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Abstract Combining the elastica theory, finite element (FE)
analysis, and a geometrical topological experiment, we stud-
ied themechanical behavior of a ring subjected tomulti-pairs
of evenly distributed equal radial forces by looking at its
seven distinct states. The results showed that the theoretical
predictions of the ringdeformation and strain energymatched
the FE results very well, and that the ring deformations were
comparable to the topological experiment.Moreover, nomat-
ter whether the ring was compressed or tensioned by N -pairs
of forces, the ring always tended to be regular polygons with
2N sides as the force increased, and a proper compressive
force deformed the ring into exquisite flower-like patterns.
The present study solves a basicmechanical problemof a ring
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subjected to lateral forces, which can be useful for studying
the relevant mechanical behavior of ring structures from the
nano- to the macro-scale.
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Strain energy

1 Introduction

Ring structures are very common from the nano-scale up
to the macro-scale. Such structures include two-dimensional
(2D) rings formed from bars, e.g., 2D carbon-nanorings
[1], and three-dimensional (3D) rings (or cylindrical tubes)
formed from thin plates, e.g., 3D steel/aluminum tubes [2].
They generally exhibit variable geometries under different
lateral loading conditions, and their mechanical behaviors
under conditions such as buckling [1], collapse [2], and
impact dynamics [3] have been studied. Carbon nanorings,
for example, become elliptical before the buckling of the
carbon nanotube [1], and cross-sections of metallic tubes
deformed inelastically become double-symmetric [2,3] with
plastic hinges. Thus, understanding mechanics of ring struc-
tures under lateral loads is beneficial to the present scientific
community.

Two-dimensional rings subjected to lateral loads were
studied to understand their stress distribution [4–6], in-plane
free vibration [7,8], and impact/rebound [3]. Plus, consid-
ering size effect, the free vibration of 2D nanorings under
lateral loads was also investigated [9,10]. In particular, Chen
et al. [11] studied a connected carbon nanoring, which was
found to have a great Young’s modulus, and then, based
on this work, Feng and Liew [1] studied the critical buck-
ling displacement and shape of the laterally tensioned basic
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element—a single carbon nanoring. However, the studies on
the mechanical behavior of the carbon nanoring were based
on molecular mechanics or molecular dynamics.

To the best knowledge of the authors, 3D ring struc-
tures subjected to axial loads have been extensively studied
due to their fascinating properties, such as buckling pat-
terns and energy absorption of cylindrical shells [12–14], but
their mechanical properties under lateral forces have rarely
been studied. In this regard, a single tube was laterally com-
pressed by Ghosh et al. [15], as an energy absorber, and the
mechanical behavior of round nested metallic tubes systems
(i.e., combined cylindrical tubes) between two rigid plates,
has been studied [16,17], also as energy absorbers. The
quasi-static lateral compression, post-collapse, and crush-
ing behavior of the tube systems were experimentally and
numerically analyzed and later reviewed by Olabi et al. [18].

The above literature focused on a ring subjected to a single
lateral concentrated force or a pair of lateral forces along a
diameter. Also, there are multi-pairs of concentrated forces
centrally acting on a ring, which often exist in the form of a
basic element in a complex structure, for example, circular
joints subjected to two or three pairs of lateral forces in the
centre-symmetric tetragonal or hexagonal honeycombs [19].
Thus, in view of rings subjected to few pairs of centrally
acting forces along diameters [17,19], we here extend them
to a general case, for which a single ring is subjected tomulti-
pairs of equal, radial, concentrated forces evenly distributed
around the ring, and find the load-deformation or load-strain
energy relationships.

2 Theoretical models

The elastica theory is always employed to characterize very
large deformations of curved structures, where the shear and
axial deformations are not considered, for example, it is used
to study a micro-beam, droplet, carbon nanotube (CNT) ring
adhered on a substrate [20], and interestingly, an island-
bridge model in a stretchable electronic, in which the large
deformation of the bridge structure was modeled as an elas-
tica beam with both ends fixed [21]. However, it is noted
that real curved structures are not elastica, and they usually
deform plastically when subjected to large loads [2,3], plus,
the shear and axial deformations cannot be neglected when
the bar or plate forming the curved structures is thick; other-
wise, theTimoshenkobeam theory has to be employed, in this
case, it reduces the bending rigidity of the curved structures
due to the involvement of the shear effect, and improves the
structural deformation. Here, the theory for thin structures
is used to study the ring elastica under multi-pairs of equal
forces acting along diameters, and in-plane/out-of-plane sta-
bility is not considered. To comprehensively describe the
ring’s mechanical behaviors, the ring under both compres-

sion and tension are treated, and the compressive case comes
first.

2.1 Multi-pairs of equal radial compressive forces

Here, we exemplify a 2D ring structure with three pairs
of evenly distributed equal compressive forces as shown in
Fig. 1a. From Fig. 1a, it is easily generalized that for the
ring under N pairs of evenly distributed equal forces, only
a 1/(2N ) portion of the ring needs to be studied. Moreover,
as the compressive forces increase, the ring experiences six
states from 0 to V as marked in Fig. 1b. State 0 is an ini-
tial ring subjected to no force. The other five states can be
divided into two groups. Group 1 (states I, II) has negative
curvature and group 2 (states II–V) has both positive and
negative curvatures. Apparently, state II which is common
to both groups is critical. Then, basing on the group division
and considering only radial displacements at points A and B,
the half structures of the two groups are simplified as shown
in Fig. 1c, d, and the forces analyzed are shown in Fig. 1e, f.

