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a b s t r a c t

Graphene foams have recently attracted a great deal of interest for their possible use in technological
applications, such as electrochemical storage devices, wearable electronics, and chemical sensing. In this
work, we present computational investigations, performed by using molecular dynamics with reactive
potentials, of the mechanical and thermal properties of graphene random nanofoams. In particular, we
assess the mechanical and thermal performances of four families of random foams characterized by
increasing mass density and decreasing average pore size. We find that the foams' mechanical perfor-
mances under tension cannot be rationalized in terms of mass density, while they are principally related
to their topology. Under compression, higher-density foams show the typical slope change in the stress
estrain curve at 5� 10% strain, moving from linear elasticity to a buckling region. At variance, lower
density foams display a quasi-linear behavior up to 35% strain. Furthermore, we assess the thermal
conductivity of these random foams using the GreeneKubo approach. While foam thermal conductivity
is affected by both connectivity and defects, nevertheless we obtain similar values for all the investigated
families, which means that topology is the critical factor affecting thermal transport in these structures.

© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, an increasing interest has been paid to nanoporous
materials. Porosity, indeed, can strongly increase the surface-to-
volume ratio and enhance the specific mechanical properties,
such as the specific modulus and strength, with respect to the bulk
material. For example, a high surface-to-volume ratio is desirable
for gas adsorption and separation [1], while improving specific
mechanical properties using carbon-based porous materials is of
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interest for building lightweight structural components [2].
Moreover, after the discovery of novel bi-dimensional materials

[3], such as the hexagonal allotrope of boron nitride (h-BN) and
graphene, several investigations have been focused onto the search
of unconventional 3D structures that inherit the outstanding
electrical [4,5], thermal and mechanical properties of their 2D
counterpart in order to achieve specific requirements.

In particular, graphene shows excellent tensile properties, such
as fracture strength (sx 130 GPa) and Young's modulus (Ex 1 TPa)
coupled with relatively low density due to its bidimensionality, and
thus it is the best candidate material to be used in the synthesis of
foam assemblies with superior properties. Graphene-based nano-
foams can be synthesized by using Chemical Vapor Deposition
(CVD) on metallic scaffold as well as nanoparticles assemblies
[6e8] or chemically derived by reducing graphene oxide [9]. In
mechanical and thermal applications, critical parameters are the
concentration of defects, the topology as well as the inter-flake
contacts. Despite this technological interest, only a few
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computational investigations have been performed to characterize
their electronic, thermal and mechanical properties [10e12]. In
particular, mechanical properties of porous materials at microscale
can be studied by the Ashby-Gibson theory, in which a unit cell
approach is combined with dimensional analysis [13]. While this
approach can be useful to derive scaling laws of mechanical prop-
erties with respect to density, the effective properties of porous
materials are not often a simple function of porosity. At odds, they
usually strongly depend on features at the nanoscale, where local
atomic interactions start to play a crucial role, or on the presence of
struts and of random pores with very special shapes that destroy
structural periodicity. Furthermore, deformation mechanisms at
themesoscale can be very different at the nanoscale, where the fine
details of graphene topology come into play, and a multiscale
approach should be devised [2]. Additionally, it turns out that
carbon-based nanoporous materials with random porosity distri-
bution exhibit poor scaling of the mechanical properties with
decreasing density, even more pronounced than that of metal and
polymeric foams [14]. However, nanoporous graphene foams easily
outperform polymeric foams at high density and can compete with
their high-performance rivals, such as the metal foams. Thus, the
interest in studying these random porous structures for energy
storage and damping devices remains high.

Moreover, the high porosity of random foams suggests a con-
current application of these materials as thermal insulators. In
particular, our goal is to assess the dependence of the thermo-
physical properties on pore density and size, and to compare
thermal insulation performances of graphene-based 3D structures
with other widely used carbon-based foams, such as polyurethane
and metal foams.

