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In this paper, free vibration of open noncircular cylinders with spiral cross section are studied under arbitrary
boundary conditions. For deriving the strain energy function, Kirchhoff-Love hypotheses are employed. To obtain
the solutions, Rayleigh-Ritz technique is implemented by selecting Chebyshev orthogonal polynomials of first kind
as admissible displacement functions in three directions. Convergence of the proposed formulation is verified for
spiral cylindrical panel and the results are compared with those of ABAQUS. Parametric study is undertaken
to highlight the effect of inner radius, separation distance, subtended angle, thickness, and length of the spiral
cylinders on the free vibration characteristics. Results obtained in this research are the first step toward modeling
spiral cylinders and can be used for comparison in future studies. Finally, the design strategy for the spiral
cylinders with specific vibration characteristics is presented. The results imply that spiral cylinder with specific
vibration characteristics can be designed using equivalent open circular cylinder.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Research on the vibration of cylindrical shells is not a new topic and
the first reference dates 1970s [1]. Shells are one of the most useful el-
ements in industry and civil to construct complicated Structures. These
structures vary from roof of a building to wing of a flight. Their applica-
tion in different fields requires precise analysis of the static and dynamic
behavior considering design and safety issues.

Cylindrical shells are one of the most principal elements used in en-
gineering structures and the vibration behavior of them is an interest-
ing topic for researchers even after decades [2-5]. Numerous studies
on closed circular cylinders cover different aspects of their vibration be-
havior [6-8]. The effect of variable thickness of closed circular cylinder,
in axial and circumferential directions, on vibration of shell has been
studied [9,10]. Different boundary conditions and vibration behavior of
composite cylinders are other interesting topics for researcher [11-14].
Meanwhile, similar studies have been carried out on open circular shells
[15-19].

Noncircular cylinders have been studied as closed shells and open
panels in two different categories like circular cylinders [20]. Suzuki
et al. investigated the vibration characteristics of closed noncircular thin
and thick shells [21,22]. Most of the researches on closed noncircular
cylinders are focused on special cross sections such as oval [23] and el-

liptic profiles [24-26]. Although some of researchers have investigated
the closed noncircular cylindrical shells with arbitrary cross section,
they have treated oval and elliptic shells as examples.

Soldatos reviewed the studies on mechanics of cylindrical shells with
noncircular cross section including vibration characteristics [27]. As
clarified in the survey, due to difficulties of open noncircular panels
comparing with circumferentially closed cylindrical shells, the research
on the open noncircular cylindrical panels have received little attention.
Srinivasan and Bobby studied the vibration characteristics of oval pan-
els by considering all edges of panel are clamped and investigated the
effect of parameters such as curvature, thickness and aspect ratio [28].
Massalas et al. used Donnell’s theory to study the natural frequencies
of noncircular shells with arbitrary boundary conditions and applied
this method on oval shells in special boundary conditions [29]. Kou-
mousis and Armenakas investigated free vibration of noncircular cylin-
drical panels with simply supported curved edges using Flugge and Don-
nell type equations and applied the method on symmetric panels [30].
In addition, Koumousis and Armenakas analyzed the free vibration of
oval cylindrical panels with simply supported curved edges [31]. Suzuki
et al. developed and exact solution procedure for determining the natu-
ral frequencies of open noncircular shells supported by shear diaphragm
in curved edges and the method was applied for shells having ellipti-
cal cylindrical curvature and circumferentially varying thickness [32].
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Fig. 1. Geometry of a cylindrical panel with spiral cross section (a) cylindrical panel (b) spiral cross section of mid-surface.

Koumousis presented a new method for obtaining the dynamic charac-
teristics of cylindrical panels with noncircular cross section having sim-
ply supported curved edges using Flugge and Donnell type equations
[33]. The researcher claimed that mentioned method is efficient in de-
termining the eigenfrequencies and corresponding mode shapes. Grig-
orenko et al. investigated free vibration of elastic isotropic open cylindri-
cal shell with elliptic cross section using spline-collocation method [34].

There are rare publications on the vibration of open noncircular
shells comparing with the circular ones in the literature. Additionally,
these studies on noncircular shells are concentrated on oval and elliptic
cross sections. In this paper, free vibration of a cylindrical panel with
spiral cross section as an open noncircular shell is studied. Spiral cross
section is a well-known configuration in some general structures like
large span roofs [35] and specific applications like carbon nanoscrolls
[36-39]. In addition, spiral cylinders can be the result of imperfection
in production process of circular cylindrical panels.