2.1.1 Group 1 (States I, II)

(1) State I (Red profile in Fig. 1b)

FromFig. 1e, under a vertical external force F at the end point
A, the vertical force at the end point B equals F because of
the equilibrium in the vertical direction.Moreover, due to the
guided constraint, the resultant force (or constraint reaction)
of the horizontal force F ′ and the vertical force F at the end
point Bmust be tangential to deformed rings at the point, thus
the horizontal force F ′ is calculated by F ′ = F cot ϕ with
ϕ = π/(2N ). Applying moment equilibrium with respect to
the end point A, we obtain

−MA + MB = Fbξ (a, b) , with

ξ (a, b) = 1 − (a/b) cosϕ

sin ϕ
, (1)

where MA and MB are moments acting at the end points
A and B, respectively; a and b are distances from the end
points A and B to the origin O , i.e., ring center, respectively.
Thus, employing the elastica theory, the moment-curvature
relationship of an arbitrary point P(x, y) is expressed as [22]

D
dθ

ds
= − [MB − F (b sin ϕ − x) + F ′ (y − b cosϕ)

]
,

(2)

where D is the bending rigidity of the ring, for bars D =
E I and for thin plates D = Et3/[12(1 − v2)], (s, θ) is the
curvilinear coordinate of the point P . Here, θ is defined to be
positive when the tangent line of the point P pointing at the
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Fig. 1 (Color online) Schematics and force analysis of a ring with N -pairs of equal compressive radial forces. a A 2D ring with three pairs of
equal compressive radial forces; b 1/(2N ) ring with N -pairs of equal compressive forces, and six states with the increasing compressive forces;
c half structure of the group 1; d half structure of the group 2; e force analysis of the group 1; f force analysis of the group 2

end point B is counterclockwise relative to the positive x axis,
otherwise, it is negative, thuswhen the point P moves from A
to B, θ monotonously varies from 0 to −ϕ. Deriving Eq. (2)
with respect to the curvilinear coordinate s and considering
the geometrical relationship dx/ds = cos θ and dy/ds =
sin θ , it is rewritten as

D
d2θ

ds2
= −F cos θ − F ′ sin θ, (3)

multiplying both sides of Eq. (3) by dθ/ds, and integrating
it by substituting F ′ = F cot ϕ, its solution is obtained as

1

2
D

(
dθ

ds

)2

= F
cos (θ + ϕ)

sin ϕ
+ C. (4)

Boundary conditions provide dθ/ds|θ=0 = −MA/D and
dθ/ds|θ=−ϕ = −MB/D, which lead to two expressions with
respect to MA and MB . Invoking Eq. (1) and solving the two
expressions, we obtain another equation:

MA+MB = 2D

b
ζ(a, b), with ζ(a, b)= 1 − cosϕ

1 − (a/b) cosϕ
.

(5)

Then, combining Eqs. (1), (4), and (5), the unknowns MA,
MB , and C are calculated as

MA = − Fb
2 ξ(a, b) + D

b ζ(a, b),

MB = Fb
2 ξ(a, b) + D

b ζ(a, b),

C = M2
A

2D − F cosϕ
sin ϕ

, or
M2

B
2D − F

sin ϕ
.

(6)

The length of the arc AB is l = ϕR, and defining a set of
non-dimensional quantities, k2 = Fl2/D, ā = a/ l, b̄ =
b/ l, s̄ = s/ l, the non-dimensional curvature is solved from
Eq. (4) as

dθ

ds̄
= −

√
2

sin ϕ
k
√
K 2 + cos(θ + ϕ), with

K 2 = sin ϕ

2k2b̄2

[
k2b̄2

2
ξ(ā, b̄) − ζ(ā, b̄)

]2
− cosϕ,

(7)

here, since θ monotonously decreases from 0 to−ϕ, dθ/ds̄ is
negative, and the curvilinear coordinate of the arbitrary point
P is integrated as
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s̄ (θ) = √sin ϕ
p

k

[
F
(ϕ

2
, p
)

− F

(
ϕ

2
+ θ

2
, p

)]
, (8)

where p =
√
2/
(
1 + K 2

)
, and F (ψ, p) =

∫ ψ

0 1/
√
1 − p2 sin2 ψdψ is the incomplete elliptical integral

of the first kind, in which ψ represents a general amplitude.
Because axial and shear deformations are neglected, the inex-
tensible condition s̄ (−ϕ) = 1 holds, and we arrive at the
following equation

√
sin ϕ

p

k
F
(ϕ

2
, p
)

= 1. (9)

To determine the deformation of the structures, the Carte-
sian coordinates of the point P are always calculated by
integrating the differential vector dr (θ) = d (x̄, ȳ)T =
(cos θ, sin θ)T ds̄, where x̄ = x/ l and ȳ = y/ l, i.e.,

r (θ) = −1

k

√
sin ϕ

2

⎡

⎣
θ∫

0

cos θ
√
K 2 + cos(θ + ϕ)

dθ,

θ∫

0

sin θ
√
K 2 + cos(θ + ϕ)

dθ

⎤

⎦

T

+ (0, ā)T , (10)

furthermore, Eq. (10) is solved as (See the derivation in
“Appendix A”):

r (θ) = −1

k

√
sin ϕ

2

[
sin ϕ cosϕ

cosϕ − sin ϕ

] [
A (θ)

