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Summary
We numerically analyze the performance of labyrinthine acoustic metamaterials with internal channels folded
along a Wunderlich space-filling curve to control low-frequency sound in air. In contrast to previous studies,
we perform direct modeling of wave propagation through folded channels without introducing effective theory
assumptions. We reveal that metastructures with channels that allow wave propagation in the opposite direction
to incident waves, have different dynamics as compared to those for straight slits of equivalent length. These dif-
ferences are attributed to tortuosity effects and result in 100% wave reflection at band gap frequencies. This total
reflection phenomenon is found to be insensitive to thermo-viscous dissipation in air. For labyrinthine channels
generated by recursive iteration levels, one can achieve broadband total sound reflection by using a metamaterial
monolayer, and efficiently control the amount of absorbed wave energy by tuning the channel width. Thus, the
work contributes to a better understanding of labyrinthine metamaterials with potential applications for reflection
and filtering of low-frequency airborne sound.
PACS no. 43.20.El, 43.20.Hq, 43.20.Ks

1. Introduction
Acoustic metamaterials are composites with an engineered
structure providing remarkable functionalities, e.g. acous-
tic cloaking, transformation acoustics, and subwavelength-
resolution imaging [1, 2]. Apart from unusual effective
properties, metamaterials offer various possibilities to con-
trol propagation of sound or elastic waves at deep sub-
wavelength scales [3, 4, 5]. This can be achieved by incor-
porating heavy resonators [3], Helmholtz resonators [6, 7],
tensioned membranes [8, 9], and sub-wavelength perfora-
tions or slits [10, 11, 12, 13] in a material structure. A class
of acoustic metamaterials with internal slits is also known
as “labyrinthine”. These have recently attracted consider-
able attention due to their abilities to exhibit an exception-
ally high refractive index and to efficiently reflect sound
waves, while preserving light weight and compact dimen-
sions [12, 13, 14].

Labyrinthine metamaterials enable to slow down the
effective speed of acoustic waves due to path elonga-
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tion by means of folded narrow channels [13, 15]. Their
high efficiency in manipulating low-frequency sound has
been experimentally demonstrated for various channel ge-
ometries. For example, Xie et al. have shown the exis-
tence of a negative effective refractive index at broadband
frequencies for labyrinthine metastructures with zig-zag-
type channels [16]. For the same configuration, Liang et
al. have demonstrated extraordinary dispersion, includ-
ing negative refraction and conical dispersion for low-
frequency airborne sound [15]. Frenzel et al. have used
the zig-zag channels to achieve broadband sound attenu-
ation by means of three-dimensional labyrinthine metas-
tructures [17, 18]. The issue of poor impedance match-
ing for labyrinthine metamaterials has been addressed by
exploiting tapered and spiral channels [19] and hierarchi-
cally structured walls [20]. Cheng et al. have proven al-
most perfect reflection of low-frequency sound by sparsely
arranged unit cells with circular-shaped channels that sup-
port generation of strong artificial subwavelength Mie res-
onances [12]. In our previous work, we have proposed
a simple modification to the latter design (by adding a
square frame) to achieve a wider bandwidth tunability
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[14]. Moleron et al. have emphasized the importance of
thermo-viscous effects on the performance of labyrinthine
structures with sub-wavelength slits [21].

Most of the mentioneds studies analyze labyrinthine
metamaterials with curved channels by replacing a real
material structure with a simplified one. In a simplified
configuration, wave propagation in folded channels is de-
scribed by the dynamics of straight slits of an effective
length, which equals to the shortest path taken by a wave
within the structure [13, 15, 17, 20, 21]. This approach
provides reliable results for channels, in which wave prop-
agation direction does not deviate much from that of inci-
dent waves. Hence, it appears that the channel tortuosity
plays no role. Possible effects of the path tortuosity, e.g.
when a wave is allowed to propagate in the opposite di-
rection relative to the incident wave field, remain to be
investigated. A limited number of papers have analyzed
labyrinthine metamaterials of this type.

In [19], Xie et al. investigated metastructures with spiral
channels to introduce tunability of effective structural pa-
rameters, such as refractive index and impedance. Song et
al. considered hierarchically organized walls to achieve a
broadband wave absorption [20]. These works are mainly
focused on the experimental validation of the mentioned
features, and lack a theoretical analysis of wave behavior
in a tortuous channel.