This work is thus aimed at shedding some light on the me-
chanical and thermal properties of randomgraphene nanofoams. In
particular, we present molecular dynamics (MD) simulations of
random-pore foams under tension and compression by modeling
atomic interactions via reactive potentials. Several random-pore
foams, characterized by different density and porosity, are pro-
duced using a tailored while reproducible recipe, which consists in
preparing families of random networks to which graphene is
attached. Mechanical properties are assessed by computing
stressestrain curves, Young moduli, Poisson ratio, and specific
toughness for each family of random foams. Furthermore, to assess
the efficiency of our random-pore nanofoams as thermal insulators
we report in this study the calculation of the effective phonon
thermal conductivity using the equilibrium Green-Kubo formalism.

2. Modeling graphene random foams

To generate our families of graphene foams, we devise an
approach composed basically of two steps [12,15]: first, we
generate a tessellation of the surface to be decorated with graphene
by using triangles; second, we apply a Voronoi partitioning (dual-
ization) of the triangulation points.

More in details, we start by filling the simulation unit cell with a
random ensemble of particles interacting via a pair-wise Lennard-
Jones (LJ) potential (Fig. 1a). As a second step, the unit cell is slowly
expanded to obtain random aggregation of particles (Fig. 1b). In the
third step we fill the simulation cell with a second type of particles
arranged into a regular grid and characterized by different LJ pa-
rameters with respect to the previous ones (Fig.1c). The first type of
particles (support particles) acts as a framework to support the
particles used in the triangulation (foam particles). The latter are
deleted if they are too close (below 0.8 nm) to the support particles
in order to avoid convergence issues during MD simulations. The
fourth step consists in the optimization of the foam particle posi-
tions, performed by clamping down the framework degrees of
freedomwith a viscous damping force (Fig. 1d). The particles found
at a distance from the support particles larger than 0.32 nm were
deleted to obtain a smooth mono-layer structure (Fig. 1e). As a last
step, the Voronoi partition of the triangles tessellating the surface
was performed to obtain pentagonal, hexagonal and heptagonal
carbon rings (Fig. 1f) (for further details on this procedure see
Ref. [15]). These configurations were finally annealed by MD using
reactive potentials to optimize the carbon positions within the
foams.

By using this recipe, four families of carbon foams were pro-
duced (called A, B, C, and D, see Fig. 1a, which are provided as xyz
coordinate files with this submission). Each family is characterized
by a different initial number of randomly-positioned support par-
ticles while, within each family, the only difference is the initial
random distribution of the support points (Fig. 1a). During the
whole procedure we impose periodic boundary conditions.

The LJ parameters used for the support (S) and foam (F) parti-
cles, respectively, are the following: εSS ¼ 100:0 eV, sSS ¼ 0:3 nm,
cutoffSS¼ 0.5 nm, εFF ¼ 0:1 eV, sFF ¼ 0:32 nm, cutoffFF¼ 0.23 nm,
εSF ¼ 10:0 eV, sSFF ¼ 1:0 nm. The starting cell side length is 6.0 nm,
expanded up to a length of 12.5 nm from step a) to step b) of Fig. 1.

These parameters were chosen in such a way that the typical
distance between the support particles was smaller than the
equilibrium length between the foam and the support particles. In
this way, the support particle surface is smooth, being obtained by
several atoms lying nearby.

The topology of the nanofoams studied here is inspired by the
graphene foams grown on nickel scaffolds (Fig. 2). However, we
note that the pore size in the experimentally synthesized samples is
larger than in our computational models. The way in which our
graphene random foams are built is substantially different from
that one presented in Ref. [14], where three-dimensional graphene
assemblies were synthesized by starting from randomly distributed
and oriented rectangular graphene flakes and spherical inclusions,
and by repeating NPT-NVT cycles to obtain condensed graphene
foams.

3. Characterization of graphene foams

Five different samples for each of the four families were pre-
pared by varying the initial distribution of the support particles. In
Fig. 3 we report representative models (3.0 nm slices) for each of
these foam families. From A to D the foams present a decreasing
average pore size, and an increasing mass density.

The geometrical analysis of the graphene porous foams and of
their voids was carried out using the simulation code Zeoþþ [16].
In particular, we characterize our prepared structures using the
Pore Size Distribution (PSD) function, which can be experimentally
obtained by adsorption/desorption measurements. PSD analysis
delivers a quantitative description of the range of pore sizes present
in a given sample.