B (θ)

]
+
(
0
ā

)
,

(11)

where

A (θ) = −2
[√

K 2 + cos (θ + ϕ) −√K 2 + cosϕ
]
,

B (θ) = −√
2p
{
K 2
[
F
(

θ
2 + ϕ

2 , p
)− F

(
ϕ
2 , p

)]

− 2
p2
[
E
(

θ
2 + ϕ

2 , p
)− E

(
ϕ
2 , p

)]}
,

(12)

in which E (ψ, p) = ∫ ψ

0

√
1 − p2 sin2 ψdψ is the incom-

plete elliptical integral of the second kind, ψ also represents
a general amplitude. It is readily seen that Eqs. (11) and
(12) give r (0) = (0, ā)T, which is the coordinate of the
end point A. For the end point B, Eq. (11) should satisfy
r (−ϕ) = b̄ (sin ϕ, cosϕ)T, which are expressed as

x̄ (−ϕ) = − 1
k

√
sin ϕ
2 [A (−ϕ) sin ϕ + B (−ϕ) cosϕ]

= b̄ sin ϕ,

ȳ (−ϕ) = − 1
k

√
sin ϕ
2 [A (−ϕ) cosϕ − B (−ϕ) sin ϕ] + ā

= b̄ cosϕ.

(13)

Addressing Eq. (13), on the one hand, we multiply the
first equation by sin ϕ, the second by cosϕ, and sum them
together; on the other hand, we multiply the first equation
by cosϕ, the second by sin ϕ, and subtract the first by the
second, then we obtain

− 1
k

√
sin ϕ
2 A (−ϕ) = b̄ − ā cosϕ,

− 1
k

√
sin ϕ
2 B (−ϕ) = ā sin ϕ.

(14)

It is noted that the first expression in Eq. (14) holds (See the
proof in “Appendix B”). Replacing θ in B (θ) of Eq. (12) by
−ϕ and using the inextensible condition Eq. (9), the second
expression of Eq. (14) is re-expressed as

ā sin ϕ + K 2 − 2
√
sin ϕ

kp
E
(ϕ

2
, p
)

= 0. (15)

According to Eqs. (9) and (15), the shape parameters ā and b̄
reflecting the deformation of the ring, are implicit functions
of the force k, which determines the profile of the ring.

Moreover, the elastic strain energy is derived as

UI =
∫ l

0

1

2
D

(∣∣∣∣
dθ

ds

∣∣∣∣− κ0

)2

ds, (16)

where κ0 = 1/R = ϕ/ l is the initial curvature (i.e., curvature
of the state 0). Re-expressing it in a non-dimensional form
and employing Eq. (7), we find:

ŪI = UIl

D
= 1

2

∫ 1

0

(∣∣∣∣
dθ

ds̄

∣∣∣∣− κ0l

)2

ds̄

= 2√
sin ϕ

k

p
E
(ϕ

2
, p
)

− ϕ2

2
. (17)

(2) State II (Blue profile in Fig. 1b)

The critical state II transiting from states I and III in Fig. 1b
is a particular case common to both states. In this state, the
curvature at the end point A starts changing from negative
to positive (Fig. 1e, f), i.e., dθ/ds̄ |θ=0 = 0. Employing
Eq. (7), the zero curvature provides K 2 = − cosϕ, which
further leads to p = csc(ϕ/2) by p = √

2/(1 + K 2). Then,
substituting p = csc(ϕ/2) into the inextensible condition
(9), the critical force kcr,1 is expressed as

kcr,1 =
√
2 cot

(ϕ

2

)
F
(ϕ

2
, csc

ϕ

2

)
, (18)

and inserting K 2 = − cosϕ, p = csc(ϕ/2) and kcr,1 into
Eq. (15), the shape parameter ācr,1 is calculated as

ācr,1 = cscϕ

[

cosϕ + (1 − cosϕ)
E
(

ϕ
2 , csc ϕ

2

)

F
(

ϕ
2 , csc ϕ

2

)

]

, (19)
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moreover, K 2 = − cosϕ also leads to the following expres-
sion by the definition of K 2 in Eq. (7)

k2b̄2 = 2
ζ(ā, b̄)

ξ(ā, b̄)
, (20)

and inserting kcr,1 and ācr,1 into Eq. (20), b̄cr,1 is calculated
as

b̄cr,1 = cot ϕ cosϕ + (1 − cosϕ)
1 + cot ϕ · E (ϕ

2 , csc ϕ
2

)

F
(

ϕ
2 , csc ϕ

2

) .

