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Abstract: An analysis of three-dimensional nanoelectromechanical systems (NEMS) is
presented. Nanotubes could be a key one-dimensional element in future NEMS devices; but
they would be inadequate when two- or three-dimensional structures are required. A general
free-energy-based formulation to treat statics and dynamics of three-dimensional NEMS,
according to classical or quantum mechanics, is derived and presented; the method is then
applied to nanoplates and nanowires. The equilibrium and stability of an elastic (e.g.,
graphene sheet) nanoplate-based NEMS under an electrical field and van der Waals forces
(Pauli’s repulsion and large displacements are also discussed) are evaluated by minimizing the
free energy and by the sign of the determinant of its Hessian matrix. The structural instability,
arising at the so-called pull-in voltage, would correspond to the switch of the device. The
amplitude and frequency of the thermal vibrations of the nanoplate are evaluated as a
function of the applied voltage. The effect of the van der Waals forces on the NEMS dynamics
is also presented. The amplitude and frequency of the oscillations at 0K, from the uncertainty
principle, are estimated.
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1 INTRODUCTION

Microelectromechanical systems (MEMS) – devices
with size of the order of a micrometer – have already
had a strong impact on different technology areas.
The natural evolution of these systems is their minia-
turization towards nanoelectromechanical systems
(NEMS), having a characteristic size of the order of
a nanometer. The potential for NEMS is tremendous,
reaching an integration level of the order of 1012

elements/cm2 and frequency in the GHz band [1–3].
NEMS are about three orders of magnitude smaller

than MEMS; and therefore new effects have to be
taken into account, as demonstrated for nanotube-
based NEMS [4], for example, thermal vibrations
(which will have a stronger influence on NEMS than
MEMS), as well as van der Waals forces, Heisenberg’s,
and Pauli’s principles, which can be (largely)
neglected when designing MEMS. Therefore, also
the Casimir’s force (a purely quantum-mechanical
effect arising from the zero-point energy, thus from

the Heisenberg’s principle) could also have a signifi-
cant role in the world of the nanosystems.

At large size scale, one- and two-dimensional struc-
tures, e.g., tubes and plates, are extensively used in
the design of mechanical components. Correspond-
ingly, a strong impact of nanotubes, nanowires, and
nanoplates can be expected in the design of NEMS
devices. Even if nanotubes have been widely analysed
in the last decade, much remains to do on nanowires
and nanoplates and in general on three-dimensional
nanostructures. Carbon is an interesting material for
NEMS design, because of its excellent electronic and
mechanical properties [5], as clearly shown by the
numerous analyses carried out on carbon nanotubes
during the last decade, after their discovery by Iijima
[6]. In this paper it is assumed that the mechanical
strength of the NEMS is large enough. For its strength
prediction quantized fracture mechanics could be
applied [7].

Since carbon seems to be a key element for MEMS
and NEMS applications, after a general treatment,
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attention is focused on the structural behaviour of
carbon nanoplates, such as graphene sheets (an
individual layer of graphite).
The structural behaviour of nanostructures is

usually analysed experimentally by scanning electron
and atomic forcemicroscopy techniques, numerically
by molecular mechanics or dynamics simulations,
as well as theoretically by continuum mechanics.
Continuum theories seem to be very robust even con-
sidering structures with size in the nanometer range
[8]. Similarly, it has been shown [9, 10] that a conti-
nuum model can be used to calculate the van der
Waals energy, instead of only the discrete approach
based on the attractive term of the Lennard–Jones
potential. The same consideration could be extended
to the repulsive term, that essentially represents the
Pauli’s repulsion.
Figure 1 shows the analysed system consisting of an

elastic vibrating nanoplate at a given temperature,
and a rigid semi-infinite ground plane. The static
case of a nanotube suspended over an electrode
was numerically analysed in [10], as well as theoreti-
cally in [4] also considering the dynamic and finite
kinematic (large displacement) regimes. When a
potential difference is created between the nanoplate
and the ground plane, electrostatic charges are
induced on both structures. The opposite charges
give rise to attractive electrostatic forces. In addition,
van der Waals attractive forces also act between the
two structures. The elastic stiffness of the nanoplate
counteracts the attractive electrostatic and van der
Waals forces so that an equilibrium position is
reached. However, around this equilibrium position,
the NEMS is always oscillating as a consequence of
thermal vibration.
When the applied potential difference between the

nanoplate and the ground plane reaches a certain
value, the nanoplate becomes unstable and collapses
onto the ground plane. For NEMS it could correspond
to an ON state so that when the nanoplate and the
ground plane are separated the device is in the OFF
state. The potential that causes the nanoplate to
collapse onto the ground plane is defined as the

pull-in voltage. If the gap between the nanoplate
and the ground plane is very small, even without an
applied voltage, the nanoplate can collapse onto the
ground plane because of the van der Waals forces.
The Pauli’s repulsion plays the role of a mechanical
contact. If the elastic opposing force is not sufficient
to recover the relaxed configuration, the collapsed
configuration is maintained even after the applied
voltage is removed; thus, irreversible sticking of
NEMS becomes an increasing problem at the nano-
scale and can limit the range of operability and the
size of NEMS [10]. On the other hand, for some
applications, the sticking of the nanodevice could
be a desired effect (e.g., in acceleration or mass nano-
sensors – to be used only one time).