Although some of pervious researches studied open noncircular shell
as an arbitrary profile, they are usually limited to Flugge and Donnell’s
theory with special boundary conditions on the edges of panel [33]. In
the present research, with no limitation on the boundary conditions, any
classical and non-classical constrains can be applied along the straight
and curved edges of the panel for analyzing vibration characteristics of
spiral cylinders. In this study, displacement functions of the shell in each
direction are expanded as Chebyshev polynomials of first kind. After
convergence analysis, results are compared with finite element model
using ABAQUS commercial software.

2. Modeling

Fig 1 shows an open noncircular cylindrical shell with length, L, cir-
cumferential subtended angle, ¢, and linearly varying radius. The cylin-
drical coordinate system (x 6 z) illustrated on the shell segment might
be used for describing the equations of motion. u, v, and w denote the
displacement components in these directions, respectively. The radius of
curvature in circumferential direction of mid-surface is R,. The global
Cartesian coordinate system (XYZ) would be used to describe the posi-
tion vector of a typical point on mid-surface of shell. The translational
springs (k,,k,,k,,) and torsional spring (k;) are uniformly distributed
along the boundaries to model the resultant forces in each boundary.
The inner and outer radii of the cross section are R, and R, respec-
tively. The term t shows the distance between two successive turns of
spiral which is called separation distance and the thickness of shell is
assumed to be h.

The position of a typical point in the mid-surface of a cylindrical
shell with Archimedean spiral cross section can be defined in terms of x
and 0 as:

7(x,0) = xI + (Ry + af)cos 8 J + (R, + af)sin K %))
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where /, J, and K denote the unit vectors along X, Y, and Z. Parame-
ter a which controls the distance between two successive turns of spiral
equals t/2x. By considering the ratio a/R, to be small and using formu-
lation presented in Appendix A, the Lame parameters for the cylindrical
panel with spiral cross section could be described as:

A=1

B=1/a®+(Ry+ad)’ ~ Ry + ab

and the curvature radii of the shell along two directions can be deter-
mined by:

(2.2)

(2.b)

R

X o]

V(@ + (Ry +a)?y’

242 + (Ry + af)?

(3.2

R ~ Ry + ab (3.b)

By considering linear variation of in-plane displacements through
the thickness of the shell and satisfying the Kirchhoff-Love assumptions,
the components of strain in an arbitrary point of a shell are commonly

expressed by separating membrane and bending strains as:

_ .0
Exx = Exy T ZKyy
_ .0
€gp = Egg + Zkog
0
Yx6 = Yo + ka9 “
in which €%, 529, and y°  are normal and shear strains independent

of z direction. k,,, ky, and k,, represent variation of curvatures and
twist in mid-surface, respectively. Considering the geometric parameters
of a spiral cylindrical panel, described in relations (1)-(3), and using
Kirchhoff-Love assumptions, the strain-displacement relations of mid-
surface are:

20 = z)_u 20 = —1 Q + w
X ox” % Ry+abdd R,
oo L o, Qw
X0 " 9x  Ry+af o’ > ax2
1 9 1 oR
koo = 796~ 530"
(Ry + af) (Ry +af)’
L | 9B ow 1 0w
(Ry+a0)’ 9 90 (R, +ap)* 06
1 9 2w
kg = . ®)

Ry +ab 0x Ry + ab 0x00

Generalized Hook’s law determines the components of stress in each
point of the shell according to strain components calculated through
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relations (4) and (5):

vE
Oxx = -2 xx T 1_‘/2590
_ VE E
Ogp = 2™ ] v2509
E
= 6
Txo 2(1+V)YX9 (6)

where,o,,, 649, and 7,, represent normal stresses and shear stress, re-
spectively. E is Young Modulus and v shows Poison ratio of open cylin-
drical shell. Force and moment applied on the panel can be calculated
by integrating components of stress along the thickness of shell:

Eh 0 vEh ()
Noex = 1-v2 Fxx 1-v2 “o0
VEh o . Eh
Noo = 1—v2 l—vzgee
Eh o
Ny=-—2 7
0= T4 v) 0 (72)
ERW v Eh
M. =
(1 -02) T 12(1-02)
Mo = vER En
T 2(1-02) T 12(1-02)
E R
My = (7b)

— i
24(1 +v) 0

Using relations (5) and (7) one can write the total strain energy of
the deformation stored in the spiral cylindrical panel as:
1
= Il Z(v,
[ 30w
S