(21)

2.1.2 Group 2 (States II, III, IV, and V)

State II is the critical state between groups 1 and 2, and it
has already been dealt within Sect. 2.1.1.(2), thus we do not
intend to derive it in this section.
(3) State III (Plum profile in Fig. 1b)

As stated before, differently from state I, the positive and neg-
ative curvatures exist simultaneously as the force increases,
and there is an inflection point C , see Fig. 1f. For the AC
part, dθ/ds̄ > 0, and for the CB part, dθ/ds̄ < 0, thus at the
inflection point C , dθ/ds̄|θcr = 0, where θcr is the angular
coordinate of the pointC . Herewemark the two partsAC and
CB by subscripts 1 and 2, respectively, and the curvilinear
coordinates of the point P in the two parts are calculated by
integrating the following curvature expressions

dθ

ds̄1
=
√

2
sin ϕ

k
√
K 2 + cos(θ + ϕ) , θ ∈ (0, θcr ) ,

dθ

ds̄2
= −

√
2

sin ϕ
k
√
K 2 + cos(θ + ϕ) , θ ∈ (θcr ,−ϕ) ,

(22)

where K 2 is the same as that in Eq. (7), and Eq. (22) is
integrated as

s̄1 (θ) = √
sin ϕ

p
k

[
F
(

ϕ
2 + θ

2 , p
)− F

(
ϕ
2 , p

)]
,

θ ∈ (0, θcr ) ,

s̄2 (θ) = √
sin ϕ

p
k

[
F
(

ϕ
2 + θcr

2 , p
)

− F
(

ϕ
2 + θ

2 , p
)]

,

θ ∈ (θcr ,−ϕ) .

(23)

Then, the inextensible condition provides s̄1 (θcr ) + s̄2 (−ϕ)

= 1, which is further expressed as

√
sin ϕ

p

k

[
2F

(
ϕ

2
+ θcr

2
, p

)
− F

(ϕ

2
, p
)]

= 1 . (24)

Similar to Eqs. (10)–(12), the Cartesian coordinate of the
point P in the part AC is computed as

r1 (θ) = 1

k

√
sin ϕ

2

[
sin ϕ cosϕ

cosϕ − sin ϕ

] [
A1 (θ)

B1 (θ)

]
+
(
0
ā

)
,

(25)

where A1 (θ) and B1 (θ) are same as Eq. (12), but the upper
limit of the angular coordinate θ is replaced by θcr instead of
−ϕ. Equation (25) also provides the coordinates of the end
point A, i.e., r1 (0) = (0, ā)T. For the part CB, the Cartesian
coordinate is calculated as

r2 (θ) = −1

k

√
sin ϕ

2

[
sin ϕ cosϕ

cosϕ − sin ϕ

] [
A2 (θ)

B2 (θ)

]
+ r1 (θcr ) ,

(26)

where

A2 (θ) = −2
√
K 2 + cos (θ + ϕ),

B2 (θ) = −√
2p
{
K 2
[
F
(

θ
2 + ϕ

2 , p
)− F

(
θcr
2 + ϕ

2 , p
)]

− 2
p2

[
E
(

θ
2 + ϕ

2 , p
)− E

(
θcr
2 + ϕ

2 , p
)]}

.

(27)

As stated above, at the inflection point C , dθ/ds̄
∣∣
θcr = 0

holds, which leads to K 2 + cos (θcr + ϕ) = 0 from Eq. (22)
and A2 (θcr ) = B2 (θcr ) = 0 from Eq. (27), thus, Eq. (26)
provides r2 (θcr ) = r1 (θcr ), which ensures the continuity of
the parts AC and CB at the point C . Moreover, using Eq. (26)
and considering r2 (−ϕ) = b̄ (sin ϕ, cosϕ)T, then like with
the treatment of Eq. (13), we obtain

1
k

√
sin ϕ
2 [A1 (θcr ) − A2 (−ϕ)] +ā cosϕ = b̄,

1
k

√
sin ϕ
2 [B1 (θcr ) − B2 (−ϕ)] − ā cosϕ = 0.

(28)

As in the proof in “Appendix B”, the first equation in Eq.
(28) always holds, and the second expression yields

ā sin ϕ + K 2

−2
√
sin ϕ

kp

[
2E

(
ϕ

2
+ θcr

2
, p

)
−E

(ϕ

2
, p
)]

=0, (29)

employing Eqs. (24) and (29), the shape parameters ā and b̄
can be solved by a given force k.

For state III, the elastic strain energy is calculated in a
non-dimensional form as

ŪIII = UIIIl

D
= 1

2

∫ 1

0

(∣∣∣∣
dθ

ds̄

∣∣∣∣− κ0l

)2

ds̄ = 2√
sin ϕ

k

p

×
[
2E

(
θcr +ϕ

2
, p

)
−E

(ϕ

2
, p
)]

− 2ϕθcr − ϕ2

2
. (30)
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(4) State IV (Green profile in Fig. 1b)

State IV, in Fig. 1b, is the second critical state being between
states III and V. In this case, ācr,2 = 0. Employing the inex-
tensible conditionEqs. (24) and (29), the force kcr,2 and shape
parameter b̄cr,2 can be obtained.
(5) State V (Purple profile in Fig. 1b)

The calculation of state V is same as state III, so we will not
repeat the process here.

From analyzing states I to V, we can conclude that when
the force k varies from 0 to kcr,1, state I exists when k varies
from kcr,1 to kcr,2, state III exists and state V emerges when
k is beyond kcr,2.

