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Micromechanical model for protein materials: From macromolecules
to macroscopic fibers
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We propose a model for the mechanical behavior of protein materials. Based on a limited number of
experimental macromolecular parameters (persistence and contour length) we obtain the macroscopic behavior
of keratin fibers (human, cow, and rabbit hair), taking into account the damage and residual stretches effects
that are fundamental in many functions of life. We also show the capability of our approach to describe the
main dissipation and permanent strain effects observed in the more complex spider silk fibers. The comparison
between our results and the data obtained experimentally from cyclic tests demonstrates that our model is robust
and is able to reproduce with a remarkable accuracy the experimental behavior of all protein materials we tested.
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I. INTRODUCTION

Experimental analyses [atomic force microscopy (AFM),
optical and magnetic tweezers, nanoindentation] clearly show
that the outstanding elasticity, toughness, strength, and self-
healing properties [1,2] of protein materials originate from
their secondary structure characterized by the presence of
folded (crystal-like) domains, typically in the form of α helices
or β sheets, which can undergo unfolding as a consequence
of an applied displacement. The efficacy of the unfolding
mechanism is based on the presence of a large number of
noncovalent forces [3], typically hydrogen-bonding, which act
as sacrificial joints. Being much weaker than the covalent
peptide bonds, these noncovalent interactions can easily
break, causing unfolding phenomena (α → β transition or β

domains unfolding). Such unfolding prevents the backbone
fracture conciliating the typically conflicting request for high
stiffness and toughness [4]. Indeed, the cooperative strength
of noncovalent bonds provides proteins with stability and
stiffness before unfolding begins, whereas the increase of
the end-to-end length during unfolding is responsible for
toughness properties.

The analysis of the energy, stability, and time scales regu-
lating the mechanical unfolding of hard domains represents a
complex and diffusely analyzed task that cannot be solved with
available molecular dynamics approaches. In fact, these were
demonstrated not to be able to reproduce experimental obser-
vations [5], such as hierarchical multi-scales interactions [4],
nano confinement effects [6], asymmetric energy landscapes
for folding and refolding effect [7].

Here, we assume, in a phenomenological approach, to
know the experimental stretch induced unfolding behavior
of the single macromolecule (see Fig. 2). Then, based on
an (slightly amended) affinity hypothesis [8] and the James
and Guth three-chains model [9], we deduce the macroscopic
behavior with damage and residual stretch of protein materials
and analytical relation with few key macromolecular material
parameters. Specifically, as in Refs. [10] and [11], we
consider for the single molecule under assigned elongation
a phenomenological Griffith-type approach assuming that the
macromolecule unfolds when the energy gain (evaluated as
difference of the two force-elongation curves between which
the macromolecule jumps) equals a material parameter, repre-
senting the energy “dissipated” in the mechanical unfolding of
the crystal. The corresponding contour length (hidden length)
variations of the macromolecules, which can be also evaluated
by the macromolecular stretching experiment, allows to
accommodate large stretches (20-40%) with a contemporary
high dissipation and toughness.

As in the case of multiscale dislocation and defect the-
ories in metal plasticity [12], a significant advance in the
comprehension of protein materials requires models relating
the material properties at the macromolecular scale to the
macroscopic response of fibers and tissues [2,10,13–16]. Such
models are essential for both the comprehension of many
biological (i.e., mechanotransduction and cell motility [17])
and biomedical phenomena (such as Alzheimers, type II
Diabetes, Parkinsons [18]) and in the perspective of the design
of new, high-performance bioinspired materials [2,13,19–24].
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FIG. 1. Multiscale behavior of protein materials like human hair
under stretching. When a hair is stretched, the α-helix structures
undergo a coiled-coil transition to an almost straight polypeptide
chain in the form of β sheets.

Here we focus on two different classes of structural protein
materials [25] known for their outstanding performances:
keratinous materials, which can be found in wool, hair, cells
intermediate filaments, epithelial cells and hooves and silk, a
valuable material produced by spiders and silkworms. In the
first case, the secondary structure is in the form of intrachain α

helices undergoing a coiled-coil transition to an almost straight
polypeptide chain in the form of β sheets [13,26], whereas in
the second case the protein secondary structure is in the form
of interchains (alanine rich) β-sheet domains which undergo
unfolding under stretching [14].