The goal of this work is to numerically investigate
dispersion and propagation properties of airborne sound
in labyrinthine metamaterials with channels that allow a
change in the direction of wave propagation, and to com-
pare their performance with that of the corresponding
straight slits. For this purpose, we design sub-wavelength
paths in metamaterial unit cells along a hierarchically-
organized curve. In particular, we consider a space-filling
curve with self-similar organization, and a simple algo-
rithm to derive length elongation. We perform a com-
plete theoretical analysis of the wave dispersion in the
designed metamaterials complemented by the study of
acoustic transmission, reflection, and absorption for a sin-
gle slab in the absence or presence of thermo-viscous
losses. Results show that the proposed metamaterials have
a great potential as efficient reflectors for low-frequency
airborne sound. Moreover, to facilitate their practical ex-
ploitation, we propose to assemble reconfigurable struc-
tures from thin panels of constant thickness (sheets), pro-
viding an inexpensive alternative to an additive manufac-
turing approach.

2. Space-filling curves

As mentioned above, the wave path in the designed
labyrinthine metamaterials can be elongated along space-
filling curves [22]. These were first described by Peano
[23] (later named after him), and since then many other
curves were proposed [24]. An attractive property of these
curves is that they go through every point of a bounding
domain provided an unlimited number of iterations is as-
sumed. After initially being studied as a curiosity, nowa-

days space-filling curves are widely applied, e.g. for index-
ing of multi-dimensional data [25], transactions and disk
scheduling in advanced databases [26], building routing
systems [27], etc.

Among various curves, we have chosen the Wunderlich
two-dimensional curve filling a square [22]. It can be con-
structed as follows. At the 1st iteration level, one draws
an “S”-shaped curve starting at the bottom-left corner of
a bounding square and ending at the top-right corner. At
the nth (n ≥ 2) iteration level, 3 copies of the (n − 1)th-
level curve are arranged along each side of a square with
every copy being rotated by 90◦ relative to the previous
one. The curves are joined into an S-shaped route starting
from the up-direction for the left column, then down for
the middle column, and finally again up for the right col-
umn. At every nth iteration level, the length of the Wun-
derlich curve is (3n − 1/3n), while that of e.g. Hilbert’s
curves is (2n − 1/2n) [22]. Such fast length elongation en-
ables more compact channel folding in a labyrinth (and
thus, increases the tortuosity effect), justifying the choice
of the Wunderlich curve for this study.

3. Models and methods

Figure 1 presents labyrinths of a square form with inter-
nal channels shaped along the Wunderlich curves of the
three iteration levels. These are used to construct “unit
cell 1” (UC1), “unit cell 2” (UC2), and “unit cell 3”
(UC3), respectively. The structural material is aluminum
with mass density ρAl = 2700 kg/m3 and speed of sound
cAl = 5042 m/s. The thickness of bounding walls is fixed
for all the unit cells and equals d = 0.5 mm.

The channel width is w, and the size of a square domain
occupied by a single labyrinth is a = 3N (w+d)+d, where
N is the iteration level. We preserve an interconnecting
cavity of width w between adjacent labyrinths. Thus, the
metamaterial unit cell size is auc = a + w (see Figure 1a
for notations).

We analyze plane waves propagating in the plane of a
unit cell cross-section. The metamaterial geometry is as-
sumed to be constant in an out-of-plane direction without a
possibility to excite a momentum in this direction. Hence,
the pressure field is always constant in the out-of-plane di-
rection, and the wave dynamics is two-dimensional (2D).
The validity of this assumption is confirmed by a good
agreement by using the results of three-dimensional (3D)
simulations given further in the Section 4.