Moreover, we perform a coordination analysis to find possible
signature of under- or over-coordination of the carbon atoms
usually forming a network of sp2 hybrid bonds. The computed
quantities are reported in Table 1.

The averaged PSDs for all our graphene foam families are re-
ported in Fig. 4 (continuous lines), showing the standard deviation
within each group as a colored shaded area. By comparing these
PSDs with those obtained in the case of regular pore foams [12],
reported in Fig. 5, we notice that the random foams present similar
average pore dimension and similar mass density. Indeed, the
random foam PSDs are characterized by a maximum, representing
the most likely pore size in each case, decreasing from 2.3 nm to
1.7 nm from A to D foam type. The average values of the pore size
are reported in Table 1. These values compare reasonably well with



Fig. 1. The step sequence for obtaining random foams. Panel a) shows the initial condition in which the support particles are randomly arranged in a regular grid. Subsequently, the
box is slowly expanded while the support particle positions are optimized (panel b). Foam particles are created on a regular grid and deleted if excessively close to the supporting
ones (panel c). The particle positions are optimized and an attractive potential towards the supporting particles is switched-on during a MD run (panel d). Finally, the particles that
do not belong to the first layer are deleted to avoid multilayer structures (e). The LJ net is finally dualized by patterning the surface triangular tiling via a Voronoi procedure. A
graphene-like topology eventually emerges (panel f). Color codes have been used for visualization purposes only and have no physical meaning. (A colour version of this figure can
be viewed online.)

Fig. 2. Scanning electron microscopy image of a graphene random foam with a to-
pology similar to those studied in this work. Pore size is of course much larger, of the
order of a few micrometers, with respect to that of our samples. (Courtesy of CNR-IMM
Bologna, Italy.)
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those reported for regular foams, where PSD peaks at about 2 nm
(see Fig. 5). Finally, while regular foams present mass densities in
the range 0:6� 0:7 g cm�3, our families of random foams havemass
densities in the range 0:5� 0:8 g cm�3 (see Table 1). We notice that
an almost linear relation (coefficient of determination R2 ¼ 0:98)
with negative slope relates the mass density and the average pore
dimension of the four random foam families, as reported in Fig. 6.
4. Computational methods

To perform MD simulations, carbon-carbon interatomic forces
were modeled using the AIREBO potential [17]. To find the mini-
mum energy structures with respect to defect positions, the sam-
ples were annealed at 3500 K, equilibrated at this temperature for
100 ps, and eventually cooled down to 700 K in 100 ps using a
viscous damping force. The annealing was performed using the
standard value for the cutoff parameter for the REBO part of the
potential and performed within the microcanonical ensemble
(NVE). For the simulations of compressive and tensile regimes, all
samples were equilibrated at zero pressure and at the temperature
of 1 K using the Nos�eeHoover barostat and thermostat. Further-
more, the adaptive cut-off parameter of the potential was set to
0.2 nm to better describe the near-fracture regime [18]. The equa-
tions of motion were integrated via the velocity-Verlet algorithm
with time step of 1 fs. Mechanical properties were assessed in the
isobaric-isothermal ensemble (NPT), adding a drag term to smooth
out the pressure oscillations.

A uni-axial tensile strain was applied up to sample fracture in
each case. The strain parallel to the direction of deformation is



Fig. 3. A 3.0 nm slice of the unit cells for each of the four foam families with different porosity. (A colour version of this figure can be viewed online.)

Table 1
Parameters characterizing the four foam families investigated in this work.

Foam type Average density
(g/cm3)

Average pore size
(nm)

Carbon atoms with 3-coordination
(%)

A 0.55 2.23 97.3
B 0.68 1.89 95.9
C 0.78 1.68 93.0
D 0.83 1.56 93.1

Fig. 4. Pore Size Distribution of the four families of random nanofoams. The average
pore size of the considered foam families is a decreasing function of mass density. (A
colour version of this figure can be viewed online.)