The α → β transition is a diffusely adopted mechanism
in many protein materials, such as cytoplasmic IF proteins
[27], which needs deep comprehension as it is linked to many
human deceases such as Alzheimer, prion diseases, Parkinson.
Both silk and keratinous materials have attracted significant
attention from the scientific literature for the design of new
bioinspired materials among which we recall nanopolymers
[22] and block copolymers [21] in the case of spider silk and
hydrogels [23] in the case of keratinous materials.

II. MICRO-MACRO MODEL

The sketch of the multiscale behavior of a hair protein fiber
is schematized in Fig. 1.

The main assumptions introduced to derive our multiscale
model are the following (Fig. 3).

(a) Additive assumption. Following a classical approach in
polymer elasticity [28] [Fig. 3(b)], the energy of the protein
network is the sum of the energy of ideally noninteracting
unfolding chains plus a term (here modeled as simple Gaussian
chains) accounting for the real network chains interactions.

(b) Wang and Guth hypothesis. All macromolecules are
aligned along the principal axes [Wang and Guth scheme
[9], Fig. 3(b)] and undergo the macroscopic stretches (affinity
hypothesis [8]). Since protein fibers (both silk [19] and keratin
[29]) are produced as highly oriented filaments densely packed
in a less-ordered matrix, macromolecule unfolding occurs
along the fiber direction, whereas the amorphous soft fraction
is equally distributed along the principal directions.

(c) Skin-core effect. The fiber behavior is strongly in-
fluenced by its skin-core structure ([30], supercontraction

FIG. 2. (a) Scheme of second structure unfolding during an AFM
molecule stretching and (b) corresponding force-elongation curve
(experimental behavior reproduced from Ref. [34]). The sawtooth
shape is due to unfolding of an increasing number of domains with
(c) reporting the corresponding total energy minimization approach
(see Ref. [11]). (d) Continuum limit approximation with constant
unfolding force plateaux.

[19], confinement [31], and prestretch of the inner chains
[32]) here considered by imposing on the fibers a transversal
pressure p.

Remark. This scheme extends the model in Ref. [33] to
consider anisotropic damage: only macromolecules along the
fiber direction undergo unfolding. This is fundamental for the
experimental effect of permanent stretches.

A. Macromolecule energy

AFM experiments [34], reproduced in Fig. 2(b), show
that a protein macromolecule experiences, as schematized in
Fig. 2(a), a sequence of periodic unfolding events as a conse-
quence of an increasing applied displacement. This results in
a contemporary entropy and contour length increase (hidden
length: increased number of free monomers) accompanied by
an energy “dissipation” (Q in the figure) due to H -bonds
disruption.

Since typically no partial unfolding occurs (either all or
none of the domains unfold) following a Griffith-type total
energy minimization approach [11], as in Refs. [26] and

FIG. 3. (a) Cartoon showing the deformation induced chain
unfolding, where the total stretch λ is given by the product of the
elastic stretch λe and the permanent stretch λn. (b) Micro-macro
multiscale network.
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[35], we model a protein macromolecule as a lattice of n

two-states (rigid-folded and entropic-unfolded) domains. We
define the state of the ith domain through the variable χi with
χi = 0 (=1) in the folded (unfolded) state. For simplicity,
since we are interested in the unfolding regime, we neglect
both the elastic energy and the length of the folded domains.
Moreover, we neglect nonlocal interactions (weak interaction
hypothesis). The total internal energy can then be expressed
as φe = ∑n

i=1 χiϕe(λi
rel), where ϕe depends on the relative

deformation λi
rel = li/ lc of the ith unfolded domain, with

end-to-end length li , contour length (assumed constant) lc
and on the persistent length Lp. We also assume the limit
extensibility condition: limλrel→1 ϕe(λrel) = +∞.