In describing the behaviour of NEMS, dynamic
effects could play a fundamental role. In particular,
important parameters are the amplitude and fre-
quency of the vibrations (e.g., thermal, free, or from
zero point vibrations even at 0K) of the NEMS, as a
function of the applied voltage imposed to control
the device, and including the effect of the van der
Waals forces. A dynamic analysis to estimate these
parameters concludes the paper. The use of the
equipartition theorem to treat thermal vibrations
will be emphasized [11].

The paper represents an extension to nanoplates
and nanowires of the analytical analysis on nano-
tubes carried out in [4]. The results are analytical
formulae to estimate oscillations and instability
(pull-in voltage) of the NEMS; they represent a clear
advantage with respect to the results obtained by
classical numerical approaches (e.g., FEMLAB).

2 ELECTRICAL FIELD, VAN DER WAALS FORCES,
AND PAULI’S REPULSION

The electrostatic forces between two oppositely
charged structures can be computed by using a
standard capacitance model assuming perfect con-
ductors. This implies that the electrostatic potential
is constant in the two structures. The electrostatic
energy is given by

Eelec ¼ 1
2
CV2 ð1Þ

where V is the difference in voltage and C is the
capacitance, defined as C ¼ Q=V , �Q being the two
opposite charges in the two conductors. For a
double-layer conductor, the contribution to the
capacitance of two infinitesimal surfaces dS oppo-
sitely charged and separated by a distance r, is
dC ¼ "0 dS=r where "0 ¼ 8:85� 10�12 C2 N�1 m�2 is
the vacuum permittivity.

The van der Waals energy can be computed by
using the well-known Lennard–Jones potential,

Fig. 1 Elastic nanoplate and grounded rigid plane under
electrostatic and van der Waals forces
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which has an attractive term (/ r�6, owing to the
van der Waals forces) and a repulsive term (/ r�12,
basically owing to the Pauli’s repulsion). To compute
the total van der Waals energy a continuum model
can be employed [9, 10]. In the continuum model,
the total van der Waals energy is computed by the
double-volume integral of the Lennard–Jones
potential

EvdW ¼
ð
V1

ð
V2

n1n2C6

r6
dV1 dV2 ð2Þ

where V1 and V2 represent the two domains of
integration, n1 and n2 are the corresponding atom
densities, and r is the distance between any point
on V1 and any point on V2. C6 is a constant (for
example, for the carbon–carbon interaction it is
equal to C6 ¼ 15:2 eV Å6 ¼ 2:43� 10�78 Nm7).
The same approach can be applied to compute the

repulsive energy

EP ¼
ð
V1

ð
V2

n1n2C12

r12
dV1 dV2 ð3Þ

where C12 is a constant.

3 FREE ENERGY, EQUILIBRIUM, AND
INSTABILITY

The elastic displacements u, v, w (along x, y, and z
orthogonal axes of a reference system) of the three-
dimensional nanostructure are approximated by a
linear combination of a sufficient number N of
opportune (e.g., satisfying the boundary conditions)
arbitrary functions ui, vi, wi, and unknown constants
ci, representing the displacements of some character-
istic points (e.g., some atoms of the lattice) having
coordinates ðxi‚ yi‚ ziÞ

uðx‚ y‚ zÞ ¼
XQ
i¼1

ciuiðx‚ y‚ zÞ

vðx‚ y‚ zÞ ¼
XM

i¼Qþ1

civiðx‚ y‚ zÞ

wðx‚ y‚ zÞ ¼
XN

i¼Mþ1

ciwiðx‚ y‚ zÞ

ð4Þ

For given constitutive laws (e.g., linear elastic
material) the elastic energy stored in the nano-
structure is a function only of the displacements or,
according to equation (4), of the unknowns ci

Eelast ¼ Eelastðu‚ v‚wÞ ¼ EelastðciÞ ð5Þ

For example, for linear elastic material Eelast ¼
1
2
�""½HE�"" with ½HE� a constant matrix (the Hessian of

the potential elastic energy that describes the stiffness
of the material), and �"" the strain vector, having the six
significant components of the symmetric strain
tensor ½"�. The tensor can be obtained directly from
the displacements as ½"� ¼ 1

2 ð½J� þ ½J�T Þ, where ½J� is
the Jacobian matrix of u,v,w with respect to x, y, z;
for details see [12].

The free energyWðciÞ of the NEMSmust be written
as [4]

WðciÞ ¼ EelastðciÞ � EelecðciÞ � EvdWðciÞ � EPðciÞ ð6Þ

where all four energies on the right-hand side (and
thus also the free energy) are functions only of the
unknowns ci. The integrals in equations (1) to (3)
can be computed according to the displacements
described by equation (4), in which only the con-
stants ci survive.

The equilibrium condition will be reached when
the free energy reaches a minimum value, thus
when the gradient of the free energy, with respect to
the unknowns ci, has vanishing components

�rrW ¼ �00; ð �rrWÞj ¼
@WðciÞ
@cj

‚ 8cj j ¼ 1‚ . . . ‚N

ð7Þ

This represents a system of N equations in the N
unknowns ci. From equation (7) the static equilibrium
configuration can be derived.

On the other hand, more important than the equi-
librium in this study is the prediction of the instability
of the system (governing the switch of the NEMS); the
voltage corresponding to this instability, the so-called
pull-in voltage, represents in fact the key parameter in
the design of NEMS. The system will lose its stability
when the Hessian matrix ½HW� of the free-energy
(evaluated at the equilibrium position) becomes
equal to zero

det½HW� ¼ 0;

ðHWÞjk ¼
@2WðciÞ
@cj@ck

‚ 8cj ‚ ck j‚ k ¼ 1‚ . . . ‚N ð8Þ

From equation (8), the pull-in voltage of the system
can be derived.