Fig. 5. Pore Size Distribution of the four types of regular nanofoams, such as those
presented in Ref. [12]. The average pore size is 2 nm, comparable with the random
foam studied here, in particular with foams type B and C reported in Fig. 4. (A colour
version of this figure can be viewed online.)
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defined as

ε ¼ L� L0
L

¼ DL
L

(1)

where L0 and L are the starting and current length of the sample in
the direction of loading. To determine the stress, the pressure stress
tensor components in response to the external deformation are
computed as [19]:

Pij ¼
PN

k mkvkivkj
V

þ
PN

k rki fkj
V

(2)

where i and j label the coordinates x, y, z; k runs over the atoms;mk
and vk are themass and velocity of k-th atom; rki is the position of k-
th atom; fkj is the j-th component of the total force on the k-th atom
due to the other atoms; and, finally, V is the volume of the simu-
lation box.
The pressure in Eq. (2) includes both kinetic energy (tempera-
ture) and virial terms. Notice that the forces appearing in Eq. (2) are
the sum of the pairwise, angle, dihedral, improper and long-range
contributions. The computed stress is the true stress because the
pressure is measuredwith respect to the instantaneous section area
of the samples. The uni-axial compressive strain was applied up to
reaching 35% total strain. The applied strain rate is chosen equal to
0.001 ps�1, that we tested appropriately for ensuing convergence in
the case of regular nanofoams [12]. Stress and strain were saved
every 1000 time steps.

The stressestrain curve was computed at 1 K, since MD is usu-
ally computationally faster than minimization procedures. The
same approach has been previously adopted by other groups
dealing with similar problems (see e.g. Ref. [11]). While thermal
fluctuations of the order of a few K, thus higher than the absolute
value of the thermostat temperature, are found during MD runs,



Fig. 6. Relation between mass density and average pore dimension for the considered
foam families. (A colour version of this figure can be viewed online.)

Fig. 7. Stressestrain curves of the four graphene foam families under uni-axial tension
along with the standard deviation for each family, reproduced by a colored shaded area
on the top of the relevant curve. (A colour version of this figure can be viewed online.)
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they do not significantly affect numerical MD simulations. Indeed,
we demonstrated in a previouswork [1] that the contribution of the
kinetic energy to the pressure tensor at a few K is approximately 2%
of the total. Thus, a small kinetic contribution due to using low
temperature MD does not prevent our simulations from reaching
and overpassing local minima. The use of low-temperature MD
simulations was chosen instead of standard minimization proced-
ures because stress, for example due to compressive load, can be
more effectively and more continuously redistributed within the
entire structure during the dynamics by applying a deformation
rate (providing this rate delivers converged results with respect to
its value) instead of using a sequence of deformation-minimization
steps. Indeed, under compressive strain the temperature is likely to
increase: coupling the system with a thermostat leaks away this
excess of thermal energy and allows for a minimization of the
structures by using MD.

The observables that we calculate to characterize the mechan-
ical properties of the nanofoams are the Young modulus, fracture
stress and fracture strain. The toughness is also evaluated as the
area under the stressestrain curve up to the fracture stress. Indeed,
the samples have no plastic deformation but several sequential
fractures. Stressestrain characteristics of carbon random nano-
foams present a linear behavior at low strain. Thus, the Young
modulus is obtained as the tangent at zero strain.

We also performed the calculation of the Poisson ratio n, defined
as the negative ratio between the transverse εT and the longitudinal
deformations εL:

n ¼ �εT

εL
(3)

Here we extend the concept of Poisson ratio to deformations
beyond the linear regime, and use it to quantify the lateral defor-
mation of the material. A similar extension is done for the Young
modulus.

Phonon thermal conductivity was assessed using the equilib-
rium Green-Kubo approach [20,21] since it is less sensitive to the
simulation box dimension than non-equilibriumMDmethods [22].
To this aim, first the atomic positions were relaxed and equilibrated
at 300 K using the Berendsen thermostat method (NVT ensemble).