2.2 Multi-pairs of equal tensile forces

Section 2.1 deals with the five compressive states of the ring.
For the tensile case, its curvature is similar to that of state I
in the compressive case, i.e., dθ/ds̄ < 0, where θ changes
from 0 to −ϕ, and what we need do is to replace the force
F in Eqs. (4) and (6) with −F . Then, the curvature of the
arbitrary point P is expressed as

dθ

ds̄
= −

√
2

sin ϕ
k
√
K 2 − cos(θ + ϕ), with

K 2 = sin ϕ

2k2b̄2

[
k2b̄2

2
ξ(ā, b̄) + ζ(ā, b̄)

]2
+ cosϕ, (31)

and the curvilinear coordination is solved as

s̄ (θ) = √
sin ϕ

p

k

×
[
F

(
π + ϕ

2
, p

)
− F

(
π + ϕ

2
+ θ

2
, p

)]

with K 2 = sin ϕ

2k2b̄2

[
k2b̄2

2
ξ(ā, b̄) + ζ(ā, b̄)

]2
+ cosϕ,

(32)

where p =
√
2/
(
1 + K 2

)
. Invoking the inextensible condi-

tion s̄ (−ϕ) = 1, we find

√
sin ϕ

p

k

[
F

(
π + ϕ

2
, p

)
− F

(π

2
, p
)]

= 1. (33)

Similar to the Cartesian expressions Eqs. (11) and (25) of the
point P , its vector is calculated as

r (θ) = −1

k

√
sin ϕ

2

[
sin ϕ cosϕ

cosϕ − sin ϕ

] [
A (θ)

B (θ)

]
+
(
0
ā

)
,

(34)

where

A (θ) = 2
[√

K 2 − cos (θ + ϕ) −√K 2 − cosϕ
]
,

B (θ) = √
2p
{
K 2
[
F
(

θ
2 + π+ϕ

2 , p
)− F

(π+ϕ
2 , p

)]

− 2
p2
[
E
(

θ
2 + π+ϕ

2 , p
)− E

(π+ϕ
2 , p

)]}
,

(35)

considering the coordinates of the end point B r (−ϕ) =
b̄ (sin ϕ, cosϕ)T and substituting it into Eq. (34), like the
treatment of Eq. (13), we obtained the following expression

− 1
k

√
sin ϕ
2 A (−ϕ) = b̄ − ā cosϕ,

− 1
k

√
sin ϕ
2 B (−ϕ) = ā sin ϕ.

(36)

Similarly, the first equation in Eq. (37) also always holds,
and the second expression yields

ā sin ϕ−K 2+2
√
sin ϕ

kp

[
E

(
π + ϕ

2
, p

)
− E

(π

2
, p
)]

= 0.

(37)

Combing Eqs. (33) and (37), the shape parameters ā and b̄
can be solved by a given k.

Moreover, the non-dimensional elastic strain energy of the
tensile case is calculated as

ŪT = UT l

D
= 1

2

∫ 1

0

(∣∣∣
∣
dθ

ds̄

∣∣∣
∣− κ0l

)2

ds̄ = 2√
sin ϕ

k

p

×
[
E

(
π + ϕ

2
, p

)
− E

(π

2
, p
)]

− ϕ2

2
. (38)

3 Results and discussion

Here, we consider four loading cases, i.e., N = 1, 2, 3, 4.
For each case, one tensile state and six compressive states
are theoretically treated, and the specific non-dimensional
forces k for the seven states are set to be−6, 0, 0.8kcr,1, kcr,1,
0.8kcr,2, kcr,2, 2kcr,2. Correspondingly, the commercial soft-
ware ABAQUS/Standard was used to verify the theoretical
results. The radius of the ring in the FE geometrical model
is 10 mm, and the cross-section of the ring bar is circular,
with the radius set to 0.1 mm. The linear-elastic constitu-
tive behavior of the ring material is used and its Young’s
modulus and Poisson’s ratio are 210 GPa and 0.25, respec-
tively. Thanks to symmetry, the FE model was simplified
by studying a 1/(2N ) ring, see Fig. 2. The model contains
100 2-node B21 elements, which include the shear effect,
and 101 uniformly distributed nodes. The loading process is
displacement controlled. Since the analysis is a quasi-static
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Fig. 2 (Color online) a Diagram and b mesh and boundary condition of the finite element model. U1 and U2 are the displacements in the radial
and circumferential directions, respectively, and UR3 is the rotation

large deformation, an automatic incrementing type is used to
ensure the convergence. As for the continuous deformation
process of the whole ring, it can be seen in supplementary
video materials.

3.1 Deformation profiles

Each of the seven specific states, is denoted by an orange,
black, red, blue, plum, green, and purple profile, respectively,
see Fig. 3. The results show that the theoretical prediction
and FE simulation agree very well (solid lines for theoretical
results and the discrete markers for FE results in Fig. 3). It
is easily seen that in the tensile state, the ring tends to be
a regular polygon with 2N sides as the force increases, for
example, when N = 2, 3, 4, the ring approaches square,
regular hexagon, and regular octagon (orange profiles in
Fig. 3b–d), respectively. In the compressive states, the criti-
cal state II (blue profiles in Fig. 3a–d) gradually approaches
the initial ring (black profiles in Fig. 3a–d) as N increases,
in particular, the critical state II in the case of N = 4
almost coincides with the initial profile. That is to say, as
N increases, the scope of state I (red profiles in Fig. 3a–d)
between state 0 and the critical state II becomes narrower
and narrower; instead, state III (plum profiles in Fig. 3a–d)
between the state II and the critical state IV (green pro-
files in Fig. 3a–d), gets wider and wider. Moreover, if the
force exceeds the first critical value, i.e., 0.8kcr,2, kcr,2, the
ring deforms into flower-like patterns, and when the force
increases beyond the second critical value, i.e., 2kcr,2, the ring
reversely tends to be a regular polygon, but with 2N knots
(purple profiles in Fig. 3a–d). In particular, when N = 1,
the ring deformed by 0.8kcr,2 (plum profiles in Fig. 3a) is