4 VIBRATIONS AROUND A DEFORMED
CONFIGURATION

Consider a second-order Taylor’s expansion of the
free energy around the equilibrium position. Assum-
ing the free energy to be zero at the equilibrium (arbi-
trary constant) and noting that at the equilibrium
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equation (7) must hold, the expansion can be written
as

W � 1
2��ccTD½HW���ccD ð9Þ

where ð��ccDÞi ¼ cDi � ci and the coefficients cDi

describe the dynamic positions of the system (the
coefficients ci refer to statics). The static equilibrium
imposed by equation (7) is identical with
½HW���ccD ¼ �00. For the fundamental frequency vibra-
tions around the equilibrium position (neglecting
the damping)

cDiðtÞ ffi ci þ�cDiðtÞ ¼ ci þ�c�Di sin!t‚

i ¼ 1‚ . . . ‚N ð10Þ

where �c�Di are the amplitudes of the vibrations
around the equilibrium position described by the
coefficients ci at the fundamental frequency !. The
kinetic energy of the system is K � 1

2�
_�cc�ccTD½M��_�cc�ccD,

where ½M� is the mass matrix of the system. Thus,
the dynamic equations around a deformed configura-
tion can be written as

½M��€�cc�ccD þ ½HW���ccD ¼ �00 ð11Þ

from which the natural frequencies can be derived by
the following condition

detð½HW� � !2½M�Þ ¼ 0 ð12Þ

Equation (11) is for NEMS dynamics under a
deformed configuration according to classical
mechanics. The matrix ½HW� includes not only the
elasticity of the system (stiffness matrix) but also the
effects of the external fields around the equilibrium
position. By the eigenvectors of equation (11), the
classical variable substitution to normal coordinates,
i.e. ��ccD ! ���, allow equation (11) to be placed in
the decoupled canonical form (in which the
matrixes become symmetric). For each normal
oscillator, Schrödinger’s equation is�

� �h2

2mi

d2

d�2i
þWið�iÞ

�
 inð�iÞ ¼ Ein inð�iÞ ð13Þ

where Ein are the energy eigenvalues and  in are the
eigenfunctions describing the fundamental vibra-
tional states of the normal oscillator i with associated
modal mass mi and free-energy Wi. Assuming the
expansion of equation (9) for the free energy asso-
ciated with the normal coordinates (with frequencies
!i�), equation (13) represents the well-known quan-
tum harmonic oscillator and the solution gives the
discrete quantized energy levels

Ein � ð12 þ nÞ�h!i� ð14Þ

The zero point energy (as imposed by Heisenberg’s

principle) is

Ei0 �
�h!i�

2
ð15Þ

With the kinetic energy at 0K given by equation (15),
the normal amplitude of the 0K oscillations can be
deduced; thus after the inverse transformation
��� ! ��ccD the oscillation amplitudes of the NEMS are
estimated. To study the oscillations at temperature
T when the vibrational energy level spacing is small
compared with kBT the equipartition theorem has
to be applied: each degree of freedom posses kinetic
energy Ei0 � kBT=2. After giving the differential
equations of the nanoplate in the next section,
instead of solving them numerically, in sections 6
and 7 the previous approach is applied to make
quantitative predictions for describing the behaviour
of nanoplate-based NEMS.

5 DIFFERENTIAL EQUATIONS OF THE
NANOPLATE-BASED NEMS

Assume a nanoplate placed on an x–y plane (having a
small thickness along z). The electrostatic, van der
Waals, and repulsive (Pauli’s) forces can be obtained
by deriving the corresponding energy terms (1), (2)
and (3) with respect to the elastic gap r, the nominal
gap is H, see Fig. 1

Felec;vdW;P ¼ �
dEelec;vdW;P

dr
ð16Þ

Consequently, the forces per unit surface area S will be

qelec;vdW;P ¼
dFelec;vdW;P

dS
ð17Þ

The deflection wðx‚ yÞ (the correct one, without
assuming the approximation of equation (4)) for a
linear elastic isotropic nanoplate are obtained by
solving the equation of plates (see, for example, [13])

Dr4w� qelecðwÞ � qvdWðwÞ � qPðwÞ

¼ F‚yyw‚xx þ F‚xxw‚yy � 2F‚xyw‚xy �w‚t ð18aÞ

r4F ¼ Etðw2
‚xy � w‚xx � w‚yyÞ ð18bÞ

Nxx ¼ F‚yy‚Nyy ¼ F‚xx‚Nxy ¼ �F‚xy ð18cÞ

with D ¼ Et3=12ð1� � 2Þ, where E, � are the Young’s
modulus and the Poisson’s ratio respectively and t
is the nanoplate thickness.