First, we analyze sound wave dispersion in the la-
byrinthine metamaterials infinitely extending in both in-
plane directions. By neglecting any losses in air, small-
amplitude variations of harmonic pressure p(x, t) =
p(x)e iωt (with angular frequency ω = 2πf , where f in-
dicates the frequency in Hz) are governed by the homoge-
neous Helmholtz equation,

∇ − 1
ρ0

∇p − ω2p

ρ0c0
= 0, (1)

with air density ρ0 = 1.225 kg/m3 and speed of sound
c0 = 343 m/s at a temperature of T = 20 ◦C. Since the
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(a) UC1 (c) 2nd iteration

(b) 1st iteration (d) 3rd iteration

d

w

a

auc

Figure 1. (Colour online) (a) Unit cell at the 1st iteration level
(UC1) and the corresponding dimensions. (b-d) Labyrinths with
air channels shaped according to the Wunderlich space-filling
curve. The first three iteration levels are indicated as UC1, UC2,
and UC3. Solid walls are shown in dark blue. The shortest path
taken by a wave within UC1 is indicated by blue arrows in (b).

2aucauc auc auc10auc 10auc

unit

cell
PML

Periodic boundary conditions

Figure 2. (Colour online) Schematic of the frequency domain
model. Green area corresponds to an air domain, green dashed
lines indicate locations, at which reflection and transmission co-
efficients are evaluated. The plane wave radiation condition is
applied along the bold red line.

characteristic acoustic impedance of aluminum is around 4
orders of magnitude larger than that of air, we assume zero
displacements for the structural walls and apply sound-
hard boundary conditions at air-structure interfaces. The
pressure distribution at opposite unit cell boundaries is
constrained by the Floquet-Bloch periodic conditions,

p(x + a) = p(x)e ik·a, (2)

with q = (auc, auc, 0) and wave vector k = (kx, ky, 0).
More details about the dispersion analysis can be found in
[14].

Next, we evaluate homogeneous wave propagation
through a metamaterial monolayer. A sketch of the model
is presented in Figure 2. Plane wave radiation occurs at
the left domain boundary at a distance of 10auc from the
slab. At the right boundary, a perfectly matched layer of
width 2auc is added to eliminate unwanted wave reflec-
tion. At the bottom and top boundaries, the Floquet-Bloch

periodic boundary conditions (2) enable to infinitely ex-
tend the air domain in the vertical direction. The reflection
R = |pr/pi|2, transmission T = |pt/pi|2, and absorption
A = 1 − R − T coefficients are evaluated by averaging
incident pi, reflected pr, and transmitted pt pressure fields
along the lines located at a distance auc from the metas-
tructure.

In order to understand how the tortuosity of a
labyrinthine channel influences sound wave characteris-
tics, we compare the evaluated T and A values for the
metastructures with those for straight slits of width w and
length L = Leff or L = auc, which are distributed at dis-
tances a along the vertical direction. In the case ofL = auc,
the slits are located between silod blocks of the same size
as labyrinthine structures, while the latter do not contain
any internal channels. The effective channel length Leff is
approximately equal to the shortest wave path from the in-
put to the output through a labyrinthine channel (as shown
e.g. by light-blue lines in Figure 1b).

If the channel width is small compared to the wave-
length of a propagating wave, thermal and viscous bound-
ary layers near walls cause loss effects (lossy air). The
thickness of these layers decreases with increasing fre-
quency. The thickness of the thermal boundary layer δth

is evaluated as

δth =
k

πfρ0Cp
, (3)

where k = 25.8 mW/(m K) is the thermal conductivity,
and Cp = 1.005 kJ/(m3 K) is the heat capacity at constant
pressure. The thickness of the viscous boundary layer δvis

is

δvis =
µ

πfρ0
, (4)

with dynamic viscosity µ = 1.814
.
10−5 Pa s. The graphical

representation of Equations (3)–(4) is given in Figure 3. At
20 ◦C and 1 atm, the viscous and thermal boundary layers
are of thickness 0.22 mm and 0.26 mm at 100 Hz, respec-
tively.

As the designed labyrinthine channels are relatively
easy to model, we directly include thermal conduction
and viscous attenuation into the computational model.
Thus, the linearized system consists of a linearized Navier-
Stokes equation, the continuity equation, and the energy
equation given in [28]. This system is solved for acoustic
pressure variations p, the fluid velocity variations u, and
temperature variations T . The variations describe small
harmonic oscillations around a steady state. The men-
tioned equations are implemented in the Thermoacoustic
interface of Comsol Multiphysics [29].