similar to the dog-bone shaped single-wall carbon nanotube
bundles, and when N = 3, the ring deformed by –6 (orange
line in Fig. 3c) resembles the hexagonal single-wall car-
bon nanotube bundles [23,24]. In this regard, due to their
similar cross-sectional shapes, the elastic strain energy of
carbon nanotubes could be solved by the present method.
However, for nanomaterials, we have to say that the the-
ory based on the elastica theory is continuous, and care
should be exercised when dealing with discrete nanomate-
rials, e.g., nanotubes. In addition, when structural size enters
the nano-scale, surface effects have to be taken into account
[25].

As stated at the beginning of Sect. 2, the static defor-
mation theory of a 2D elastica ring derived mathematically
does not include the in-plane/out-of-plane stability. Here,
in the FE model, the in-plane/out-of-plane stability is guar-
anteed to use the displacement loading mode [26] and the
2D beam element. It is noted that the displacement load-
ing mode of the FE model is different from the present
theory, which is based on the force loading mode. In real-
ity, the two loading modes may result in different structural
stabilities under the compressive loads, because the ring
structures are always stable in the displacement loadingman-
ner due to the prescribed displacement, and often unstable
in the force loading manner due to the critical buckling
force. Moreover, it is not easy to arrive at the deforma-
tions of states I–V as the structural instability of the 2D ring
structures is present during the compressive process. In par-
ticular, the states I–III are also valid for 3D ring structures,
which, due to their larger axial dimensions, are more sta-
ble during the deformation process than the 2D ring. The
out-of-plane instability of the 2D rings is mainly caused by
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Fig. 3 (Color online) Comparison between theoretical and finite element results under N -pairs of equal forces for each state. a N = 1; b N = 2;
c N = 3; d N = 4. Note, the solid profiles are theoretical results, and the discrete marker profiles are FE results, because of the tightness between
state 0, state I, and state II, it is not easy to distinguish them in c, d

two aspects. One is the out-of-plane deformation of the ring
arch in Fig. 1b under lateral loads [27] before self-contact,
which may occur in states I–III. The other is the out-of-
plane kinematics after self-contact [28], which may occur
in states III–V; furthermore, a knot will be formed as the
force increases, and this physical phenomenon can be often
found in the study of other thin elastic rods [28,29]. Thus,
states IV and V, only occur when the ring is self-intersected
or out-of-plane kinematics are permitted, and the character-
ization of self-intersection and out-of-plane kinematics that
are both physically reasonable and mathematically precise,
is very difficult [29].

To illustrate the effectiveness of the present theory, topo-
logical experiments were carried out to compare the geo-
metrical similarity using a Nitrile Butadiene Rubber (NBR)
ring, whose characteristics allowed it to be controlled more
easily when entering into unstable states. The NBR ring was
constrained between a base and transparent cover to con-
trol its out-of-plane kinematics. The corresponding loading
cases were performed by tensioning cotton threads previ-
ously glued to the relevant points on the ring. For the tensile

case, the tension was applied outwards, but for the com-
pressive case, the tension was applied inwards. It is worth
mentioning that in spite of using NBR for the ring, it was
still very difficult to create the state V due to the complex-
ity of the pattern and the instability in the ring. In any case,
the experimental result was obtained by integrating the raw
pictures in “Appendix C” of ESM and reported in Fig. 4,
which partially show the consistence of the present the-
ory.

3.2 Shape parameters and elastic strain energy

For the loading case with N pairs of forces, the force F , the
shape parameters a and b, energyU are non-dimensionalized
by l = ϕR = π

2N R = L
4N , where L = 2πR is the perimeter

of the ring, and they are expressed as k = L
4N

√
F
D , ā = 4Na

L ,

b̄ = 4Nb
L , and Ū = U

D · L
4N , respectively. Thus, because

of the variable N from 1 to 4, the comparison of the shape
parameters and elastic strain energy needs to be unified, and

Nk = L
4

√
F
D ,

ā
N = 4a

L , b̄
N = 4b

L , and NŪ are compared here.
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Fig. 4 Topological experiments of extrinsic similar shapes as their
counterparts in Fig. 3

Then, for the four above loading cases, the relationships of
the shape parameters and elastic strain energies with forces
are plotted in Fig. 5.