.t Nggeee + ngg + M, k. + Mygkgg + M, gk, g)ds

®)
The corresponding kinetic energy of the shell can be written as:
ph v Jw
= (G G (5 ) 2

where p denotes the mass density of the shell and t represents time pa-
rameter. The energy stored in the boundary springs which simulates the
boundary conditions effect is other component of energy. This energy
could be calculated as following:

ow\?
%) ] _(Roxat)ao

(5

Uy = /¢ [k"“ 20V ko + k0
0

¢
+/ [kXL P+ kI + kgl w? 4 kgt (Ry +ab)do
0

LT ow\?
+/ [ku°u2+k vV kR w? + k) ( )
0 ox
+/ [k% +k v +k9"’ 2+k ( )] dx
0 0=¢

in which k{‘ i=u,0,w,T; j;=xg,Xp,0,0, represent the stiffness of
springs located at boundary edge j, in different directions. For example,
k;? shows the stiffness of spring in z direction located at boundary x = 0.
Using the energy components calculated through relations (8)-(10), to-
tal Lagrangian energy functional for a noncircular cylindrical panel with
spiral cross section and arbitrary boundary condition in straight and
curved edges could be written:

Jw

ox 19

L=T-U-U, (11

In this study, Rayleigh- Ritz method is used to determine the natural
frequencies and mode shapes of the panel. Effect of boundary condi-
tions are embedded in energy function, consequently, any independent
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and complete bases functions can be considered as admissible functions
and they are not needed to satisfy any boundary condition. Therefore,
Chebyshev polynomials of first kind are considered as admissible func-
tions for displacement components in three directions:

u(x, 0.0 = Y Z Upin PP, (0)e™"

m=0 n=0

o(x,0,1) = i Z

m=0 n=0

Viun Pn(X) P, ()7

w(x, 0, I) - Z Z man(x)P (e)eja” (12)

m=0 n=0

where, U, Vi, and Wy, are unknown coefficients of displacement
functions. P, (x), and P,(0) represent Chebyshev polynomials of first
kind as following:

Py(s) =1; Pi(s)=s

P(s) = 2sP_(s) = Py(s) i>1 (13)

Chebyshev polynomials of first kind are defined on the interval
[-1, 1]. Therefore, the length of the cylinder should be transformed
to this interval. A coordinate transformation between the dimensions of
cylinder and mentioned interval, x = 2x/L — 1; 8 = 26/¢ — 1, is needed.

Due to limitations of calculation, the series expansion should be trun-
cated. Therefore, proper precision can be achieved by the selection of
M and N as the summation limits. Substituting relation (12) into Egs.
(8)-(11) and minimizing total Lagrangian energy with respect to un-
known coefficients of displacement, leads to the following eigenvalue
problem.

Kuu KMV KUW Muu O O U
Kvu Kw Kvw -’ 0 Muu 0 V=0 (14)
Ky Kuov K 0 0 My, ||| W

Where K and My Lj=w v, w denote sub-matrices of generalized

stiffness and generalized mass matrices which their elements are repre-
sented in Appendix B. The vectors U, V, and W are undetermined coeffi-
cients of displacement which construct the corresponding mode shapes
of each natural frequency:

= [Ugos - UonUpgs - s Urys oo s Upgos s Un|
= [Voor - Yon-Vios -+ Vi -+ Vagos - Vaw]
= [Woos s Wons Wios -+ s Wins oo s Wagos -+ Wam] s)

One can obtain the natural frequencies of noncircular shell with spi-
ral cross section by solving the standard eigenvalue problem. Substi-
tuting corresponding eigenvector of each natural frequency to displace-
ment relations gives the mode shapes.

3. Results and discussion

In order to study the effect of geometric parameters of spiral cylin-
drical panel on the vibration characteristics, a computer program has
been developed. Although there is no limitation on the application of
any boundary condition, reporting the results of every combination of
boundary conditions is impossible. In this research, one of the main
goals is selecting appropriate geometrical parameters of a spiral cylin-
drical panel to achieve desired vibration behavior. Therefore, in most of
the simulations, all edges of the panel are considered to be free. In this
investigation, simply support boundary condition beside the free bound-
ary condition is interested to serve suitable results for future studies. In
addition, some results are reported for completely clamped and com-
pletely supported by shear diaphragm boundary conditions in all edges
of spiral panel.