The dispersion and transmission studies are im-
plemented as eigenvalue and frequency-domain finite-
element simulations. The described acoustic domains are
discretized with the maximum element size of λmin/12,
where λmin = c0/fmax, and fmax is the maximum consid-
ered frequency. Such a mesh resolves the smallest wave-
length of the study with 12 elements. To properly capture
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Figure 3. Thickness of viscous and thermal boundary layers ac-
cording to relations (3) and (4).

the wave field variations within the viscous and thermal
boundary layers, we implemented a frequency-varying
mesh with 3–5 boundary layers along the thickness of the
viscous layer.

4. Results and discussion

We consider labyrinthine metamaterials of two structural
sizes. In the first case, defined as a “fixed channel” case,
we consider a constant channel width, w = const, at each
iteration step. Thereby, we aim to evaluate effects of tor-
tuosity on sound propagation in elongated paths. For w =
4 mm, the metamaterial unit cell sizes are auc = 18 mm
for UC1, 45 mm for UC2, and 126 mm for UC3. For the
second case, indicated as “fixed unit cell” case, we as-
sume a fixed unit cell size, auc = const, with the channel
width becoming smaller at each iteration. In particular, we
fix auc = 14 mm that corresponds to the channel width
w = 3 mm for UC1 and 0.9 mm for UC2. For UC3, the
internal channel disappears for the specified wall thick-
ness d = 0.5 mm. The channel width in the “fixed unit
cell” case is smaller than that in the “fixed channel” case
at the same iteration level. Thus, by comparing wave prop-
agation in these two cases, we can evaluate how different
amounts of thermo-viscous losses influences the wave dy-
namics in labyrinthine channels of the same structure.

In both cases, labyrinthine channels are shaped accord-
ing to the Wunderlich curve. However, the channel length
is scaled differently than that of the Wunderlich frac-
tal curve due to deviations in construction approaches.
Specifically, when constructing a fractal curve, one as-
sumes that it is a mapping from a low-dimensional space
into a 2D domain, the area of which is fixed for all itera-
tion levels [22]. In contrast to this, for our unit cells, we
assume a constant wall thickness that implies variations
in the channel length relative to that of the Wunderlich
curve. Hence, in the “fixed channel” case, when the area
of a bounding square increases at each iteration step, the
channel length is elongated by a factor of 3N relative to a.

In the “fixed unit cell” case, the elongation factor equals
3Na − 1.

4.1. “Fixed-channel” case

Figure 4 shows evaluated dispersion relations for homo-
geneous waves in UC1, UC2, and UC3 propagating along
ΓX direction in k-space. The horizontal axis indicates nor-
malized wavenumber k∗ = aack/π, and the vertical axes
represent frequencies f in kHz and normalized frequen-
cies f∗ = fauc/c0. Note the different frequency ranges
for each unit cell. The frequencies are limited to a sub-
wavelength range, namely up to fauc/c0 = 0.5. For UC1,
we consider modes forming the lowest band gap separated
into two parts and extending up to 9 kHz. For the UC2
and UC3, the frequency range includes the first 4 sepa-
rated band gaps, and thus, are limited to 4 kHz and 500 Hz,
respectively.

The dash-dot lines represent phase velocities of the low-
est fundamental mode in lossless air within a unit cell
(green curve) and in homogeneous air, when a unit cell
is removed (red curve). As can be expected, the velocity
is reduced when a wave propagates through a labyrinthine
channel. The reduction factor is 1.63 (UC1), 2.91 (UC2),
and 5.28 (UC3) compared to homogeneous air.

The dispersion relations in Figure 4 are characterized
by several frequency band gaps in the sub-wavelength re-
gion. Hence, the designed labyrinthine metamaterials can
control sound waves at sub-wavelength scales. As N in-
creases, the band gaps are shifted down to lower frequen-
cies. The shifts are directly related to the path elongation.
For example, the 1st band gap starting from fa/c0 = 0.21
for UC1, is shifted to about a 3 times lower frequency,
fa/c0 = 0.069, for UC2, as the channel length in UC2 is
3 times longer than that in UC1.