From Fig. 5a, it can be seen that the theoretical results
(thin lines) match the finite element results (thick lines) very
well. Regarding the scopes of the parameters ā (solid lines
in Fig. 5a) and b̄ (dashed lines in Fig. 5a), we consider
two extreme states, one is tensile and the other is com-
pressive, and as stated before, the profiles of the ring in
the two extreme states are approximate regular polygons,
then through geometrical analysis of the polygons, the shape
parameter a varies from −l cscϕ to l cscϕ, and b from
−l cot ϕ to l cot ϕ. Thus, normalized by the arc length of l, the
non-dimensional shape parameters ā and b̄ vary in the inter-
vals of (− cscϕ, cscϕ) and (− cot ϕ, cot ϕ), respectively. In
the tensile case, the non-dimensional force k is negative. As
the force increases, the shape parameters ā and b̄ increase
and decrease, respectively, moreover, ā/N tends to cscϕ/N ,
and b̄/N tends to cot ϕ/N . For example, if there is one pair
of equal tensile forces (blue lines in Fig. 5a), i.e., N = 1
and ϕ = π

2 , ā tends to be 1.0, and b̄ to be 0. This means that
the y-coordinate of point A approaches a quarter of the ring’s
perimeter, and point B tends to the center of the ring. Plus, as
N increases, ā and b̄ tend to 2

π . In the compressive case, the
force k is positive. As the force increases, ā always decreases,
but b̄ increases first and then decreases, which can be clearly
observed in Fig. 3a, i.e., in the case of N = 1, b̄ increases
fromstate 0 (black profile) to state IV (green profile), and then
decrease afterward (purple profile), similarly, ā/N tends to
− cscϕ/N , and b̄/N tend to −cot ϕ/N . Meanwhile, as N

increases, the maximum of b̄ and its corresponding ā both
tend to 2

π (see Fig. 5a and its inset), and its corresponding
forces also increase (see the inset in Fig. 5a). This indicates
that when N tends to infinity, the ring’s shape is still a circle
even though a great compressive force is applied, and this
can be used to explain a well-known phenomenon: when an
egg is held in one hand, it does not break even when a large
handgrip force is applied.

Figure 5b depicts the elastic strain energy stored in the
1/(2N ) ring as the force increases. Even though the results
from the two methods do not match very well as the profiles
in Fig. 3 and shape parameters in Fig. 5a, they are still com-
parable. This is because the bending strain energy is only
considered in the theory (thin lines), and compared to the
bending deformation, the tensile and shear strain energies are
neglected thanks to their smallness. However, the data from
the finite element analysis (thick lines) includes all three,
and thus the finite element result is a little greater than the
theoretical results, and the difference grows as the external
force increases. Plus, it shows that in the tensile case, the
elastic strain energy is very small, and as N increases, the
elastic strain energy decreases. This is due to the inextensible
condition which determines smaller and smaller deformation
as N increases. The compressive case has a very different
behaviour to the tensile case, namely, as N increases, the
elastic strain energy increases, and this is due to a large num-
ber of applied forces on the ring with a greater deformation
of the ring.

The present theoretical model for a ring structure is very
useful for analyzing the mechanical behavior of micro- and
nano-devices in microelectromechanical systems (MEMs),
nanoelectromechanical systems (NEMS), and electronics
[30]; however, in these cases, distinct physical mechanisms,
such as surface effect and size effect, in micro- or nano-scale
should be further considered. In particular, for the stretch-
ability and flexibility of electronics, the mechanical safety
and electronic performance under large strain is not guaran-
teed [21], thus the strain distribution of the micro-structure,
particularly, the maximum strain is of much importance. It
is critical to predict accurately the maximum strain using a
theoretical model so that premature failure of the structure
can be avoided by an optimal design. For the present ring
structure, the well-known strain of the bending Euler beam
along a cross-section is expressed as: ε (y) = y dθ

ds = M
E I y,

where y is the distance from a material point to the neutral
axis of the cross-section, thus with a uniform cross-section,
the maximum strain depends on the curvature/moments and
the cross-section size. From Eq. (6), we can see that in the
compressive case, MB > MA always holds, and in the ten-
sile case, MB < MA, so it is very easy to find the location of
maximumstrain, and further avoid the failure of the structure.
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Fig. 5 (Color online) Shape parameters of loaded rings and strain energy stored in the 1/(2N ) rings. a Variations of the shape parameters ā and
b̄, for the theoretical results, the solid lines represent the shape parameter ā, and the dashed denote b̄; b strain energy stored in 1/(2N ) ring. Noted
that the blue, red, purple, and green lines represent N = 1, 2, 3, 4 in order

Finally, it is worth mentioning that care should be exer-
cised when using this method for rings under unevenly
distributed forces, which will induce non-symmetric config-
urations, and this is because the positions of the equivalent
guided points A and B are not apparent as with the present
work, and they must be determined through calculation.

4 Conclusions

In summary, we have developed a set of theories for a ring
subjected to multi-pairs of evenly distributed equal radial
forces. The theory reflects the relationship between the pair
number of forces, the value of the forces, the shape, and
the strain energy. In the tensile case, there is only one state,
while in the compressive case, the ring experiences six states.
The results show very good agreement between the theory
and finite element results. Interestingly, no matter whether
the ring is compressed or tensioned by N -pairs of equal
forces, it always tends to form a regular polygon with 2N
sides as the force increases, and with a compressive force the
ring deforms into flower-like patterns. These results could
be helpful in studying the mechanics of ring structures under
lateral concentrated loads, such as themicro- or nano-devices
in the MEM or NEM systems.
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Appendix A