Defining the stiffness of springs uniformly distributed along each
edge of the panel depends on the boundary conditions. Based on the
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Convergence of first seven natural frequencies for completely free cylindrical panel with spiral cross
section (R, =2m, t=1m, ¢ =27, L=5m, h=0.1m).

Mode Shape ~ M=N ABAQUS
4 8 11 12 13 14 15
1 4.36 1.75 1.74 1.75 1.75 1.75 1.75 1.74
2 4.58 2.32 2.47 2.32 2.32 2.32 2.32 2.47
3 11.75 3.89 3.80 3.82 3.82 3.82 3.82 3.80
4 12.35 5.34 5.34 5.30 5.30 5.30 5.30 5.34
5 104.00 9.31 8.50 8.54 8.54 8.54 8.54 8.49
6 168.28 9.94 9.21 9.61 9.60 9.60 9.60 9.20
7 175.63 1829 15.02 1578 1578 1578 1578  15.00
Table 2

analysis presented in Section 3.1, the boundary spring rigidities can be
expressed for classical boundary conditions including free, simply sup-
port, clamped, and shear diaphragm on the curved edge x=0 as an ex-
ample:

Free (F): kﬁo =0, k’u‘o =0, k’u‘ﬁ) =0, k;‘}) =0
Simply Support (S): k,” = 10°D, k," = 10°D, k) = 10°D, k;° = 0
Clamped (C): k,° = 10°D, k,* = 10°D, k,? = 10°D, k;o =10°D

Shear Diaphragm (D): k,° = 0, k,° = 10°D, k0 = 10°D, k}° =0

where D=FEh3/12(1 —v?) is bending stiffness of the panel. Since there
are four edges for an open cylindrical panel, a simple letter string like
FSCD is employed to represent the boundary conditions of the spiral
cylinder. FSCD indicates a spiral cylinder with free, simply support,
clamped, shear diaphragm boundary conditions at the edges x=0, x =L,
0 =0, and 0 = ¢, respectively.

3.1. Convergence and accuracy

The first crucial step to use the proposed method in vibration analy-
sis of spiral cylinder is determination of truncation number for displace-
ment series expansion. Although the values of M and N depend on the ge-
ometric properties of panel, boundary conditions, mode number, and the
accuracy of results, usually there is a constant value for specific struc-
ture. In the convergence study, the natural frequencies of a completely
free spiral cylinder with different truncation numbers are presented.
Table 1 demonstrates first seven natural frequencies of a spiral cylinder
with following geometric parameters: Ry=2m, t=1m, ¢ =27, L=5m,
and h=0.1 m. For all numerical results in this research, unless other-
wise stated, the material properties are E=210 GPa, p=7800 kg/m?,
v=0.3. The results show that the natural frequencies converge quickly.
Verification of the formulation in this study could be achieved by com-
parison between the results of the proposed method and those obtained
through ABAQUS. The geometric profile of the spiral cross section is
created in ABAQUS through the Python script and 3465 uniform shell
elements are used for simulation. The applied elements are four-node
doubly curved thin or thick shell elements (S4R) of ABAQUS standard
element library.

The previous researchers usually studied the circular cylinders and
researches on noncircular cylindrical panels are limited to oval and ellip-
tic ones. Considering the lack of results on the vibration characteristics
of spiral cylinders in the literature, a possible strategy for verification of
results and comparing with the literature can be achieved by simplifying
the formulation of a noncircular spiral cylinder into a circular cylinder
and comparing with previous studies. Therefore, by putting separation
distance, t, equal to zero a circular cylinder is modeled as: Ry=2m,
t=0, ¢=x/2, L=3m, and h=0.02 m. The first four frequency param-
eters, Q =2 7w R4/p/E, of the cylinder are given in Table 2 and corre-
sponding mode shapes are shown in Fig 2. However, more verification
of the presented method on circular cylindrical, spherical, and conical
panels could be found in Refs. [18,40,41].

If the separation distance of a cylindrical panel is not zero, the com-
parison of results with literature is impossible and the results obtained
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Comparison of first four frequency parameters for
FCCC cylindrical panel with circular cross section
(Ry=2m, t=0, ¢p=7/2, L=3m, h=0.02m).

Mode shape Present Ref. [18]
1 0.1529 0.1529
2 0.1787 0.1787
3 0.2819 0.2819
4 0.2877 0.2877

Table 3
First four frequency parameters for Examples 1 and 2 determined
through proposed method and ABAQUS software.