The band-gap bounds are formed by flat parts of dis-
persion bands that correspond to localized modes. The
pressure distributions for these modes are given in the 1st
and 3rd columns of Table I for the 1st band gap bounds
and Table II for the 2nd and 3rd band gap bounds. Red
and blue colors represent maximum and minimum values
of pressure, while green color indicates near-zero pres-
sure. Strong pressure localization is observed within the
labyrinthine channels. It is easy to estimate that regardless
of the iteration level, these localized modes correspond to
Fabry-Perot resonances in a straight slit of width w and
length Leff [21, 13],

fFP
l = lc0/2Leff , (5)

where l is a positive integer. In the “fixed channel” case,
Leff equals 2.305duc for UC1, Leff = 5.667duc for UC2,
and Leff = 16.642duc for UC3 with duc = auc

√
2. Note

that odd l values correspond to the lower band-gap bounds,
while even l values allow approximating the upper band-
gap bounds in Figure 4.

The fact that the band gap bounds are formed bny mul-
tiple Fabry-Perot resonances explains a similar structure
of various dispersion bands in Figure 4, which have close
values of phase and group velocities.
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(a) (b) (c)

Figure 4. (Colour online) “Fixed channel” case: Dispersion relations for the labyrinthine unit cells of the 3 iteration levels with a fixed
channel width, w=4 mm. Band gaps are shown by shaded rectangles. The slope of the green and red dash-dot lines indicates phase
velocities of the fundamental mode within a unit cell and in homogenous air (when a unit cell is removed). Bold points designate
frequencies with the pressure distributions given in Tables I and II.

The pressure distributions given in Tables I–II also re-
semble those of artificial monopole, dipole and multipole
resonances described in [12]. For example, the patterns at
the lower bound of the 1st band gap (the 1st column in
Table I) are similar to a monopole, in which the pressure
is concentrated in the central part of a channel, equally ra-
diating along two propagation directions [12, 14]. Thus,
the monopole and multipole resonances in folded chan-
nels originate from the tortuosity effect of the Fabry-Perot
resonances.

Since an effective dynamic bulk modulus (not evaluated
in this study) is typically negative above the monopole res-
onance, one can expect a high wave reflectance at these
frequencies [12]. This behavior has been experimentally
observed in [12] for circular-shaped folded channels.

Apart from the Fabry-Perot resonances, wave dispersion
in the designed labyrinthine metamaterials is also charac-
terized by the presence of bands within the band gap fre-
quencies. These bands are found within every band gap of
the analyzed unit cells (see curves separating band gaps
in Figure 4). Pressure distributions for these modes (the
2nd column in Tables I–II) resemble those for the dipole
and its higher harmonics (compare to 3rd column of Ta-
bles I–II), but the pressure is not localized inside a chan-
nel. Hence, these modes are not localized, rather they are
propagating waves with very small (and often negative)
group velocity. They may be analogous to slow modes in-
side phononic band gaps for elastic waves [30, 31]. The
mechanism of the slow mode excitation in acoustics and
their dynamics will be investigated in future work. Here,
we consider these modes as included in a single band gap
(shown as separated into two parts), since we did not de-

tect their presence in the frequency-domain simulations
(for lossless and lossy air), even for a very fine frequency
step (see Figures 5–6).

Frequency-domain simulation results are given in Fig-
ures 5–6 in terms of transmission and absorption coeffi-
cients for lossless and lossy air. (The reflection coefficient
can be directly derived from these data, and thus is not
shown.) We analyze waves propagating through a mono-
layer composed of the labyrinthine unit cells UC1–UC3
(Figures 5a, 6a, 6c) and periodic straight slits of length
Leff (Figure 5b, 6b, 6d) or auc (Figure 5c). Note that at
very low frequencies, the transmission and absorption co-
efficients for lossy air appear to be mesh-dependent, and
are not shown here due to their limited reliability..

When losses in air are neglected, incoming waves are
either transmitted or reflected for all the considered ge-
ometries, and thus, the absorption coefficient is zero (not
shown in the graphs). Total transmission is achieved at
frequencies of the Fabry-Perot resonances given by Equa-
tion (5). As can be seen, this effect is independent of the
channel tortuosity and occurs in folded labyrinthine chan-
nels of any iteration level at almost the same frequencies
as for the equivalent straight slits. For the slit of length
auc, the fundamental Fabry-Perot resonance appears to be
at higher frequencies than the analyzed frequency range.
Thus, straight slits of length auc are not considered further.