The right-hand side of equation (18a) describes the
membrane regime and the inertia of the plate (� is
the mass per unit area and t is the time; the
symbol ‘,’ represents the derivation operator). If the
membrane regime and the inertia are neglected,
equation (18a) corresponds the well-known Sophie
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Germain equation, describing the static flexural
regime of the plate. In this case the axial loads (per
unit length) Nxx, Nyy, Nxy can be neglected. In
general, equations (18a) and (18b) are two coupled
equations in the unknowns w and F (this function is
connected to the axial loads as reported in equation
(18c)). Equations (18) could be solved numerically
(e.g., with finite differences, finite element methods,
etc.).
The Pauli’s repulsion decays extremely fast and is

important only when the structures come into con-
tact (r=H ! 0), so that, neglecting such contact we
can here assume qP � 0. The electrostatic and van
der Waals energies per unit surface, according to
equations (1) and (2) are respectively [10]

dEelec

dS
¼ 1

2
"0

V2

r
ð19Þ

dEvdW

dS
¼ �C6n

2

12

�
1

r2
� 1

ðrþ tÞ2
�

ð20Þ

and consequently, from equations (16) and (17), the
forces per unit area S acting on the nanoplate are

qelec ¼
"0V

2

2r2
ð21Þ

qvdW ¼ �C6n
2

6

�
1

r3
� 1

ðrþ tÞ3
�

ð22Þ

where n is the atomic density (e.g., for graphite it is
equal to n ¼ 1:14� 1029 m�3) and for a single mono-
layer of graphite (graphene) t ¼ 0:335 nm). Introdu-
cing equations (21) and (22) into equation (18) allow
us to study the deflection of the nanoplate. As for
nanotubes [10] it is shown that also for nanoplate
the van der Waals contribution becomes predomi-
nant as the size of the NEMS decreases: by scaling
each characteristic length of the system by a factor
of l in equation (6), the electrostatic contribution
scales as Felec / qelecl

2 / l0 and the van der Waals
contribution scales as FvdW / qvdWl 2 / l�1.

6 APPROXIMATED SOLUTION FOR
EQUILIBRIUM AND INSTABILITY

6.1 Circular nanoplates

Instead of a numerical study of equation (18), the
author prefers to obtain an analytical solution for
the deflection w under simplified hypotheses, follow-
ing the proposed procedure described in sections 2
and 3. To simplify the problem (to treat it in a
simple analytical way) (a) it is assumed that the nano-
plate thickness t is much smaller than the distance r
between nanoplate and ground plane, i.e. t=r � 1;

(b) in the Taylor’s expansions of the energy terms,
only the first two significant terms are considered to
capture the equilibrium and instability of the nano-
plate; (c) only one unknown ci 	 c is considered
when describing the position of the structure; and
(d) the Pauli’s repulsion is neglected.

As a consequence of (a), considering that H > r ¼
H � w, the nanoplate deflection w must be much
smaller than the gap H, i.e., w=H � 1� t=H ffi 1.
Assuming t=r � 1 and w=H � 1 (a), as a conse-
quence of (b), equations (19) and (20) become

dEelec

dS
� "0V

2

2H

�
1þ w

H
þ
�
w

H

�2�
ð23Þ

dEvdW

dS
¼ �C6n

2t

6r3
� �C6n

2t

6H3

�
1þ 3

w

H
þ 6

�
w

H

�2�
ð24Þ

Let us focus our attention on a circular nanoplate,
for which w ¼ wð�Þ, with � radial coordinate with
respect to the centre of the nanoplate. For example,
free-rotating boundary conditions are assumed, for
which an approximated solution is searched in the
form, according to (c)

wð�Þ � c

�
1� �2

R2

�
ð25Þ

where R is the radius of the nanoplate, and c is the
unknown constant, i.e., the maximum central deflec-
tion of the nanoplate.

Nanoplates having different shapes (e.g., rectangu-
lar) and boundary conditions (e.g., fixed) can be
treated in the same manner (see next section). For a
nanoplate equation (5) becomes (see, for example,
[12])

Eelast-b ¼ D

2

ð
S
fk2xx þ k2yy þ 2�kxxkyy

þ 2ð1� �Þk2xyg dx dy ð26aÞ

Eelast-m ¼ Et

2ð1� � 2Þ

ð
S
f"2xx þ "2yy þ 2�"xx"yy

þ 2ð1� �Þ"2xyg dxdy ð26bÞ

kxx ¼ w‚xx‚ kyy ¼ w‚yy‚ kxy ¼ w‚xy‚

"xx ¼ u‚x þ 1
2w

2
‚x‚ "yy ¼ v‚y þ 1

2w
2
‚y;

"xy ¼
u‚y þ v‚x þ w‚xw‚y

2
ð26cÞ

Equation (26a) corresponds to the bending regime
and equation (26b) to the membrane regime of the
nanoplate and Eelast ¼ Eelast-b þ Eelast-m. These expres-
sions are only functions of the displacements as
reported in equation (26c). The term of equation
(26b) describing the finite kinematics of the
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nanoplate is significant only in the description of
large displacements and when the boundary con-
ditions impose the stretching of the nanoplate. It is
expected that Eelast-m / Eelast-bc

2=t2 [4]; thus, focusing
the attention to moderate displacements the energy
related to the membrane regime can be neglected.
Owing to the structure and load axial symmetry,

and neglecting the role of the membrane regime, in
polar coordinates equation (26a) is rewritten as

Eelast ¼
D

2

ðR
0

��
w‚�� þ

w‚�

�

�2
� 2ð1� �Þ

w‚��w‚�

�

�

� 2�� d� ð27Þ

from which, introducing equation (25)

Eelast ¼
4�Dð1þ �Þ

R2
c2 ð28Þ

On the other hand, the electrostatic and van der
Waals energies can be computed as

Eelec;vdW ¼
ð
S

dEelec;vdW

dS
dS ð29Þ

The integrations of equations (27) and (29) can be
done directly in w noting that equation (25) implies
dS ¼ 2�� d� ¼ ��R2=c dw; the results are