Example 1 Example 2
Mode shape Present ABAQUS Present ABAQUS
1 0.0514 0.0516 0.0027 0.0027
2 0.0517 0.0519 0.0070 0.0070
3 0.0644 0.0648 0.0076 0.0076
4 0.0673 0.0677 0.0084 0.0085

by proposed method can be compared with those of ABAQUS software.
Therefore, two cylindrical panels with spiral cross sections are mod-
eled as: Example 1 (Ry=3m, t=1m, ¢=x, L=5m, and h=0.01 m),
Example 2 (Ry=4m, t=1.5m, ¢ =57/2, L=30m, and h=0.01 m). The
boundary conditions FCCC and FCFC are considered for Example 1 and
Example 2, respectively. The first four natural frequencies of these cylin-
ders are determined and reported in Table 3 and the corresponding
mode shapes are illustrated in Figs 3 and 4 using proposed method and
ABAQUS model. For the ABAQUS simulation, the model contains 5100
and 14,550 shell elements for Example 1 and Example 2, respectively.

The effect of boundary springs rigidity on the natural frequency is
studied to check the appropriateness of boundary conditions modeling.
Fig 5 shows the frequency parameter, Q = wL?+/ph/D, versus different
elastic restraint parameter in one of the boundaries. A spiral cylinder
with Ry=2m, t=1m, L=3m, and h=0.05m by two subtended an-
gles ¢ = /3 and ¢ = r is studied and the results compared with circular
cylinder by putting separation distance equal to 0. When three springs
stiffness of a boundary condition is zero and elastically restrained in
one direction the boundary could be defined as E;. Consequently, when
the three groups of the springs get infinite stiffness, 10°D, the boundary
could be represented with Ej;.

Fig 5(a) and (b) show the variation of first frequency parameter in
CE,FF and CEFF boundary conditions for spiral and circular cylinders
when subtended angle equals to ¢ =7/3. The results for a bigger sub-
tended angle, ¢ = r, in Fig 5(c) and (d) reveal the effect of cross section
in natural frequencies.

3.2. Parameter study

From design perspective, it is important to know the influence of
each parameter on the vibration characteristics of the panel. In this
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Fig. 2. First four mode shapes of FCCC cylindrical panel with circular cross section.
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Fig. 3. First four mode shapes of Example 1 calculated through the proposed method (a-d) and ABAQUS (e-h).
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Fig. 4. First four mode shapes of Example 2 calculated through the proposed method (a-d) and ABAQUS (e-h).
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Fig. 5. Variation of first frequency parameter for spiral cylinder with two different subtended angles for elastic boundary conditions (a) ¢ =z/3, CEFF (b) ¢=7/3 CE/FF (c) ¢p=m,

CE,FF (d) ¢= = CE,FF.

section, the effect of each geometric parameter in natural frequency and
corresponding mode shape is studied by considering the other parame-
ters are constant. Table 4 represents the lowest four natural frequencies
of the spiral cylinder with different classical boundary conditions to in-
vestigate the frequency change with respect to variation of separation
distance.

When separation distance increases the cylinder degenerates from a
circular to spiral cylinder. According to formulation, ratio of separation
distance to radius should be small. However, comparison of the results
obtained by proposed method and ABAQUS demonstrate high accuracy
of the proposed formulation even for t/Ry=1.

Generally, separation distance shows a decreasing effect on the nat-
ural frequencies of spiral cylindrical panel and it is more considerable
in FFFF boundary condition comparing with other boundary condi-
tions. However, the first natural frequency shows an opposite behavior
for FFSS boundary condition and corresponding mode shape is a spe-
cial mode which appears only in this boundary condition. Restricting
straight edges by simply support shows more effect on natural frequen-
cies than restriction on curved edges. Meanwhile, results for completely
clamped and shear diaphragm boundary condition are reported.

In Table 5, a set of examples are conducted to illustrate the influ-
ence of inner radius on the vibration behavior of spiral cylinder with
different boundary conditions. Although like separation distance, the
decreasing influence of inner radius on natural frequency in completely

381

free boundary condition is dominant, the first natural frequency in FFSS
boundary condition shows different manner. In addition, the first natu-
ral frequency obtained in FFSS is lower than that of FFFF. This strange
consequence depends on the appearance of a particular mode shape in
FFSS boundary condition.