When thermo-viscous losses are included, the transmis-
sion peaks decrease in magnitude and are shifted to lower
frequencies compared to the lossless case. The latter oc-
curs due to the reduction of the sound propagation velocity
in dissipative air and is confirmed by experimental mea-
surements in [21].
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Table I. (Colour online) “Fixed channel” case (“Fixed unit cell” case): Pressure distributions around the 1st band gap for the labyrinthine
metamaterial unit cells of the 3 iteration levels. Red and blue colors represent maximum and minimum pressure, while green color
indicates (almost) zero pressure. The frequencies in brackets are referred to the “fixed unit cell” case.

Lower bound Internal mode Upper bound

U
C
1

1
st

b
an

d
g
ap

(a) 3876 Hz (4960 Hz) (b) 5250 Hz (7007 Hz) (c) 8011 Hz

U
C
2

1 s
t

b
an

d
g
ap

(d) 522 Hz (1602 Hz) (e) 900 Hz (2782 Hz) (f) 1045 Hz (3207 Hz)

U
C
3

1
st

b
an

d
g
ap

(g) 60 Hz (h) 114 Hz (i) 120 Hz

The striking difference in wave propagation through the
unfolded (straight) and labyrinthine channels occurs be-
tween the frequencies of Fabry-Perot resonances. In the
case of straight slits, the main part of the incoming waves
is reflected, while about 15–20% of the wave energy is
transmitted through a slit. For the labyrinthine channels,
the same behavior is observed in the propagating fre-
quency range, while within the band gaps total wave re-
flection occurs with zero transmission coefficient. As men-
tioned above, the fundamental Fabry-Perot resonance at
the lower band.gap bound corresponds to the monopole,
and thus, the observed total reflectance can be justified by
a negative values of effective bulk modulus within the band

gap. While experimental data for circular-folded channels
indicate about 84% insertion loss, in good agreement with
calculated transmission for equivalent straight slits at fre-
quencies between the Fabry-Perot resonances (see e.g. in
Figure 6b), our labyrinthine structures demonstrate total
zero transmission even if thermo-viscous losses are taken
into account. We attribute this to the fact that the designed
wave path redirects a propagating wave in the opposite di-
rection relative to incident waves and thus, to the channel
tortuosity, since all the other structural parameters are the
same as for a straight slit.

Therefore, the tortuosity of the labyrinthine channels
significantly modifies the wave dynamics at band-gap fre-
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Table II. (Colour online) “Fixed channel” case: Pressure distributions around the 2nd and 3rd band gaps for the labyrinthine metama-
terial unit cells of the 2nd and 3rd iteration levels. Red and blue colors represent maximum and minimum pressure, and green color
indicates (almost) zero pressure.

Lower bound Internal mode Upper bound

U
C
2

2
n
d

b
an

d
g
ap

(a) 1566 Hz (b) 1726 Hz (c) 2086 Hz

U
C
3

2
n
d

b
an

d
g
ap

(d) 179 Hz (e) 227 Hz (f) 239 Hz

Lower bound Internal mode Upper bound

U
C
2

3
rd

b
an

d
g
ap

(g) 2520 Hz (h) 2757 Hz (i) 3114 Hz

U
C
3

3
rd

b
an

d
g
ap

(j) 299 Hz (k) 337 Hz (l) 358 Hz
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w

w

auc

Leff

(b)

(a)

(c)

Figure 5. “Fixed channel” case: Transmission (T) and absorp-
tion (A) coefficients for acoustic waves in lossless (dashed line)
and lossy (solid line) air through (a) a labyrinthine metamate-
rial UC1; (b) an equivalent straight slit of width w = 4 mm and
length Leff = 45.6 mm; (b) a straight slit of width w = 4 mm
and length auc = 18 mm. Shaded regions indicate band-gap fre-
quencies shown in Figure 4a. Circular markers in (a) indicate
transmission coefficient values in lossless air for the correspond-
ing 3D model of height 4auc.

quencies, and these effects are not be captured by consid-
ering equivalent straight slits.