Equilibrium requires a constant force lc
dϕe(li / lc)

dli
= F and,

under the hypothesis of convex ϕe, a constant λi
rel = li/ lc =

L/Lc. Here, L = ∑
i χi li is the total end-to-end length and

Lc = ∑
i χi lc is the total contour length of the unfolded

fraction. As a result we have φe = Lcϕe(λrel) = Lcϕe(L/Lc).
Here, for the energy of the unfolded fraction we adopt the
Worm Like Chain (WLC) type entropic energy density pro-
posed in Ref. [11] (this choice allows for analytic computations
and keeps the same asymptotic behavior as l → lc of the WLC
model):

ϕe = ϕe(l,lc) = κ
l2

lc − l
, (1)

where κ = kBT
4Lp

, T is the temperature and kB the Boltzmann
constant. Thus, using the recalled strain homogeneity result in
the entropic fraction, the total elastic energy is

φe = κ
L2

Lc − L
. (2)

Let us consider now the configurational energy of the
different folded and unfolded states. Following Ref. [11] (and
references therein), here we consider an Ising-type transition
energy,

φtr = −
n∑

i=1

(Q − J )(1 − χi) − J

n−1∑
i=1

(1 − χi)(1 − χi+1)

= −
n∑

i=1

Q(1 − χi) + Jnbf
,

where nbf
is the number of contiguous folded blocks in the

folded and unfolded configuration, Q is the unfolding energy
of the folded domains (considered constant), and J is a penal-
izing “interfacial” energy term. By introducing the probability
function p̃ = p̃(L,nu,nbf

) of a state of the macromolecule
with end-to-end length L, nu unfolded domains, and nbf

continuous folded blocks, the total energy can be expressed
as

φtot = −kBT ln[p̃(L,nu,nbf
)]

= kBT 	(nu,nbf
) exp

(
−φe(L,nu)

kBT

)
exp

(
−φtr (nu)

kBT

)

= φe(L,nu) + φtr(nu) − T S(nu,nbf
),

where 	(nu,nbf
) is the number of sequences with assigned

nu and nbf
and S(nu,nbf

) = −kB ln 	(nu,nbf
) represents a

mixing entropy component. By the diblock approximation,
assuming always a single connected internal unfolded domain
inside two boundary-folded domains (nbf

= 1 as supported
by the MD simulations in Ref. [41]), we neglect the mixing
entropy term and the total (entropic plus unfolding) energy is
simply

φtot = φe(L,nu) + nuQ + const, (3)

where φe is given in Eq. (2).
In Figs. 2(b) and 2(c) we show the scheme of our

minimization procedure, considering the global minimizer of
φtot determining the lengths transition Lu with an increasing
number nu of unfolded domains: the system undergoes an
unfolding transition as soon as the entropic energy gain equals
the (enthalpic) unfolding energy Q (colored area in the figure).
The efficacy of this approach for the single chain has been
evidenced in Ref. [11].

B. Continuum macromolecule approximation

To derive the macroscopic energy of a material consisting
of a number of macromolecules, following Ref. [33] we
begin by considering the continuum approximation of the
macromolecular discrete lattice. To this end we fix the total
unfolded length L1

c = nlc and consider the (thermodynamic)
limit when both lc → 0 and n → ∞ (see Ref. [36] for a similar
approach in the case of biological adhesion and Refs. [37]
and [38] for a rigorous thermodynamical justification). After
introducing the continuous variable x ∈ (0,L1

c) – such that
the ith link corresponds to x ∈ (i lc,(i + 1)lc), i = 1,...n –
and the dissipation density q = Q/lc, the total energy for the
continuum limit chain is

φtot = φtot(L,Lc) = κ
L2

Lc − L
+ qLc. (4)

The equilibrium force is given by

f = ∂φtot(L,Lc)

∂L
= κ

2LLc − L2

(Lc − L)2
, (5)

whereas the driving force g conjugated to the variation of
the contour length Lc (i.e. with the percentage of unravelled
domains) is given by

g = −∂φtot(L,Lc)

∂Lc

= κ
L2

(Lc − L)2
− q.

