by Considering the
Experimental and Calculated Data Normalized at a Common
Area of the Elastic Peak in the Energy Loss Range [−2:80]
eV for Different Values of the Parameter f

f χ2

0.0 134
0.2 207
0.4 125
0.6 93
0.8 95
1.0 174

Figure 6. REELs of HOPG for several primary beam kinetic energies. Red lines show simulated spectra, while black curves report our experimental
data.21 The results are normalized at a common area of the elastic peak.
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along the two main orthogonal crystal directions (in plane and
out of plane).
In our model, the coefficients of these linear combinations

depend on an anisotropy parameter f and on the angle between
the transferred momentum q ⃗ and the surface normal vector c.⃗
Our approach for including a dependence of the dielectric
properties on the target anisotropy clearly improves the
agreement between simulated and experimental REEL spectra.
Indeed, spectral features are well reproduced by MC
calculations for a value of the anisotropy parameter f = 0.6.
This means that the energy loss along the q ⃗||c ⃗ (interplanar)
direction contributes to 60% of inelastic collisions, while 40% of
the spectral features are contributed by collisions along the q ⃗⊥c ⃗
direction (in-plane). Furthermore, the MC simulations of
secondary emission spectra, whose quantitative understanding
is important in imaging applications, were carried out by using
our anisotropic model and compared to in-house recorded
experimental spectra. We found a good agreement between
theoretical and acquired spectra with respect to the line shape,
that is, the intensity of the spectral features, while an energy
shift was imposed to the theoretical data to reproduce the
energy of the main emission peak. These findings demonstrate
the importance of considering properly weighted interplanar
and intraplanar interactions in the simulation of charge
transport in layered materials. Finally, the accuracy of our
approach can be tested and possibly improved by considering
other descriptions of the ELF at low energies, such as using the
Mermin dielectric function presented by Garcia-Molina et al. in
ref 25. Moreover, the performance of these models in the
optical limit can be further improved by taking into account
more rigorously the exchange-correlation effects, particularly at
low energy, according to Emfietzoglou et al.26,27
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