Then, in the NVE ensemble, the equilibrium thermal conduc-
tivity k according to the Green-Kubo formalism, can be calculated
as follows:
k ¼ V
3KBT2

Z∞

0

〈 J
!ð0Þ, J

!ðtÞ〉dt (4)

where V is the volume of the simulation cell, t is the correlation
time, and KB is the Boltzmann constant. The heat current J

!
,

appearing in Eq. (4), is defined by:

J
!¼ 1

V

0
@X

i

Ei v
!

i þ
1
2

X
i< j

�
F
!

ij,
�
v!i þ v!j

�
r!ij

�
1
A (5)

where v! is the velocity of a particle, r!ij and F
!

ij are the distance
and force between the particles i and j, and Ei is the total energy per
atom. The first term in the right hand side corresponds to con-
vection, while the second term to conduction. The integrand in the
expression for thermal conductivity is the heat current auto-
correlation function (HCACF). To get a proper sampling of the
phase space multiple runs are required with different initial con-
ditions. Simulations to obtain MD trajectories to perform accurate
ensemble averages were performed over a time span of 500 ps,
using a step of 0.5 fs. HCACF has been computed by dividing the
total time of computation into 250 fs beads and by performing the
integral in Eq. (4) by sampling every 5 fs. Finally, we average over all
the beads.

The thermal conductivity was calculated by using a version of
the Tersoff potential [23] optimized to reproduce accurately the
experimental phonon dispersion curves and the thermal properties
of carbon structures, such as graphene and graphite.

MD simulations were carried out using LAMMPS [24]. Atomic
configurations were visualized by using the OVITO package [25] or
VMD [26].
5. Results and discussion

5.1. Tension

In Fig. 7, we report the stressestrain characteristics for the four
foam families investigated in this work, while in Fig. 8 the
stressestrain curves are normalized with respect to the mass
density.

The stressestrain curves show a typical elastic behavior for
small deformations up to the tensile strength, followed by a



Fig. 8. Stressestrain curves of the four foam families weighted by the sample mass
density under uni-axial tension along with the standard deviation for each family,
reproduced by a colored shaded area on the top of the relevant curve. (A colour version
of this figure can be viewed online.)
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decreasing tail corresponding to the sample fracture. We notice
that the stressestrain characteristics of graphene foams do not
present a region that can be associated to a plastic deformation.
Indeed, these 3D graphene structures are essentially brittle, pre-
senting a comparable fracture strain with a corresponding stress
specific of the family. Notably, the same behavior is found in the
mass density weighted stressestrain curves (see Fig. 8). This
finding tells us that the different mechanical performances of the
four foam families are due basically to features other than mass
density, such as the pore size distribution or the connectivity.
Indeed, if the mass density were the factor most critically affecting
the foam mechanical properties, then the normalized stress-strain
curves should nearly overlap.

Moreover, we report in Table 2 the Young modulus and the
tensile strength of the four foam families, and in Table 3 the specific
modulus and the specific strength (values per mass density).
Furthermore, in the fifth column of Table 3 we show the specific
toughness, calculated as the total area below the stressestrain
curves of Fig. 8 up to the fracture strain. Specific Young modulus
and tensile strength of random foams can be compared with those
previously calculated for carbon nanotruss networks, studied in
Ref. [12]. For nanotruss networks, at 5%e8% strain the stress is in
the range 90� 130MNm kg�1, while for random foams at the same
strain the values are in the range 3:9� 36:6MNm kg�1. This makes
clear that regular foams are mechanically stiffer than the random
ones here studied. Graphene random foams can be also compared
to 3D graphene assemblies reported in Ref. [14]. Graphene as-
semblies have a specific Young modulus of 7.65MNm kg�1 (mass
density: 0.366 g/cm3, Young modulus: 2.8 GPa), which compares
with the lowest mass density foam family studied here (see
Table 2). At variance, the specific strength of 7.4MNm kg�1 found in
Table 2
Young modulus (1st column) and its standard deviation (2nd column), tensile strength (3
of the four families of random foams under tension.