The Griffith approach fixes the dissipation rate g = ĝ, where ĝ

is a given material parameter here assumed null (global energy
minimization). This provides for given Lc the unfolding length

Lun ≡ Lmax = Lc√
k/q + 1

, (6)

and a constant unfolding force [path OABCD in Fig. 2(d)],

fun = (2
√

k/q + 1)q. (7)

Remark. Dashed lines in Fig. 2(d) are unloading and
reloading paths. The introduction of partial refolding upon
unloading would let us describe also internal hysteric effects.
Similarly, the different behavior for macromolecular high rate
of loading [7] could introduce rate loading effects [39].
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C. Affinity hypothesis

As classical in polymer elasticity [8], the main hypothesis
for the deduction of the macroscopic behavior is the affinity
hypothesis, which assumes that the macroscopic stretches
coincide with the macromolecular ones. We here give an
interpretation of the permanent deformations observed in
protein materials as a macroscopic counterpart of the variation
of the macromolecule natural configuration associated with
the unfolding of crystal domains and the availability of new
monomers (hidden length). We then extend the affinity hypoth-
esis by identifying both permanent and elastic components of
the macromolecular stretch with the macroscopic ones. In such
a way we are also able to describe the important permanent
stretch effect.

To analytically describe this phenomenon we begin by
observing that for a given contour length Lc the natural
length (zero force) Ln of the entropic chain can be expressed,
according to a known result of statistical mechanics (see, e.g.,
Ref. [8]), as

Ln = √
n̄b =

√
Lc

b
b =

√
Lc b,

where b is the length of the Kuhn segments and n̄ is the number
of Kuhn segments of the unfolded chain fraction. Thus, if we
denote by Lo

c the initial value of the contour length, the initial
natural end-to-end length is Lo = √

Lo
c b. Then we may define

the following stretch measures:

λ = L

Lo

, total stretch,

λe = L

Ln

, elastic stretch,

λn = Ln

Lo

permanent stretch,

λc = Lc

Lo

limit extensibility stretch. (8)

The continuum limit behavior with permanent stretches is
illustrated in Fig. 2(d). Under assigned growing end-to-end
length (λmax ≡ λ and λ̇ > 0) the macromolecule stretches
elastically until the threshold f = fun is attained and the
macromolecule unfolds along a stress plateaux (path O-A-E).
If the system is unloaded (λ < λmax and λ̇max = 0), then
the system follows different paths (paths Bb, Cc, Dd), with
permanent stretches growing with λmax.

We then obtain, using Eq. (5), the force-stretch relation

f =κ

2λ

λ̄c(λmax) − [
λ

λ̄c(λmax)

]2

[
1 − λ

λ̄c(λmax)

]2 , (9)

where λmax is the previously maximum attained strain and, by
using Eq. (7),

λc = λ̄c(λmax) =
(√

κ

q̄
+ 1

)
λmax, (10)

is the (history-dependent) value of the limit stretch corre-
sponding to the attainment on the contour length deducible
analytically by the present value of λmax.

D. Macrosopic material behavior

Structural proteins are composite materials of hard seg-
ments immersed in an amorphous soft fraction of unfolded
macromolecules. To describe the complex interchains inter-
actions and self-avoiding effects, according to the additivity
hypothesis in polymer elasticity [28], we determine the energy
of the real network as the sum of the energy of ideally
isolated fibrils [folded molecules in Fig. 3(b), whose behavior
is schematized in Fig. 2(d)] plus a network energy term
measuring the chains interactions: red springs in Fig. 3(b).
Moreover, according to the classical James and Guth three-
chains model, we assume that all chains are aligned along the
three principal macroscopic stretch directions. In particular,
we suppose that the unfolding protein macromolecules are
oriented along the fiber direction, whereas the amorphous soft
fraction is supposed to be equally distributed along the three
principal directions. For the unfolding chains we assume the
continuous limit energy Eq. (4), force Eq. (5), unfolding force
Eq. (7), and stretches Eq. (8) deduced above. The network
effect is instead modeled by simple Gaussian chains.