To study the effect of subtended angle on vibration characteristics,
variation of the lowest two natural frequencies of the spiral cylinder
against subtended angle with FFFF boundary condition is illustrated in
Fig 6. The results are achieved using the parameters of previous example
with different subtended angles. Additionally, the corresponding first
two mode shapes of the spiral cylinder in selected subtended angles are
represented to enhance the understanding of vibration behavior. It can
be observed from the figure that first natural frequency increases and
reaches the crest in ¢ =45° and declines while second natural frequency
contains three extrema in ¢=25°, 45° and 65°. This firstly reported
result shows a different behavior with respect to previously results pub-
lished on open circular cylinders and could be helpful significantly from
design perspective.

Fig 7 shows the trend of first two natural frequencies for SSSS re-
stricting condition versus the subtended angle. From the results it is
clear that first two natural frequencies have decreasing trend for SSSS
boundary condition while for FFFF boundary condition do not. Although
the mode shapes corresponding to this boundary condition are entirely
different from FFFF, in both of them as subtended angle increase the
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Table 4
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First four natural frequencies of spiral cylinder with different separation distances and boundary conditions (R, =2m, ¢ =2z, L=5m, h=0.1 m).

Separation Distance Mode Shape Boundary Conditions
t (m) FFFF  SFFF FFSS SSFF FSSS SSSF SSFS SSSS CcCcC DDDD
0 1 2.72 19.80 0.00 48.47 49.17 48.48 48.48 106.92 112.07 80.94
2 3.11 20.14 559 48.49 50.78 95.32 95.32  107.96  112.19 86.18
3 5.91 41.62 5.91 95.32  66.22 103.38  103.38  120.69  128.57 88.92
4 6.89 46.50 15.18 95.32 69.37 107.81 107.81 125.14 128.80 106.29
0.5 1 2.15 18.19 0.10 4394  46.58 43.94 48.16 99.79  104.67 77.24
2 2.66 19.77 4.43  48.15  47.26 87.89 9492  100.84  105.46 80.12
3 4.68 40.95 4.69 87.89 59.81 95.45 98.70 111.68 117.09 88.39
4 5.99 42.27  12.00 94.88 63.48 101.06 100.76  114.22  119.95 90.15
1 1 1.75 16.82 0.15 40.50  43.62 40.50 47.83 92.97 98.11 72.54
2 2.32 19.58 3.61 47.83  44.90 82.30 92.83 94.11 98.71 77.74
3 3.82 38.37 3.82 82.30 54.47 88.40 93.92 103.75 109.69 80.37
4 5.30 42.49 9.72  88.38  58.38 94.32 94.46  106.12  110.48 90.79
1.5 1 1.45 15.71 0.18 37.79  41.45 37.79 47.53 86.72 91.98 68.43
2 2.05 19.41 3.01 47.53 42.11 77.92 86.71 87.98 92.75 73.48
3 3.18 36.51 317 7792  51.69 82.29 87.92 96.99  102.31 78.42
4 4.74 40.36 8.04 8229 5249 88.21 94.06 99.03  103.88 81.30
2 1 1.22 14.80 0.18 35.59 39.23 35.59 47.23 81.21 86.68 64.76
2 1.83 19.24 2.56  47.23  39.95 74.39 81.19 82.45 87.26 69.96
3 2.70 34.73 2.68 7439  47.58 77.03 82.46 91.11 96.46 74.06
4 4.29 38.74 6.76  77.03  49.79 82.71 90.62 92.75 97.48 79.47
ABAQUS 1 1.21 14.82 0.18 35.39 39.12 35.39 47.27 81.15 86.48 64.39
2 1.83 19.43 2.27  47.27  39.87 73.68 81.14 82.40 87.22 69.81
3 2.65 34.63 2.48  73.68  47.32 76.88 82.40 90.97 96.30 73.68
4 4.17 38.74 6.61 76.88 49.68 82.65 90.71 92.70 97.29 79.76
Table 5

First four natural frequencies of spiral cylinder with different inner radiuses and boundary conditions (t=1m, ¢ =2z, L=5m, h=0.1 m).