Foam type Young modulus
(GPa)

Standard deviation
(GPa)

A 3.9 2.1
B 14.0 3.1
C 27.3 3.7
D 36.6 1.9
graphene assemblies is only slightly higher than in our random
foams, mainly due to the higher connectivity of graphene sheets
composing the assemblies. For completeness, we notice that the
mechanical tests reported in Ref. [14] have been performed at a
temperature of 300 K, while our simulations are performed at 1 K.
Movies of our foams under tensile load are provided with this
submission.
5.2. Compression

In this section we present the results obtained for our samples
under compressive load. In Fig. 9 we report the stressestrain curves
for the four foam families. The maximum deformation reaches 35%
strain for the largest compression load. Beyond 35% strain the
foams are mechanically unstable. From Fig. 9, we observe that at
small strain foams are in the elastic regime, and the material is
characterized by a full recovery to the original shape when the load
is removed. Subsequently, we find a region with a slope similar for
all our foam families, which models the structural collapse at a
nearly constant stress by blucking or fracture of the building blocks.

Finally, at higher strain (not shown) one finds a steep ramp in
the stressestrain curve, representing the complete collapse of the
structures. The random foam family A, characterized by the lowest
density, presents this ramp at 70% compressive strain. At variance,
higher density random foams are not stable under compression
before their respective final ramps, and present a structural tran-
sition from graphene ordered layers to amorphous carbon, with a
strong stress decrease followed by an increase.

The most visible mechanical characteristics of our families of
random foams (see the stressestrain curves in Fig. 9) is that, with
increasing foam density and decreasing pore size average dimen-
sion, the elastic part presents an increasing slope, while beyond 5�
10% strain the slopes are very similar. This behavior suggests a
change in the compression mechanism: below 5� 10% strain the
stress is mainly due to the connectivity among graphene layers and
this regime is characterized by structural stability, while beyond
that the structures start collapsing with a relatively small increase
of the stress, due to the bending of the graphene sheets inside the
foams.

The foam family with the lowest mass density presents an
almost linear stressestrain characteristic. This suggests that the
collapse is dominated by bending. In higher density foams the slope
change is more marked, showing that bending of graphene sheets
occurs at higher strain.

We notice that the similarity of the slope of the stressestrain
curves between 10% and 30% strain is due to a similar mechanism
for collapse. This similarity can be rationalized by observing Fig. 10,
where a 2.0 nm slice of a sample from the foam families A and D
under 12% compressive strain is reported. As by Fig. 9 this strain
value sets the transition between the elastic regime and the
collapsing region. This transition for foams of higher porosity, such
as those belonging to the type A, is related to the closure of the
interstitial space when graphene sheets touch upon, as those
highlighted by red circles.
rd column) and its standard deviation (4th column), and fracture strain (5th column)

Tensile strength
(GPa)

Standard deviation
(GPa)

Fracture strain
(%)

0.5 0.3 19
1.5 0.5 15
3.1 0.4 12
4.6 0.3 13



Table 3
Specific modulus (1st column) its standard deviation (2nd column), specific strength (3rd column) and its standard deviation (4th column), and specific toughness (5th
column) of the four families of random foams under tensile strain. Specific toughness is calculated as the area below the stressestrain curve up to fracture strain per mass
density.

Foam type Specific modulus
(MNm kg�1)

Standard deviation
(MNm kg�1)

Specific strength
(MNm kg�1)

Standard deviation
(MNm kg�1)

Specific toughness
(MJ kg�1)

A 7.1 3.8 0.9 0.5 0.1
B 20.6 4.6 2.2 1.5 0.2
C 35.0 4.7 3.9 3.1 0.3
D 44.1 2.3 5.4 4.6 0.4

Fig. 9. Stressestrain curves of the four random foam families under uni-axial
compression up to 35% strain. Shaded areas represent standard deviation within
each foam family. (A colour version of this figure can be viewed online.)

Fig. 10. A 2.0 nm slice of a sample from the foam families A and D under 12%
compressive strain. As by Fig. 9 this strain value sets the transition between the elastic
regime and the collapsing region. This transition for foams of higher porosity, such as
those belonging to the type A, is related to the closure of the interstitial space when
graphene sheets touch upon, as those highlighted by red circles. (A colour version of
this figure can be viewed online.)

Fig. 11. Specific stressestrain curves of the four random foam types under uni-axial
compression up to 35% strain. Shaded areas represent deviation within each foam
family. (A colour version of this figure can be viewed online.)