Thus, let (λ1,λ2,λ3) be the macroscopic principal stretches,
where λ1 is the stretch in the fiber direction. According to
previous hypotheses, the macroscopic energy density can be
calculated as

�(λi) = Nfibφtot(λ1) +
3∑

i=1

Nnet

3
φnet(λi). (11)

Here Nfib is the number of macromolecules with unfolding do-
main per unit area of fiber section in the reference configuration
and Nnet is the number of chains, per unit volume, reproducing
the real chains network effect. The network energy is modeled
as Gaussian φnet(λi) = kBT

2 (λ2
i − 1) leading (see, e.g., Ref. [8])

to a neo-Hookean network energy �net = μ

2 (I − 3), where

I = ∑3
i=1 λ2

i is the first invariant of the left Cauchy-Green
deformation tensor and μ = kBT Nnet/3 represents the shear
elastic modulus. On the other hand, the energy of the unfolding
chains gives a history dependent term depending only on λ1

stretch. In such a way we describe a fundamental effect with
the damage localized along the (maximum elongation) fiber
direction. It is worth noticing that this damage anisotropy
is crucial for an effective derivation of the macroscopic
permanent stretch.

Suppose now that the fiber (assumed incompressible)
undergoes uniaxial extension λ1 = λ and λ2 = λ3 = 1/

√
λ.

To take into account the confinement effect, we introduce a
constant pressure p < 0 perpendicular to the fiber skin. Thus,
if σ = σ1 is the (Piola or engineering) principal stress in the
fiber direction, by using Eqs. (5) and (8) and by imposing the
boundary conditions σ2 = σ3 = p, we get the stress-stretch
relation,

σ = Nfibκ

2λ

λ̄c(λmax) − (
λ

λ̄c(λmax)

)2

(
1 − λ

λ̄c(λmax)

)2

+μ

(
λ − 1

λ2

)
+ p

λ
√

λ
, (12)

where λmax is the previously maximum attained strain with
λmax = λ if λ̇max > 0 (primary loading) and λmax = const
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if λ̇max = 0 (unloading). Moreover, by using Eq. (7),

λc = λ̄c(λmax) =
(√

κ

q̄
+ 1

)
λmax (13)

is the (limit) value of the stretch corresponding to the present
value of the contour length (unloading and reloading).

III. EXPERIMENTAL VALIDATION

To prove the efficacy of our model, we performed cyclic
tensile tests on two different types of material: keratin hair
materials and dragline silk.

We first consider keratinous materials, such as human, cow,
and rabbit hairs. The tests and the possibility of reproducing
the macroscopic behavior of these keratin fibers are shown in
Fig. 4.

The macromolecular parameters are coherent with the ones
known in the literature. The values of the persistent length
match those reported in Ref. [13], where lp = 0.4 nm. The
values of the rate of dissipation q = 45 kBT /nm are coherent
with the value in Ref. [27] from which one deduces that the
energy for the unfolding of a single amino acid is about
100 kcal/mol, which corresponds to q = 59.6 kBT /nm, by
assuming an amino acid length of about 1 nm. A higher
value q = 180 kBT /nm is adopted for the rabbit hair and
this is due to the much higher experimental unfolding stress
(about 600 MPa) that we here interpret as a particularly high
rate of dissipation q corresponding to higher energy barrier
regulating the transition between the folded and unfolded
configuration. The number N = 1018 of macromolecules per
unit area corresponds to a coiled-coil cross section of 1 nm as
suggested in Ref. [13]. It is important to point out that the only
“arbitrary” parameters of the model are the pressure p of the
hair cuticula accounting for the protein macromolecules cortex
interactions [40] and the shear modulus μ. To the knowledge
of the authors, no value for the confinement pressure p is
available.

Despite the simplification of the model it quantitatively
well reproduces the stiffnesses, the residual stretches, the
damage softening, and the sudden softening corresponding
to the reconnection to the primary loading curve (return point
memory).

In Fig. 5 we reported the cyclic behavior of a spider silk
fiber produced by a cellar spider (Pholcus phalangioides).
For sample preparation the spider was forced to fall down
toward the ground and during its falling it produced its
dragline silk, which we collected and glued on a paper
frame, resulting in a fiber with 1 cm length and a diameter
of about 1 μm. The large toughness and healing properties
observed in the macroscopic material behavior is the result of a
complex multiscale structure and energy exchange phenomena
(prestretch, chains alignment, chain-to-chain, and chains-
matrix interactions), here modeled through our additivity
assumption.