Eelec ¼
"0�R

2V2

H

�
1

2
þ 1

4

c

H
þ 1

6

�
c

H

�2�
ð30Þ

EvdW ¼ �2C6n
2R2t

H3

�
1

6
þ 1

4

c

H
þ 1

3

�
c

H

�2�
ð31Þ

Applying equation (7) we find

c ¼ 3"0R
4H3V2 þ 3�R4C6n

2tH

8Et3H5=ð1� �Þ � 4"0R
4H2V2 � 8�R4C6n

2t

ð32Þ

whereas equation (8) gives the pull-in voltage (i.e. the
switch) of the device

VPI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Et3H5=ð1� �Þ � 2�C6R

4n2t

"0R
4H2

s
ð33Þ

The condition for which the numerator of equation
(33) becomes zero corresponds to the structural
instability simply owing to the van der Waals forces
and it will be reached when the following dimension-
less number � reaches the unity

� ¼ �ð1� �ÞC6n
2R4

Et2H5
ð34Þ

For large gaps H (e.g., larger than 
10 nm) the van
der Waals forces can be neglected and equations (32)

and (33) become respectively

c ¼ 3"0R
4HV2

8E=ð1� �Þt3H3 � 4"0R
4V2

and

VPI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Et3H3

ð1� �Þ"0R4

s

Scaling each characteristic length of the system by a
factor of l, the pull-in voltage of the nanoplate
scales as VPI / l, as for nanotubes [10]. Including
also the membrane regime would correspond to
VPI-m �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ km

p
VPI, with km / H2=t2 that can be

derived from equation (26) assuming a given mode-
shape for the deflection w, as in equation (25).

6.2 Rectangular nanoplates or nanowires

Rectangular nanoplates can be treated at the same
manner, and the corresponding equations hold also
for nanowires with rectangular cross-section B� t.
For cantilever nanoplate/nanowire of length L
(clamped at x ¼ 0), we can assume an elastic line of
the form

wðx‚ yÞ ¼ wðxÞ � c
x2

L2
ð35Þ

By applying equations (26a) and (29) we obtain [from
equation (35), dS ¼ ðBL=2Þ ðdw=

ffiffiffiffiffiffi
wc

p
Þ]

Eelast ¼
2DB

L3
c2 ð36aÞ

Eelec ¼
"0BLV

2

H

�
1

2
þ 1

6

c

H
þ 1

10

�
c

H

�2�
ð36bÞ

EvdW ¼ �C6n
2BLt

H3

�
1

6
þ 1

6

c

H
þ 1

5

�
c

H

�2�
ð36cÞ

Applying equation (7) we find

c ¼ 5"0L
4H3V2 þ 5�L4C6n

2tH

10Et3H5=ð1� �Þ � 6"0L
4H2V2 � 12�L4C6n

2t

ð37Þ

whereas equation (8) gives

VPI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5Et3H5=ð1� �Þ � 6�C6L

4n2t

3"0L
4H2

s
ð38Þ

and for vanishing van der Waals forces

VPI � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Et3H3

ð1� �Þ"0L4

s
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with � close to unity (considering only the first two
significant terms in the energy expansions � � 1:3).
Assuming a rigid plate connected to the substrate
by a concentrated stiffness, as is usually done to
model MEMS, since for the cantilever the stiffness is
expected to be 8EI=L3 (here a constant force per
unit length is assumed), with I inertia moment,
this simple model would correspond to the same
formula of equation (38) with � � 0:45 (and � � 0)
[10]. This comparison shows that the approach is
consistent. Considering additional terms in the
energy expansion as well as more appropriate forms
for the deflection w would correspond to a better
estimation for �. Rigorously, the coefficient � could
be considered a numerical (derived from just one
simulation; or experimental) parameter as a
correction to the simplified hypotheses. However,
� is expected to be of the order of the unity as
suggested by the analysis. This comparison in
addition shows that the analysis can be applied
also for MEMS based on micro-plates and
beams; because FvdW / qvdWl2 / l�1, increasing
the size l of the NEMS device by three orders of
magnitude as for MEMS, the van der Waals forces
become negligible.
Including also the membrane regime would

correspond to VPI-m �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ km

p
VPI, with km / H2=t2;

the coefficient of proportionality can be derived
from equations (26) assuming a given modeshape
for the deflection w, as in equation (35), or more
precisely from one numerical simulation.

7 DYNAMICS OF THE NANOPLATE-BASED NEMS

The static configuration wS (the subscript S empha-
sises that it is related to statics) is assumed to be
given by equation (25) (or by an equivalent form for
different shapes and/or boundary conditions, e.g.,
equation (35)). The vibrations around the deformed
configuration wS (the solution obtained by minimiz-
ing the free energy in section 6) are

wDðx‚ y‚ tÞ � wSðx‚ yÞ þ�wDðx‚ y‚ tÞ ð39Þ

where wD is the dynamic deflection of the nanoplate
and �wD is the time-dependent component of wD.
For the fundamental frequency

�wDðx‚ y‚ tÞ �
wSðx‚ yÞ

cS
cDðtÞ ¼

wSðx‚ yÞ
cS

c�D sinð!tÞ

ð40Þ

where cS is the static displacement at the equilibrium
and c�D represents the maximum amplitude of
the harmonic oscillations around the equilibrium
position cS. The kinetic energy of the system will

thus be

KðtÞ ¼ 1

2

ð
M

�
dwDðx‚ y‚ tÞ

dt

�2
dM

¼ �

2

ð
S

�
d�wDðx‚ y‚ tÞ

dt

�2
dS ð41Þ

where M is the mass of the nanoplate (� is the mass
per unit area).