Table 4
Young modulus and collapsing region slope of the four foam families studied under
compression.

Foam type Young modulus
(GPa)

Collapsing region slope
(GPa)

A 3.5 1.6
B 12.3 3.0
C 24.4 3.7
D 31.8 3.1

A. Pedrielli et al. / Carbon 132 (2018) 766e775772
In Fig. 11 we report (as performed in the case of tensile load) the
specific stressestrain curves, which are normalized per mass den-
sity. Similarly to the tensile case, the stressestrain characteristics
are almost unaffected by this normalization, once more suggesting
that the mechanical performances of random foams are related to
the connectivity and the topology of the foams rather than to the
mass density.

Moreover, under compression the behavior of the random foam
families C and D, characterized by higher density, is very similar to
that of regular nanofoams presented in Ref. [12] with comparable
specific stress. At variance, lower density random foams present an
almost linear behavior under compression that differs from that of
regular nanofoams. Young modulus and collapsing region slope for
the four random foam families under compressive load are re-
ported in Table 4.

Finally, in Fig. 12 we report the stressestrain curves of the four
random foam families, initially loading the samples up to 15% strain
and subsequently unloading them. At odds with regular foams that
can fully recover their initial shape when unloaded after reaching
high deformations (up to 25%) [12], the higher density of defects in
random foams and the local concentration of stress cause an
incomplete elastic behavior even for relatively small strain (15%).
Movies of our foams under compressive load are provided with this
submission.
5.3. Poisson ratio

To better characterize the four random foam families, we
computed the Poisson ratio of these structures. The Poisson ratio
for each sample is computed as the average in the two directions
transverse to the loading. The Poisson ratios under uni-axial



Fig. 12. Stressestrain curves of the four random foam types under uni-axial
compression up to 15% strain. (A colour version of this figure can be viewed online.)

Fig. 14. Plot of the Poisson ratio as a function of compressive strain for the four random
foam families. The shaded areas across the curves represent half of the standard de-
viation within each foam family. (A colour version of this figure can be viewed online.)
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tension and compression regimes are plotted in Figs. 13 and 14,
respectively. Notably, the Poisson ratios are positive over the whole
deformation range for all our random foam families.

In particular, for near zero strain under tension, the Poisson ratio
is in the range 0:1� 0:25 with values increasing with mass density
and foam connectivity. Furthermore, up to in 15% strain there is a
small increment (0:02� 0:05) in the Poisson ratio for all the foams
families. Finally, the Poisson ratio at higher tensile strain goes to
zero. This behavior is explained as mainly due to the fracture of the
samples in this deformation regime, which prevents the sample
from further contraction.

At variance, under compression the decrease of the Poisson ratio
is due to the internal rearrangement of the graphene layers. At
higher strain (about 30%) the Poisson ratio ranges between (0:05�
0:1).

It can be worth noting that in Figs. 13 and 14, the standard de-
viation, reported as a shaded area across the relevant curve, is
significantly smaller for lower density random foam families than
that for higher densities.
5.4. Thermal conductivity

The thermal conductivity was assessed for all the samples using
Fig. 13. Plot of the Poisson ratio as a function of tensile strain for the four random foam
families. The shaded areas across the curves represent half of the standard deviation
within each foam family. (A colour version of this figure can be viewed online.)
the averaging procedure of the HCACF explained before. In general,
HCACF dies off within 100 ps and subsequently oscillates. This
makes possible the time bead division, discussed in sec. 4.

In Fig. 15 we plot the average of the integral of HCACF as a
function of simulation time for each foam family. The thermal
conductivity is given by the asymptotic values of the time-
integrated HCACFs. These values for the four foam families, ob-
tained by averaging in the range 400� 500 ps, are reported in
Table 5.