We point out that the behavior at small stretches is typically
regulated by both the amorphous fraction and the tertiary
structure [34,44], not considered in our model, so that we
reproduced the only path with a previous stretch larger than

FIG. 4. Cyclic tests on human (a), rabbit (b), and cow (c)
hair at room temperature and at a strain rate of 0.1 s−1 (experi-
mental behavior-continuous lines, theoretical model-dashed lines).
For the theoretical model we used in (a) for human hair lp =
0.4 nm, T = 300 K, q = Q/lc = 45 kBT /nm, μ = 44 MPa, p =
−130 MPa, Nfib = 1018; in (b) for rabbit hair lp = 0.45 nm; T =
300 K, q = Q/lc = 180 kBT /nm, μ = 280 MPa, p = −375 MPa,
Nfib = 1018; in (c) for cow hair lp = 0.33 nm; T = 300 K, q =
Q/lc = 45 kBT /nm, μ = 200 MPa, p = −130 MPa, Nfib = 1018.

3%. Despite its oversimplification, since here we are focused
on the main dissipative phenomena, Fig. 5 shows that, even if
with lower precision, the model can capture the fundamental
phenomena of damage and residual stretches in the case of
spider silk, too.

For the pressure we assumed p = −400 MPa correspond-
ing to an initial prestretch of the fibers of about 25% in
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FIG. 5. The dragline silk sample underwent loading and unload-
ing cycles tested through a nanotensile machine (Agilent UTM 150)
at room temperature and at a strain rate of 0.1 s−1 (experimental
behavior-continuous lines, theoretical model-dashed lines). Here we
assumed lp = 0.78 nm, lc = 25 nm, Nfib = 4.75 × 1018 m−2, Q =
550 kBT , T = 300 K, μ = 670 MPa, p = −400 MPa.

accordance with the experimental evidences in Refs. [32,45].
It is crucial to point out that for the spider fibril response the

parameters are chosen to agree with the experimental values.
In fact we considered the values lp = 0.8 nm and lc = 25 nm
estimated in Refs. [32,45] and [14], the unfolding energy
Q = 550 kBT agrees with the values estimated in Ref. [11];
the number of fibers per unit area Nfib = 4.75 × 1018 (per
square meters) reflects the results in Refs. [42,46].

Our experimental comparison shows that it is possible to
model with remarkable precision the complex mechanical
behavior of different protein materials starting from known
molecular properties. This represents in our opinion an
important step forward in the fundamental comprehension of
the link between the properties of protein secondary structure
and the macroscopic material properties (toughness, stiffness
and large deformations prior to fracture, residual stretches,
memory, etc.), which can be of paramount importance for
better understanding protein materials and also for the design
of new smart bioinspired materials.
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[24] J. Kopeček and J. Yang, Acta Biomaterialia 5, 805 (2009).
[25] M. J. Buehler and Y. C. Yung, Nat. Mater. 8, 175 (2009).
[26] J. W. S. Hearle, Int. J. Biol. Macromol. 27, 123 (2000).
[27] Z. Qin and M. J. Buehler, Phys. Rev. Lett. 104, 198304 (2010).
[28] P. J. Flory and B. Erman, Macromolecules 15, 800 (1982).
[29] R. L. C. Akkermans and P. B. Warren, Philos. Trans. R. Soc.

London A 362, 1783 (2004).
[30] A. Sponner et al., PLoS ONE 2, e998 (2007).
[31] Y. Liu, Z. Shao, and F. Vollrath, Nat. Mater. 4, 901 (2005).
[32] P. Papadopoulos, J. Sölter, and F. Kremer, Coll. Polym. Sci. 287,

231 (2009).
[33] D. De Tommasi, G. Puglisi, and G. Saccomandi, J. Mech. Phys.

Sol. 78, 154 (2015).
[34] M. Rief, M. Gautel et al., Science 276, 1109 (1997).
[35] Y. Y. Termonia, Macromolecules 27, 7378 (1994).
[36] G. Puglisi and L. Truskinovsky, Phys. Rev. E 87, 032714

(2013).
[37] G. Puglisi and L. Truskinovsky, J. Mech. Phys. Sol. 53, 655

(2005).
[38] F. Maddalena, D. Percivale, G. Puglisi, and L. Truskinovsky,

Cont. Mech. Therm. 21, 251 (2009).
[39] D. De Tommasi, G. Puglisi, and G. Saccomandi, Biophys. J. 98,

1941 (2010).