Putting equation (40) into equation (41) and con-
sidering a circular (equation (25)) or rectangular
nanoplate (equation (35)), gives

KðtÞ ¼ 1
2
meqc

�2
D!

2 cos2ð!tÞ ð42Þ

where for a circular nanoplate m
ðCÞ
eq ¼ 1=3M and for

a rectangular nanoplate m
ðRÞ
eq ¼ 1=5M (everywhere

the superscript (C) will refer to circular and (R) to
rectangular nanoplates).

From the previous considerations for the quasi-
static regime, the free energy is

WðcÞ ¼ EelastðcÞ � EelecðcÞ � EvdWðcÞ ð43Þ

where according to equations (39) and (40)

c ¼ cS þ c�D sinð!tÞ ð44Þ

Let the reference system of the energy be fixed as
WðcSÞ ¼ 0. In this hypothesis the maximum free
energy and the maximum kinetic energy of the
NEMSmust be the same. The fundamental frequency
! is thus estimated as

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WðcÞjmax

meqc
�2
D

s
ð45Þ

From the quasi-static analysis, the form of WðcÞ is
known. If the kinetic energy of the system is known,
from equations (45) and (42) the dynamic displace-
ment c�D can be estimated.

If the oscillations are small, according to equation
(9), the free energy is estimated as

WðcÞ ffi 1

2

d2WðcÞ
dc2

����
c¼ cS

ðc� cSÞ2

¼ 1

2

d2WðcÞ
dc2

����
c¼ cS

ðc�D sinð!tÞÞ2 ð46Þ

Introducing the maximum value of equation (46)
into equation (45), the rotating frequency is predicted
to be

! ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

meq

d2WðcÞ
dc2

����
c¼ cS

s
ð47Þ

not dependent on the amplitude c�D but on the
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external fields (e.g., the electrical field and the van der
Waals forces) as the second derivative of the free
energy. If the oscillations are not small the frequency
will be a function also of their amplitude (equation
(45)).

7.1 Free oscillations

For free vibrations

W ¼ Eelast ð48Þ

as given by equations (28) and (36a). From equation
(47), for circular and rectangular nanoplates the
fundamental (free) frequencies are

!ðCÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�ð1þ �ÞD

R2meq

s
ð49aÞ

!ðRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4DB

L3meq

s
ð49bÞ

The ratio between the exact solution of the funda-
mental frequency for a cantilever beam and that
predicted by equation (49b) is 0.8 (assuming the
beam as a cantilever nanoplate with negligible
Poisson’s ratio), a coefficient close to unity. Thus,
the theory is consistent.

7.2 Thermal vibrations

For thermal vibrations, the equipartition theorem
implies a mean value of the kinetic energy

hKðtÞi ¼ 1

P

ð
P
KðtÞdt ¼ kBT

2
ð50Þ

where P ¼ 2�=! is the period of the oscillation and kB
is Boltzmann’s constant. Putting equations (50) and
(48) into the mean value of equation (42) gives the
amplitude c�D of the thermal vibration around the
position described by cS

c�D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBT

d2WðcÞ
dc2

����
c¼ cS

vuuut ð51Þ

The frequency is given by equation (47).
For free oscillations, the equipartition theorem

applied to the higher modes m fixes their relative
amplitudes, that fall off as 
1=m2. Hence, the
vibration amplitude profile is dominated by the first
mode.

7.2.1 Relaxed configuration

Considering the thermal vibrations around a relaxed
configuration, introducing equations (28) and (36a)

into equation (51) yields

c
�ðCÞ
D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2kBT

4�Dð1þ �Þ

s
ð52aÞ

c
�ðRÞ
D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L3kBT

2DB

r
ð52bÞ

and ! is given by equations (49).

7.2.2 Deformed configuration

From equations (30), (31), (36b), and (36c) we obtain

d2Eelec

dc2
¼

meq

�

"0V
2

H3
ð53Þ

d2EvdW

dc2
¼

2�C6n
2tmeq

�H5
ð54Þ

so that from equations (47) and (51) the frequency
and amplitude satisfy

!
ðC‚RÞ
V ¼

�
!ðC‚RÞ2 � "0V

2

�H3
� 2�C6n

2t

�H5

�1=2
ð55Þ

c
�ðC‚RÞ
DV ¼

�
1

c
�ðC‚RÞ2
D

�
"0V

2meq

2�H3kBT
�
�C6n

2tmeq

�H5kBT

��1=2

ð56Þ

where the subscript V emphasizes the influence of
the electrical field. According to equation (55) the
pull-in instability (displacement tending to infinity)
can be obtained also by setting !

V
ðC;RÞ ¼ 0, thus

d2WðcÞ=dc2jPI ¼ 0. Approaching the pull-in, the
amplitude of the thermal vibrations will increase,
and their frequencies will decrease. Practically,
when they become large enough, the approximation
of small vibrations is no longer valid and the ampli-
tude will be limited. The kinetic energy released
after the pull-in can be evaluated as the difference
between the free energy (exact form) at the pull-in
and at the contact, i.e. KPI ¼ WPI �Wcont.