While the total transmission at the Fabry-Perot res-
onances is eliminated by the loss mechanisms in
sub.wavelength straight channels [21], the revealed to-
tal reflection at band-gap frequencies in the labyrinthine
channels is not affected by dissipation. At higher iteration
levels, the band gaps are shifted to lower frequencies and
decrease in size (compare Figures 5a, 6a, and 6c). At the
same time the amount of transmitted energy at the frequen-
cies of propagating modes also decreases, in contrast to the

w

Leff

UC2

(b)

w

eff

UC3

(d)

(c)

(a)

L

Figure 6. “Fixed channel” case: Transmission (T) and absorp-
tion (A) coefficients for acoustic waves in lossless (dotted line)
and lossy (solid line) air through (a) a labyrinthine metamate-
rial UC2; (b) a straight slit of width w = 4 mm and length
Leff = 328.5 mm; (c) a labyrinthine unit cell UC3 and (d) a
straight slit of width w = 4 mm and length Leff = 2.871m.
Shaded regions indicate frequency band gaps shown in Figure 4.

case of equivalent straight slits (compare e.g. Figures 6c
and 6d). Thus, the incorporation of third and higher itera-
tion levels for a “fixed channel” unit cell is beneficial for
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low-frequency sound control and allows to achieve total
sound reflection at broadband frequencies.

To summarize, we can derive two key conclusions.
First, wave propagation in the labyrinthine metamaterials
with hierarchically-structured channels differs from that
through straight slits of an equivalent effective length. The
physical mechanism causing this difference is related to
the channel tortuosity, which allows wave propagation in
the opposite direction relative to an incident pressure field.
When one derives effective characteristics for metastruc-
tures with complex-shaped internal channels, the men-
tioned tortuosity effect must be taken into account in or-
der to correctly predict the wave dynamics. Second, the
designed labyrinthine metamaterials can be used as com-
pact and broadband low-frequency sound reflectors, since
100% wave reflection can be achieved by using only a sin-
gle unit cell.

Circular markers in Figure 5a represent the transmission
coefficient for a corresponding 3D domain obtained by ex-
truding the 2D model (Figure 2) in the out-of-plane direc-
tion by a height of 4uuc. Excellent agreement between the
3D and 2D results justifies the validity of the introduced
assumption on the two-dimensional nature of the analyzed
problem.

Finally, we note that the designed metamaterials can be
compared with tortuous open-porous materials. The poros-
ity level, evaluated as the ratio of the air-domain area in-
side a unit cell to the total area of a unit cell, is about
90% for UC1, 88 % for UC2, and 89 % for UC3, which
is rather low as compared to the almost 100% porosity of
typical foams [32]. The main difference between porous
foams and the designed labyrinthine metamaterials is the
physical mechanism of wave control. Porous materials at-
tenuate waves due to inherent thermo-viscous losses with
the absorption coefficient close to 1 for broad frequency
ranges. In contrast to this, the proposed metastructures
mainly reflect incident waves with absorption approaching
0.5 at single frequencies of Fabry-Perot resonances (see
Figures 6a,c). In the next section, we estimate the meta-
material performance for an increased level of thermo-
viscous losses due to a smaller channel width.

4.2. “Fixed-unit-cell” case

In this case, the unit cell size auc = 14 mm is fixed as for all
the iteration levels. Dispersion relations of UC1 and UC2
are shown in Figure 7 for homogeneous waves propagating
along the ΓX direction. The dimensional frequency ranges
here are the same as those for the corresponding unit cells
in the “fixed channel” case (see Figures 4a,b).

The structure of the dispersion relation in Figure 7a
is similar to that in Figure 4a, except that the bands are
shifted to higher frequencies. This occurs due to a shorter
channel length. At first sight, more differences are found
by comparing the dispersion relations for UC2 in Fig-
ure 4b and Figure 7b. While in Figure 4b there are four
band gaps, the relation in Figure 7b is characterized by
the presence of a single wide band gap. This occurs be-
cause the unit cell area, A(fixuc) = 142 mm2, in the second

(a) (b)

Figure 7. (Colour online) “Fixed unit cell” case: Band structure
diagrams for the unit cells UC1 and UC2 of fixed size a=14 mm
with the channel width of 3 mm and 0.9 mm, respectively. Band
gap frequencies are shaded. The slopes of the green and red dash-
dot lines indicate the phase velocities of the fundamental pressure
wave inside a unit cell and in homogeneous air (when a unit cell
is removed).

case, is about 3 times smaller than that for the “fixed chan-
nel case”, A(fixw) = 412 mm2. As a result, the monopole,
dipole and multipole resonances, as well as the related
band gaps, are shifted to 3 times higher frequencies. How-
ever, in terms of non-dimensional frequencies, the band
gap frequencies remain unchanged. The similarity of dis-
persion relations in Figures 4 and 7 can be expected, since
the metamaterial structure is preserved. In contrast to this,
one should observe differences in transmission and ab-
sorption coefficients between these two cases due to the
different amount of thermo-viscous losses in the channels
of a various width.