042407-6

https://doi.org/10.2140/jomms.2007.2.1019
https://doi.org/10.2140/jomms.2007.2.1019
https://doi.org/10.2140/jomms.2007.2.1019
https://doi.org/10.2140/jomms.2007.2.1019
https://doi.org/10.1038/ncomms8418
https://doi.org/10.1038/ncomms8418
https://doi.org/10.1038/ncomms8418
https://doi.org/10.1038/ncomms8418
https://doi.org/10.1529/biophysj.105.069344
https://doi.org/10.1529/biophysj.105.069344
https://doi.org/10.1529/biophysj.105.069344
https://doi.org/10.1529/biophysj.105.069344
https://doi.org/10.1038/nmat3115
https://doi.org/10.1038/nmat3115
https://doi.org/10.1038/nmat3115
https://doi.org/10.1038/nmat3115
https://doi.org/10.1038/nmat2704
https://doi.org/10.1038/nmat2704
https://doi.org/10.1038/nmat2704
https://doi.org/10.1038/nmat2704
https://doi.org/10.1038/nmat4090
https://doi.org/10.1038/nmat4090
https://doi.org/10.1038/nmat4090
https://doi.org/10.1038/nmat4090
https://doi.org/10.1063/1.1700682
https://doi.org/10.1063/1.1700682
https://doi.org/10.1063/1.1700682
https://doi.org/10.1063/1.1700682
https://doi.org/10.1103/PhysRevLett.100.198301
https://doi.org/10.1103/PhysRevLett.100.198301
https://doi.org/10.1103/PhysRevLett.100.198301
https://doi.org/10.1103/PhysRevLett.100.198301
https://doi.org/10.1098/rsif.2013.0651
https://doi.org/10.1098/rsif.2013.0651
https://doi.org/10.1098/rsif.2013.0651
https://doi.org/10.1098/rsif.2013.0651
https://doi.org/10.1016/S0749-6419(01)00044-4
https://doi.org/10.1016/S0749-6419(01)00044-4
https://doi.org/10.1016/S0749-6419(01)00044-4
https://doi.org/10.1016/S0749-6419(01)00044-4
https://doi.org/10.1038/nmat776
https://doi.org/10.1038/nmat776
https://doi.org/10.1038/nmat776
https://doi.org/10.1038/nmat776
https://doi.org/10.1073/pnas.082526499
https://doi.org/10.1073/pnas.082526499
https://doi.org/10.1073/pnas.082526499
https://doi.org/10.1073/pnas.082526499
https://doi.org/10.1016/j.bpj.2010.12.3712
https://doi.org/10.1016/j.bpj.2010.12.3712
https://doi.org/10.1016/j.bpj.2010.12.3712
https://doi.org/10.1016/j.bpj.2010.12.3712
https://doi.org/10.1021/nl203108t
https://doi.org/10.1021/nl203108t
https://doi.org/10.1021/nl203108t
https://doi.org/10.1021/nl203108t
https://doi.org/10.1038/nrm1890
https://doi.org/10.1038/nrm1890
https://doi.org/10.1038/nrm1890
https://doi.org/10.1038/nrm1890
https://doi.org/10.1038/nature02264
https://doi.org/10.1038/nature02264
https://doi.org/10.1038/nature02264
https://doi.org/10.1038/nature02264
https://doi.org/10.1529/biophysj.106.089144
https://doi.org/10.1529/biophysj.106.089144
https://doi.org/10.1529/biophysj.106.089144
https://doi.org/10.1529/biophysj.106.089144
https://doi.org/10.1021/bm060199t
https://doi.org/10.1021/bm060199t
https://doi.org/10.1021/bm060199t
https://doi.org/10.1021/bm060199t
https://doi.org/10.1038/nmat1798
https://doi.org/10.1038/nmat1798
https://doi.org/10.1038/nmat1798
https://doi.org/10.1038/nmat1798
https://doi.org/10.1038/17092
https://doi.org/10.1038/17092