7.3 Schrödinger’s equation: the oscillations
imposed by Heisenberg’s principle

The Hamiltonian of the NEMS can be written as
(WðcSÞ ¼ 0)

Hðc‚ tÞ ¼ Kðc‚ tÞ þWðcÞ ð57Þ

Schrödinger’s equation takes a simple form as a
consequence of the reduction to one degree of
freedom of the system as�

� �h2

2meq

@2

@c2
þWðcÞ

�
 nðcÞ ¼ En nðcÞ ð58Þ
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where En are the energy eigenvalues and  n are the
eingenfunctions describing the fundamental vibra-
tional states. Equation (58) can be solved numerically.
For small dynamic displacements around a deflected
configuration and substituting the conditions of
equations (46) and (47) yields the (well-known) dis-
crete quantized levels of energy

En � ð12 þ nÞ�h! ð59Þ

Note that here ! is not the fundamental frequency
of the free NEMS but, according to equation (47),
takes into account the electrical field and van der
Waals forces. Obviously, the lowest energy level is
predicted to be different from zero also at zero
temperature

E0 �
�h!

2
ð60Þ

as imposed by Heisenberg’s uncertainty principle.
The condition for which equation (50) equals

equation (60) corresponds to the temperature for
which the vibration of the zero point becomes equal
to the thermal vibrations

kBT � �h! ð61Þ

According to equation (60), the corresponding
amplitude of the zero point can be obtained as

c�D0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meq

d2WðcÞ
dc2

����
c¼ cS

s
vuuuut ð62Þ

The corresponding frequency is given by equation
(49) and consequently

c
�ðCÞ
D0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�Dð1þ �Þmeq

p
s

ð63aÞ

c
�ðRÞ
D0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L3=2�hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DBmeq

p
s

ð63bÞ

8 AN EXAMPLE OF APPLICATION

As an example of application of the developed
approach, some results for a circular carbon graphene
sheet (t ¼ 0:335 nm) assuming R ¼ 10 nm, H ¼ 3 nm,
E ¼ 1TPa, � ¼ 0, V ¼ 1V, and T ¼ 300K (if not dif-
ferently specified), over a semi-infinite bulk-graphite
substrate are reported in Figs 2 to 4 for the statics,
and in Figs 5 to 7 for the dynamics of the NEMS.
The structural behaviours described by the grey
lines take into account the van der Waals forces. On
the other hand, the black lines describe structural
behaviours without considering van der Waals forces.

The pull-in voltages as a function of the horizontal
R and vertical H sizes of the NEMS are depicted in
Figs 2 and 3. When H reaches a lower bound, which
for the considered geometry is 
1.5 nm, the nano-
plate collapses owing to the van der Waals forces
and the pull-in voltage vanishes. Increasing the initial
gap H, the van der Waals corrections tend to become
negligible and the two different lines in Fig. 2 tend to
coincide. For R ¼ 10nm and H ¼ 3nm, the pull-in
voltage is 
4.7 V.

In Fig. 4, the central deflection c of the carbon
nanoplate versus the applied voltage V is reported.
For the grey line the deflection corresponding to a
vanishing applied voltage represents the central dis-
placement of the nanoplate owing to the van der
Waals attraction. In general, van der Waals forces
increase the nanoplate deflections.

In Fig. 5 the frequency of the oscillations around
the equilibrium static position (described in Fig. 3)
is reported as a function of the applied voltage. The
frequency becomes negligible at the pull-in. Van der
Waals forces and the applied voltage reduce the
fundamental frequency. Thus, by controlling the
voltage, the operating frequency of the NEMS could
be controlled (e.g., perhaps useful for ‘smart’ mass
sensors and accelerometers, etc.).

In Figs 6 and 7 the amplitude of the oscillations is
shown as a function of the applied voltage (at 300K)

Fig. 2 Pull-in voltage versus vertical size (nominal gap) between nanoplate and plane. Grey line: with
van der Waals forces; black line: without
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and temperature (under 1 V). In Fig. 7, the horizontal
lower line represents the amplitude of the oscillations
imposed by the Heisenberg’s principle.
The van der Waals forces and applied voltage

increase the amplitude of the oscillations. By control-
ling the voltage, NEMS with variable ‘global’ stiffness,
also tending to zero could be designed (e.g., perhaps
useful for highly sensitive temperature sensors,
capable to ‘observe’ the energy of the zero point).
At zero voltage, the frequency P�1 ¼ !=ð2�Þ of

the dominant mode of the thermal oscillations is


16GHz. The amplitude of the thermal oscillations
at 300K is 
1 Å, whereas the zero-point oscillation
is 
0:05 Å.

Here a voltage control has been assumed resulting,
as shown, in a digital NEMS. Digital NEMS, owing to
their high integration level and operating frequency,
could revolutionize the electronic components of
the future, e.g., nanoswitches for computer memory
applications. On the other hand, a complementary
current control could be also proposed, as a con-
sequence of the quantum tunnelling effect. This

Fig. 3 Pull-in voltage versus horizontal gap (nanoplate radius). Grey line: with van der Waals forces;
black line: without

Fig. 4 Central deflection of the nanoplate versus applied voltage. Grey line: with van der Waals forces;
black line: without

Fig. 5 Fundamental frequency of the nanoplate versus applied voltage. Grey line: with van der Waals
forces; black line: without
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would result, at least for small gaps, in a current
between the NEMS (especially for cantilever nano-
wires (or nanotubes, see [14, 15]), possessing a
sharp tip) and electrode with intensity related to
the smaller gap between the NEMS and electrode.
Thus, imposing a current would correspond to an
analogical NEMS (perhaps useful for innovative
microscope tips, electron counters, etc.).