Inner Radius Mode Shape Boundary Conditions

Ry (m) FFFF SFFF FFSS SSFF FSSS SSSF SSFS SSSS CCcCC DDDD

1 1 470  20.35 0.74 49.18  56.65 49.18 64.03  120.62  126.43 86.45
2 489 2562 10.25 64.03  58.09 96.22 11850  123.55  128.40 95.77
3 9.91 43.77 10.60 96.22 85.93 110.16 121.49 147.16 156.33 103.80
4 10.82 50.83 27.09 110.09 87.51 124.22  123.73 153.82  159.63  128.09

2 1 1.75  16.82 0.15 40.50  43.62 40.50 47.83 92.97 98.11 72.54
2 2.32 19.58 3.61 47.83 4491 82.30 92.83 94.11 98.71 77.74
3 3.82 3837 3.82 82.30  54.47 88.40 93.92 103.75  109.69 80.37
4 530 4249 9.72 88.38  58.38 94.32 94.46  106.12  110.48 90.79

3 1 0.89 1470 0.05 35.44  37.07 35.44 39.96 77.58 82.70 63.39
2 1.40 16.48 1.83 39.96  37.35 74.19 77.51 78.13 83.04 66.24
3 1.94  33.92 1.95 7419 4351 75.10 78.16 83.65 88.67 68.88
4 3.50 36.01 4.95 75.10  43.82 78.28 81.58 84.25 89.25 71.53

4 1 0.54 13.26 0.03 32.03 32.55 32.03 35.15 67.53 72.81 56.90
2 0.94 1453 1.11 35.15 3276 66.03 67.53 67.86 73.01 56.91
3 1.17  30.49 1.18 66.02  36.29 67.94 67.83 71.24 76.48 58.92
4 2.52 32.10 2.99 67.93 37.02 68.75 70.92 71.86 76.82 60.56

first mode shapes contains more waves along the circumferential di-
rection than longitudinal direction. It reflects the fact that cylindrical
panels with higher arc length are flexible in circumferential direction
and as the arc length decrease the circumferential flexibility diminishes
and the first mode shapes contain more waves along the axial direction
instead of circumferential direction.

The effect of length and thickness of the shell on the vibration of
spiral cylinder is depicted on Figs 8 and 9 with FFFF and SSSS bound-
ary conditions. Generally, in each boundary condition, thickness of the
shell has a similar effect on the natural frequency for different length.
For example, in Fig 8 the natural frequencies of the shell with thickness
0.1m is 2.5 times of that in thickness 0.04 m while in SSSS boundary
condition in Fig 9 it is 1.5 times bigger than natural frequencies of spi-
ral cylinder with thickness 0.04 m. This diversity could be the result of
appearance of bending effect due to boundary condition.

According to the results of Fig 8 first natural frequency in FFFF
boundary condition is nearly constant up to length 8 m. However, it
shows a decreasing manner for higher values of cylinder length. This
variation comes from the mode change which could be observed in mode
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shapes represented in Fig 8. The natural frequency related to circumfer-
ential mode shape, Fig 8(a), has a nearly constant value in different
length of cylinder and appears as first and second mode shape by varia-
tion of length. In Fig 9, the first and second natural frequencies coincide
with each other and as length of cylinder increases the number of waves
along the circumferential direction decreases and tends to increase it
along the axial direction.

3.3. Design strategy

Since all of the structures and instruments contain mass and elastic
properties, they are willing to vibrate. Understanding vibration behavior
of engineering elements for safe design of structures and efficient oper-
ation of systems is necessary. Structures are usually designed to avoid
dangerous failures due to vibration of a specific part. For example, vi-
bration fatigue in components of airplane, gas turbine, and large span
roofs is one of the crucial designing criteria. However, vibration in some
engineering applications such as actuating elements and casting process
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Fig. 7. Variation of natural frequency versus subtended angle of spiral cylinder and first two mode shapes of selected subtended angles with SSSS boundary condition (a-b) ¢ =35°, (c-d)

$=75" (e-f) ¢ =180, (g-h) ¢ =360".

plays a useful role. Therefore, achieving desired vibration performance
serves an essential purpose for most of the engineering designs.

The target of this section is proposing a feasible procedure for se-
lecting appropriate geometrical parameters of a spiral cylindrical panel
to achieve desired vibration behavior. The geometry of a spiral cylinder
can be expressed in terms of inner radius, separation distance, subtended
angle, thickness, and length. Based on the results obtained in this study,
the non-dimensional parameters, R,,,/L, t/L, h/L, and L,/L are defined
for the sake of generality and convenience. Where L, =R, .0 represents
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the arc length of panel and Ry, =R, +af/2 is a new parameter intro-
duced for determining the average radius of a spiral cross section. The
non-dimensional natural frequency for expressed variables can be de-
fined asQ = /12(1 — v?)p/ ELy.