https://doi.org/10.1038/17092
https://doi.org/10.1038/17092
https://doi.org/10.1016/j.actbio.2008.10.001
https://doi.org/10.1016/j.actbio.2008.10.001
https://doi.org/10.1016/j.actbio.2008.10.001
https://doi.org/10.1016/j.actbio.2008.10.001
https://doi.org/10.1038/nmat2387
https://doi.org/10.1038/nmat2387
https://doi.org/10.1038/nmat2387
https://doi.org/10.1038/nmat2387
https://doi.org/10.1016/S0141-8130(00)00116-1
https://doi.org/10.1016/S0141-8130(00)00116-1
https://doi.org/10.1016/S0141-8130(00)00116-1
https://doi.org/10.1016/S0141-8130(00)00116-1
https://doi.org/10.1103/PhysRevLett.104.198304
https://doi.org/10.1103/PhysRevLett.104.198304
https://doi.org/10.1103/PhysRevLett.104.198304
https://doi.org/10.1103/PhysRevLett.104.198304
https://doi.org/10.1021/ma00231a022
https://doi.org/10.1021/ma00231a022
https://doi.org/10.1021/ma00231a022
https://doi.org/10.1021/ma00231a022
https://doi.org/10.1098/rsta.2004.1395
https://doi.org/10.1098/rsta.2004.1395
https://doi.org/10.1098/rsta.2004.1395
https://doi.org/10.1098/rsta.2004.1395
https://doi.org/10.1371/journal.pone.0000998
https://doi.org/10.1371/journal.pone.0000998
https://doi.org/10.1371/journal.pone.0000998
https://doi.org/10.1371/journal.pone.0000998
https://doi.org/10.1038/nmat1534
https://doi.org/10.1038/nmat1534
https://doi.org/10.1038/nmat1534
https://doi.org/10.1038/nmat1534
https://doi.org/10.1007/s00396-008-1968-x
https://doi.org/10.1007/s00396-008-1968-x
https://doi.org/10.1007/s00396-008-1968-x
https://doi.org/10.1007/s00396-008-1968-x
https://doi.org/10.1016/j.jmps.2015.02.002
https://doi.org/10.1016/j.jmps.2015.02.002
https://doi.org/10.1016/j.jmps.2015.02.002
https://doi.org/10.1016/j.jmps.2015.02.002
https://doi.org/10.1126/science.276.5315.1109
https://doi.org/10.1126/science.276.5315.1109
https://doi.org/10.1126/science.276.5315.1109
https://doi.org/10.1126/science.276.5315.1109
https://doi.org/10.1021/ma00103a018
https://doi.org/10.1021/ma00103a018
https://doi.org/10.1021/ma00103a018
https://doi.org/10.1021/ma00103a018
https://doi.org/10.1103/PhysRevE.87.032714
https://doi.org/10.1103/PhysRevE.87.032714
https://doi.org/10.1103/PhysRevE.87.032714
https://doi.org/10.1103/PhysRevE.87.032714
https://doi.org/10.1016/j.jmps.2004.08.004
https://doi.org/10.1016/j.jmps.2004.08.004
https://doi.org/10.1016/j.jmps.2004.08.004
https://doi.org/10.1016/j.jmps.2004.08.004
https://doi.org/10.1007/s00161-009-0108-2
https://doi.org/10.1007/s00161-009-0108-2
https://doi.org/10.1007/s00161-009-0108-2
https://doi.org/10.1007/s00161-009-0108-2
https://doi.org/10.1016/j.bpj.2010.01.021
https://doi.org/10.1016/j.bpj.2010.01.021
https://doi.org/10.1016/j.bpj.2010.01.021
https://doi.org/10.1016/j.bpj.2010.01.021


MICROMECHANICAL MODEL FOR PROTEIN MATERIALS: FROM . . . PHYSICAL REVIEW E 96, 042407 (2017)

[40] J. Hsin, J. Strümpfer, E. H. Lee, and K. Schulten, Annu. Rev.
Biophys. 40, 187 (2011).
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