The coordinate vector (10) of the point P can be solved as

r (θ) = −1

k

√
sin ϕ

2

⎡

⎣
θ∫

0

cos θ
√
K 2 + cos(θ + ϕ)

dθ,

θ∫

0

sin θ
√
K 2 + cos(θ + ϕ)

dθ

⎤

⎦

T

+ (0, ā]T

= −1

k

√
sin ϕ

2

⎡

⎣
θ∫

0

cos(θ + ϕ − ϕ)
√
K 2 + cos(θ + ϕ)

dθ,

θ∫

0

sin(θ + ϕ − ϕ)
√
K 2 + cos(θ + ϕ)

dθ

⎤

⎦

T

+ (0, ā]T

= −1

k

√
sin ϕ

2

⎧
⎨

⎩

⎡

⎣sin ϕ

θ∫

0

sin(θ + ϕ)
√
K 2 + cos(θ + ϕ)

dθ

+ cosϕ

θ∫

0

cos(θ + ϕ)
√
K 2 + cos(θ + ϕ)

dθ

⎤

⎦ ,

⎡

⎣(cosϕ

θ∫

0

sin(θ + ϕ)
√
K 2 + cos(θ + ϕ)

dθ
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− sin ϕ

θ∫

0

cos(θ + ϕ)
√
K 2 + cos(θ + ϕ)

dθ

⎤

⎦

⎫
⎬

⎭

T

+ (0, ā)T

= −1

k

√
sin ϕ

2

[
sin ϕ cosϕ

cosϕ − sin ϕ

]

×
⎡

⎣
θ∫

0

sin(θ + ϕ)
√
K 2 + cos(θ + ϕ)

dθ,

θ∫

0

cos(θ + ϕ)
√
K 2 + cos(θ + ϕ)

dθ

⎤

⎦

T

+ (0, ā)T

= −1

k

√
sin ϕ

2

[
sin ϕ cosϕ

cosϕ − sin ϕ

] [
A (θ)

B (θ)

]
+
(
0
ā

)
,

(A1)

where

A (θ) =
θ∫

0

sin(θ+ϕ)√
K 2+cos(θ+ϕ)

dθ

= −2
[√

K 2 + cos (θ + ϕ) −√K 2 + cosϕ
]
,

B (θ) =
θ∫

0

cos(θ+ϕ)√
K 2+cos(θ+ϕ)

dθ

= −√
2p
{
K 2
[
F
(

θ
2 + ϕ

2 , p
)− F

(
ϕ
2 , p

)]

− 2
p2
[
E
(

θ
2 + ϕ

2 , p
)− E

(
ϕ
2 , p

)]}
.

(A2)

Appendix B

Replacing θ in A (θ) of Eq. (12) by−ϕ and inserting A (−ϕ)

into the first expression of Eq. (14), we obtain

−1

k

√
sin ϕ

2

[
−2
(√

K 2 + 1 −
√
K 2 + cosϕ

)]

= b̄ − ā cosϕ. (B1)

Re-arranging Eq. (B1), the following expression arrives

√
K 2 + 1 −

√
sin ϕ

2
kb̄ξ(ā, b̄) =

√
K 2 + cosϕ. (B2)

Squaring both sides of the Eq. (B2), it is re-expressed as

1 − cosϕ − 2
√
K 2 + 1

√
sin ϕ

2
kb̄ξ(ā, b̄)

+ sin ϕ

2
k2b̄2ξ2(ā, b̄) = 0. (B3)

Considering the expression of K 2 in Eq. (7), we find

K 2 + 1 = sin ϕ

2k2b̄2

[
k2b̄2

2
ξ(ā, b̄) − ζ(ā, b̄)

]2
+ 1 − cosϕ

= sin ϕ

2k2b̄2

{[
k2b̄2

2
ξ(ā, b̄) − ζ(ā, b̄)

]2

+2k2b̄2
1 − cosϕ

sin ϕ

}

= sin ϕ

2k2b̄2

{[
k2b̄2

2
ξ(ā, b̄) − ζ(ā, b̄)

]2

+2k2b̄2ξ(ā, b̄)ζ(ā, b̄)

}

= sin ϕ

2k2b̄2

[
k2b̄2

2
ξ(ā, b̄) + ζ(ā, b̄)

]2
. (B4)

Substituting Eq. (B4) into Eq. (B3), the left side of Eq.
(B3) is expressed as

1 − cosϕ − 2

√
sin ϕ

2

1

kb̄

[
k2b̄2

2
ξ(ā, b̄) + ζ(ā, b̄)

]

×
√
sin ϕ

2
kb̄ξ(ā, b̄) + sin ϕ

2
k2b̄2ξ2(ā, b̄)

= 1 − cosϕ − sin ϕ

[
k2b̄2

2
ξ2(ā, b̄) + ξ(ā, b̄)ζ(ā, b̄)

]

+ sin ϕ

2
k2b̄2ξ2(ā, b̄)

= 1 − cosϕ − sin ϕξ(ā, b̄)ζ(ā, b̄)

= 1 − cosϕ − (1 − cosϕ)

= 0. (B5)

Thus, the derivation of Eqs. (B1) – (B5) proves that the first
expression in Eq. (14) always holds.
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Tensile case 

Compressive case 

State 0 State I State II State III State IV State V 

       

       

       

      

 

Figure S1. The patterns formed by the ring whilst being acted on by pairs of forces as described in the 

theoretical part of this paper. From top to bottom the pairs of forces on the ring were N=1, 2, 3 & 4. 

Noted that the state V of the case N = 4 is not available thanks to the complexity, and state 0 is not 

shown in Fig. 4. 
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