9 CONCLUSION

The statics and dynamics of three-dimensional NEMS
have been analysed. The elastic equilibrium of a nano-
plate (or nanowire) under electrostatic and van der
Waals forces and suspended over a grounded semi-
infinite plane has been analysed for the static and
dynamic regimes (for a similar analysis of nanotubes
see [4]). The equilibrium position was obtained by
minimizing the total free energy of the nanoplate-
(or nanowire-) based NEMS. In addition, the structural
instability owing to the pull-in voltage has been theo-
retically predicted. In contrast to other analytical ana-
lyses the presented approach considers the flexibility
of the system in evaluating the elastic and van der

Waals energies. A simple approach to estimate the
amplitude and the frequency of the thermal vibrations
by applying the equipartition theorem, has been also
proposed. In contrast to other analytical analyses the
presented approach considers vibrations around a
generic deformed configuration, i.e. the influence of
the applied voltage and van der Waals forces in the
dynamics of the NEMS. The zero-point oscillations,
as imposed by the Heisenberg’s principle, have also
been evaluated. This work is meant as a step towards
an optimal dynamical design paradigm for three-
dimensional NEMS(/MEMS).

ACKNOWLEDGEMENTS

The author would like to thank Professors A. Carpin-
teri and R. S. Ruoff, H. D. Espinosa, and N. Moldovan
for many insightful discussions.

REFERENCES

1 Kim, P. and Lieber, C. M. Nanotube nanotweezers.
Science, 1999, 286, 2148–2150.

Fig. 6 Amplitude of the thermal vibrations (300K) versus applied voltage. Grey line: with van der Waals
forces; black line: without

Fig. 7 Amplitude of the thermal vibrations versus temperature. Grey line: with van der Waals forces;
black line: without; under an applied voltage of 1V. The horizontal lower line represents the
amplitude of the oscillations imposed by the Heisenberg’s principle

Non-linear statics and dynamics of NEMS 39

JNN18 # IMechE 2005 Proc. IMechE Vol. 219 Part N: J. Nanoengineering and Nanosystems



2 Baughman, R. H., Changxing Cui, Zakhidov, A. A.,
Iqbal, Z., Barisci, J. N., Spinks, G. M., Wallace, G. G.,
Mazzoldi, A., De Rossi, D., Rinzler, A. G., Janchinski,
O., Roth, S., and Kertesz, M. Carbon nanotube actua-
tors. Science, 1999, 284, 1340–1344.

3 Rueckes, T., Kim, K., Joselevich, E., Tseng, G. Y.,
Cheung, C.-L., and Lieber, C. M. Carbon nanotube-
based nonvolatile random access memory for
molecular computing. Science, 2000, 289, 94–97.

4 Pugno, N. Non-linear dynamics of nanotube based
NEMS. Rec. Res. Dev. Sound Vibr., 2004, 2, 197–211.

5 Qian, D., Wagner, G. J., Liu, W. K., Yu, M.-F., and Ruoff,
R. S. Mechanics of carbon nanotubes. Appl. Mech. Rev.,
2002, 55, 495–532.

6 Iijima, S. Helical microtubules of graphitic carbon.
Nature, 1991, 354, 56–58.

7 Pugno, N. and Ruoff, R. Quantized fracture mechanics.
Phil. Mag., 2004, 84, 2829–2845.

8 Yakobson, B. I. and Smalley, R. E. Fullerene nanotubes:
C-1000000 and beyond. Am. Scient., 1997, 85, 324–337.

9 Girifalco, L. A. Molecular properties of C60 in the gas
and solid phases. J. Phys. Chem., 1992, 96, 858–861.

10 Dequesnes, M., Rotkin, S. V., and Alaru, N. R. Calcula-
tion of pull-in voltages for carbon-nanotube-based
nanoelectromechanical switches. Nanotechnology,
2002, 13, 120–131.

11 Chopra, N. G. and Zettl, A. Measurement of the elasti-
city of a multi-wall boron nitride nanotube. Solid
State. Comm., 1998, 105, 297–300.

12 Carpinteri, A. Structural mechanics – a unified
approach, 1997 (E & FN Spon, New York).

13 Bazant, Z. P. and Cedolin, L. Stability of structure:
elastic, inelastic, fracture and damage theories, 1991
(Oxford University Press, Oxford).

14 Pugno, N. Tunneling current/voltage control, oscillations
and instability of nanotube and nanowire based NEMS.
Glass Phys. Chem., Special Issue: Nanoparticles, Nano-
structures and Nanocomposites, 2004, 31, 535–544.

15 Ke, C. H., Espinosa, H. D., and Pugno, N. A feedback
controlled carbon nanotube based NEMS device, Inter-
national Conference on Experimental Mechanics-12,
CD-ROM (No. 81), 29 August–2 September, 2004, Bari,
Italy.

APPENDIX

Notation

B width of the nanowire
cDi unknowns dynamic

displacements
ci unknowns static displacements
C electrical capacitance
D nanoplate rigidity
E‚ � Young’s modulus and the

Poisson’s ratio
Eelast;elec;vdW;P elastic, electrostatic, van der

Waals and Pauli’s energies
Ein energy eigenvalues
Felec‚vdW‚P, qelec‚vdW‚P electrostatic, van der Waals and

Pauli’s forces F , and q if per unit
area S

½HW� Hessian matrix of the
free-energy

K kinetic energy
L length of the nanowire
meq equivalent mass of the

nanoplate/nanowire
mi modal mass
½M� mass matrix
M mass of the nanoplate/

nanowire
n1;2 atom densities
r‚H gaps in the deformed and

undeformed configurations
R radius of the nanoplate
t nanoplate thickness;

D ¼ Et3=12ð1� � 2Þ
T temperature
ui‚ vi‚wi displacements
V difference in voltage
WðciÞ free energy
 in Eigenfunctions
! fundamental frequency
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