Fig 10 shows the variation of frequency parameter for completely
free cylindrical panel in selected values of R,,,./L and h/L, while Fig 11
presents the effect of separation distance for selected values of R, /L.

Investigations of this research show that, after introducing R,./Las
a parameter, the effect of separation distance on frequency parameter
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is small and not comparable with other parameters especially for bigger
values of average radius to longitudinal length ratio. However, other
parameters including R,,./L, h/L, and Lys/L are very important in de-
signing process. Therefore, it is appropriate to select parameters of an
equivalent circular cylindrical panel at first step by concentrating on
the limitations of design to reach the objective predefined natural fre-
quency. In second step, various pairs of separation distance and inner
radius can be selected considering average radius defined in pervious
step.

4. Conclusion

In this research, a new formulation based on Kirchhoff-Love assump-
tions is proposed to study the vibration behavior of noncircular cylindri-
cal panels with spiral cross section. The natural frequencies and mode
shapes of spiral cylinders are determined through Rayleigh Ritz method.
The convergence and accuracy of the results are studied based on the
natural frequencies and mode shapes of spiral and circular cylinders.
Results obtained from finite element modeling in ABAQUS and previ-
ous studies are compared with outcomes of this research and a good
agreement is achieved.

The effect of each parameter including inner radius, separation dis-
tance, subtended angle, thickness, and length of the spiral cylindri-
cal panel on the vibration characteristics of the shell are investigated
through the proposed method. Results indicate that the effect of each
parameter on the natural frequencies of the panel varies for different
boundary conditions. However, ratio of circumferential length to lon-
gitudinal length plays the most important role on natural frequencies
and mode shapes of the cylindrical panel. Separation distance as the
distinctive characteristic of spiral cylinders, significantly changes the
natural frequencies of the panel while other parameters are assumed
to be constant. Although the effect of separation distance on the vibra-
tion behavior is noticeable, its effect diminishes for a constant average
radius. Therefore, for designing a spiral cylinder, it is appropriate to se-
lect the geometrical parameters of equivalent circular cylinder at first
step. Then, by considering the radius of circular cylinder as average ra-
dius of spiral cylinder, various pairs of separation distance and inner
radius can be suggested.
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Appendix A

Generally, the position vector of a point on the mid-surface of a shell
can be defined by two curvilinear coordinates (a, ) in the global Carte-
sian coordinate system as:

7= X(a, B)i +Y(a, B + Z(a, Pk (A1)

One can determine the magnitude of an infinitesimal distance be-
tween two points in the mid-surface of the shell by:
OF OF , .2
—(d
PR ﬁ( )]

For the orthogonal curvilinear coordinates relation (A2) reduces to:

(da)® + 23—;.3—;d(xdﬁ +

oF oF

ds)? = dF.di = —.=—
@) rar da oa

(A2)

(ds)? = di.dP = A’(da)® + BX(dp)* (A3)

where A and B are the coefficients of fundamental form or Lame param-
eters and can be expressed as

97
op

o
da

=<l B= (A%)
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In fact, the Lame parameters relate the change in curvilinear coordi-
nates to change in arc length. The principle radii of curvatures for two
curvilinear coordinate lines can be determined as

A? B?
R, = ;. Ry= A
R N (AS)
e “9p2

Where 7 represents the unit vector normal to the surface and is calcu-
lated using following equation:

o
da

A

(A6)

=

Appendix B

In this appendix a detailed expressions of generalized stiffness and
mass matrices are presented. The following relations can be used to de-
termine each element in submatrices of generalized stiffness and mass
matrices.

(k) = AT + Ao TV 1L + k(=171
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~aDyp 11™1% — aDy 111" + 6Dy, 11079
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+a" Dy 11 1115 —aDyI1 114 —aDyI1 I_i
Dy I 117 + 4D I T T + k)2 (— 1P 10
00 4 0 00 4 % ;700
HO I + k(DT + kT T

4 4
+Ek;0 mzpz(_l)m+p1?0 i Ek;L mzpzl?o
+ikf;on2q2(_l)n+q”00 " ik?nzqz”oo
0,2 0,2

- - _ 00 700

(Muu)ij - (Mvv)l'j - (Mww)l] - phII 11 (Bl)
where i and j are defined indexes based on unknown coefficients of dis-
placements i=m(N+1)+n+1 and j=p(N+1)+q+1. The Other pa-

rameters could be defined as:

17 — /L Lo —dhpp(x)dx
0
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