We notice that two major factors affect the thermal conductiv-
ity, that are the foam connectivity and the presence of defects. In
the foam families studied here, we devise that the low connectivity
found in lower density foams is counterbalanced by the higher
number of three-coordinated atoms, while the opposite trends
occurs in higher density foams. Indeed, foams with different con-
nectivity (see Fig. 10 of the paper) and different number of defects,
show comparable values of the specific thermal conductivity
(thermal conductivity per density mass unit). This could be due to a
number of reasons. Our most likely explanation of this finding is as
follows: smaller pore sizes generally means higher density as re-
ported in Fig. 6. Nevertheless, a smaller size of the pores implies a
larger number of defects, due to a larger local curvature, that is a
Fig. 15. Time averaged HCACF vs. simulation time of the four random foam families
calculated as by Eq. (4). The asymptotic values after 300 ps provide the thermal con-
ductivity of the samples. The shaded area for each relevant curve represents half of the
standard deviation. (A colour version of this figure can be viewed online.)



Table 5
Thermal conductivity of the four foam families computed via the Green-Kubo
approach using an optimized Tersoff potential.

Foam type Thermal conductivity
(Wm�1$K�1)

Standard deviation
(Wm�1 K�1)

A 0.83 0.13
B 1.02 0.20
C 1.29 0.20
D 1.36 0.22

A. Pedrielli et al. / Carbon 132 (2018) 766e775774
lower number of three-coordinated carbon atoms. We remind that
graphene, due its particular topology, has a very large thermal
conductivity, so that it is clear that a high level of carbon three-
coordination is connected to large thermal conductivity. The pres-
ence of a larger number of defects in high-density foams with small
size pores should then decrease the thermal conductivity. Thus we
can argue that mass density (or pore size) and number of defects
counteract in the determination of the thermal conductivity. In
particular, in Fig. 16 we plot the thermal conductivity as a function
of the mass density for the families of four different foams, finding
an almost linear relation between these two observables (coeffi-
cient of determination R2 ¼ 0:98). The thermal conductivity of
random foams is similar to that of glass (1Wm�1 , K�1) for lower
density foams, with a small increase (1.5Wm�1 , K�1) for higher
density foams.

6. Conclusions

In this work, we investigated by means of MD simulations with
reactive potentials the mechanical and thermal properties of gra-
phene random foamswith a topology experimentally achievable by
growing graphene on stacked nickel nanoparticles. In particular, we
tested the mechanical performances under tension and compres-
sion of four random foam families, characterized by different mass
density and pore size distribution. The samples were prepared
using a multi-step approach based on the Voronoi partitioning of a
triangulated surface, obtained by tessellation of the simulation cell
using a LJ potential forcing the carbon atoms towards a rigid
support.

Under compression, we found the typical elastic deformation
regime with a Young modulus significantly increasing with a
decreasing average pore size dimension. A behavior, common to all
the random foam families here studied, was found for compressive
strain in the collapsing region, with a positive slope of the
Fig. 16. Linear relation between mass density and the thermal conductivity for the
considered foam families. (A colour version of this figure can be viewed online.)
stressestrain curve similar for all the four foam families. For the
lowest density random foam family the stressestrain characteristic
is almost linear.

Finally, we calculated the Poisson ratio, a quantity used to assess
the transverse response of materials to deformation, of these
random foams. Under tension, the Poisson ratio is positive for all
the random foam families, indicating a transverse contraction un-
der tensile load. The values of the Poisson ratio under compression
are again positive for all the considered strain and tend to stabilize
as the strain increases.

As a major outcome of our computational analysis, we find that
mechanical properties under tension are characterized by an
overall decrease of Young modulus with respect to regular nano-
foams, while a tensile strength of the same order of that found for
regular foams was obtained for higher density random foams.

Due to the interest of using foams as a mean for achieving
thermal resistance, we computed the thermal conductivity of
random foams using the Green-Kubo approach with a Tersoff po-
tential optimized for these simulations. The thermal conductivity is
comparable to that of glass, thus higher than materials typically
used as thermal insulators, such as polyurethane rigid foams. Still,
random foams do not display good thermal conductive properties,
which can be related to the low connectivity in case of high porosity
foams and to the presence of defects in low porosity foams.
Nevertheless, combining outstanding mechanical performances
with light weight, low density and good thermal insulating prop-
erties, carbon random foams could be promising candidates as
reinforcing fillers in nanocomposites or elastomers to tailor their
properties or to replace polymer materials in applications where
thermal stability and mechanical strength are needed.
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