Figure 8 shows the transmission and absorption coeffi-
cients for labyrinthine monoslabs of the “fixed unit cell”
case and those for straight slits of the effective length
Leff = 34.5 mm (UC1) and Leff = 107 mm (UC2). The
key features found in the analysis of the “fixed chan-
nel” case are also observed for the “fixed unit cell” case,
namely the wave propagation in the labyrinthine channels
is not equivalent to that in straight slits due to the occur-
rence of 100% reflection within band gaps. The total re-
flection is also independent of losses in air. However, as
the channel of UC2 in the “fixed unit cell” case is more
than 4 times narrower relative to that in the “fixed chan-
nel” case, the influence of thermo-viscous losses becomes
more pronounced. This can be seen for larger absorption
values at the Fabry-Perot resonances.

Therefore, wave attenuation within labyrinthine chan-
nels can be obviously increased by decreasing the chan-
nel width. The porosity of the metamaterial then also de-
creases as a consequence. For UC2, the structural porosity
is 64.7% for the “fixed unit cell” case versus 88% for the
“fixed channel” case. Therefore, one can consider the wave
absorption within the labyrinthine metamaterials as simi-

208

A
u

th
o

r'
s 

co
m

p
lim

en
ta

ry
 c

o
p

y



Krushynska et al.: Metamaterials for sound control ACTA ACUSTICA UNITED WITH ACUSTICA
Vol. 104 (2018)

w

eff

UC1

(b)
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UC2

(d)

(c)

(a)

Figure 8. “Fixed unit cell” case: Transmission (T) and absorption
(A) coefficients for acoustic waves in lossless (dotted line) and
lossy (solid line) air through (a) a labyrinthine unit cell UC1 and
(b) a straight slit of width w = 3 mm and length Leff = 34.6 mm;
(c) a labyrinthine unit cell UC2 and (d) a straight slit of width
w = 0.9 mm and length Leff = 107 mm. Shaded regions indicate
frequency band gaps shown in Figure 7.

lar to that of tortuous foams by decreasing the structural
external dimensions and porosity level.

5. Conclusions

In this work, we have theoretically analyzed the character-
istics of labyrinthine metamaterials with sub-wavelength
channels shaped along a space-filling curve to control air-
borne sound. We have demonstrated that if a folded chan-
nel allows wave propagation in the opposite direction rel-
ative to the incident pressure, wave dynamics in the chan-
nel is not equivalent to that of a straight slit of an effec-
tive length. In addition, we have shown that Fabry-Perot
resonances of the straight slit correspond to monopole,
dipole and multipole resonances in folded channels and
govern the generation of band gaps. Within the band gaps,
total wave reflection occurs that is not influenced by the
presence of dissipation losses in air. Moreover, by increas-
ing the channel tortuosity and further elongating a wave
path, one can achieve almost perfect reflection outside the
band gaps. Although at higher iteration levels the designed
metamaterials resemble a tortuous porous material, they
mostly control waves due to interference effects, in con-
trast to thermo-viscous dissipation mechanism in porous
foams. This results in a low wave attenuation within a
metastructure for a sufficiently wide channel. The absorp-
tion level can be increased by decreasing the channel width
and the structural weight.

This is the first time that a space-filling curve has been
considered for designing and elongating wave paths in
labyrinthine metamaterials. Therefore, further more in-
depth analysis is required to study the influence of var-
ious geometric factors, e.g. number of angles or turns,
as well as the metamaterial performance for inhomo-
geneous waves in complex-shaped folded channels. The
proposed structures show promise as broadband low-
frequency sound reflectors that can be assembled inexpen-
sively from thin sheets.
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